
An Efficient MATLAB Algorithm for Graph Partitioning

Technical Report

João P. Hespanha

October 20, 2006∗

Abstract

This report describes a graph partitioning algorithm based on spectral factorization that can be
implemented very efficiently with just a hand full of MATLAB commands. The algorithm is closely
related to the one proposed by Phillips and Kokotović [4] for state-aggregation in Markov chains. The
appendix contains a MATLAB script that implements the algorithm. This algorithm is available online
at [3].

1 Graph partitioning

Consider an undirected graph G = (V, E) with vertex set V and edge set E, together with a positive edge-
cost function c : E → [0,∞). A k-partition of V is a collection P = {V1, V2, . . . , Vk} of k disjoint subsets of
V , whose union equals V . The cost associated with P is defined by

C(P) :=
∑

i6=j

∑

(v,v̄)∈E
v∈Vi,v̄∈Vj

c̄(v, v̄).

The `-bounded Graph Partitioning (`-GP) problem consists of finding a k-partition P that minimizes C(P),
with no element in partition having more than ` vertices.

The smallest value of ` for which this problem is solvable is ` = dn/ke, where n denotes the number of
vertices in V . When ` takes this value we say that the partition is perfectly balanced. For ` = d(1 + ε)n/ke
we say that the partition has an ε percentage of imbalance . Several algorithms to solve this problem for
the special case of c̄(·) constant and equal to one are compared in http://staffweb.cms.gre.ac.uk/~c.

walshaw/partition/.

Without loss of generality we assume that the graph is fully connected and set c(v, v̄) = 0 for every edge
not present in the original graph. In this case, we can simply write

C(P) :=
∑

i6=j

∑

v∈Vi,v̄∈Vj

c(v, v̄).

Note that since the graph is undirected, c(v, v̄) = c(v̄, v), ∀v, v̄ ∈ V .

This problem is related to the MAX k-CUT problem in [2], which consists of finding a partition for V
that maximizes the reward1

R(P) :=
∑

i6=j

∑

v∈Vi,v̄∈Vj

r(v, v̄).

∗Revised version of a technical report with the same title, dated October 8, 2004
1The reward in [2] is actually half of the one presented here because in that reference the outer summation was only over

i < j.

1

for a given edge-reward r : V × V → [0,∞) with the property that r(v, v̄) = r(v̄, v), ∀v, v̄ ∈ V . Ageev
and Sviridenko [1] considered a variation of the MAX k-CUT problem, called the Hypergraph MAX k-CUT
problem with given sizes of parts (HMkC), which adds the constraint that |Vi| = si, ∀i for a given set of k
integers {s1, s2, . . . , sk}.

1.1 Matrix formulation of the `-GP problem

We are pursuing spectral techniques to solve this problem, i.e., techniques based on eigenvector/eigenvalue
decomposition. To this effect, it is convenient to redefine the problem in matrix form.

We say that n × k matrix Π = [πvj] is a k-partition matrix if πvj ∈ {0, 1}, ∀v, j, Π is an orthogonal
matrix (i.e., Π′Π is diagonal), and ‖Π‖F =

√
n. The notation ‖ · ‖F denotes the Frobenius norm, i.e.,

‖Π‖F :=
√

trace(Π′Π). One can show that a n × k matrix Π is a k-partition matrix if and only if each row
of Π is a vector of the canonical basic of R

k (cf. Proposition 1 in the Appendix). Therefore a k-partition
matrix Π is completely specified by a n-vector whose vth entry contains the index within the vth row of
Π of the entry equal to one. We call this vector the partition vector associated with Π. The following two
lemmas, which are proved in the appendix, will be needed.

Lemma 1. There is a one-to-one correspondence between the set of k-partitions of V := {1, 2, . . . , n} and
the set of k-partition matrices Π. The two correspondences can be defined by

1. Given a k-partition P = {V1, V2, . . . , Vk} of V , a k-partition matrix Π = [πvj] can be defined by

πvj =

{

1 v ∈ Vj

0 v /∈ Vj

∀v ∈ V, j ∈ {1, 2, . . . , k}. (1)

2. Given a k-partition matrix Π = [πvj], a k-partitions P = {V1, V2, . . . , Vk} of V can be defined by

Vj := {v ∈ V : πvj = 1}, ∀j ∈ {1, 2, . . . , k}. (2)

For these correspondences

Π′Π = diag[|V1|, |V2|, . . . , |Vk|]

and the vth entry pv of the partition vector p associated with Π specifies to which Vi does the vth vertex
belong, i.e., v ∈ Vpv

, ∀v ∈ V . �

It turns out that it is easy to express the cost associated with a k-partition of V in terms of the corre-
sponding k-partition matrix:

Lemma 2. Let P = {V1, V2, . . . , Vk} be a k-partition of V := {1, 2, . . . , n} and Π = [πvj] the corresponding
k-partition matrix. Then

C(P) = 1′
nA1n − trace(Π′AΠ),

where A is an n × n matrix whose vv̄th entry is equal to c(v, v̄) and 1n a n-vector with all entries equal to
one. �

These two lemmas allow us to reformulate the `-GP problem as follows

maximize trace(Π′AΠ) (3a)

subject to πvj ∈ {0, 1}, ∀v, j (3b)

Π orthogonal (3c)

‖Π‖F =
√

n (3d)

Π′Π ≤ `Ik×k . (3e)

2

Since all entries of Π belong to {0, 1}, this optimization could also be formulated as follows

maximize trace(Π′AΠ)

subject to πvj ∈ {0, 1}, ∀v, j

Π orthogonal

1nΠ1k = n

1nΠei ≤ `,

where ei denotes the ith vector in the canonical basis of R
k.

In this paper, we restrict our attention to the case where the matrix A is (doubly) stochastic, i.e.,

∑

v∈V

c(v, v̄) = 1, ∀v ∈ V .

This corresponds to a situation where the costs associated with each node are “normalized” so that when
the degree of a node is high then the costs associated with its edges must be low (on the average). By degree
of a node v, we mean the number of nodes v̄ for which c(v, v̄) > 0. The following MATLAB commands can
be used to normalize a nonnegative symmetric matrix A, making it doubly stochastic:

A=A/(max(sum(A)));

A=A+sparse(1:n,1:n,1-sum(A));

2 Spectral partition

For a doubly stochastic matrix A, all its eigenvalues are real and smaller than or equal to one, with one of
them exactly equal to one. In this case the optimization (3) is always smaller than or equal to n. This is
because, for an arbitrary k-partition matrix Π that satisfies traceΠ′Π = n, we must have

trace(Π′AΠ) =

k
∑

i=1

π′
iAπi ≤

k
∑

i=1

π′
iπi = traceΠ′Π = n (5)

where πi denotes Π’s ith column. Here we used the fact that the largest eigenvalue of A is no larger than
one and therefore π′

iAπi ≤ π′
iπi.

Let λ1 = 1 ≥ λ2 ≥ · · · ≥ λk be the largest eigenvalues of A and u1, u2, . . . , uk the corresponding
orthonormal eigenvectors. It is convenient to define

U :=
[

u1 u2 · · · uk

]

, D := diag[λ1, λ2, . . . , λk],

for which U ′U = Ik×k and AU = DU . The computation of U and D can be done very efficiently in MATLAB
for large sparse matrices using the following commands:

options.issym=1; % matrix is symmetric

options.isreal=1; % matrix is real

options.tol=1e-6; % decrease tolerance

options.maxit=500; % increase maximum number of iterations

[U,D]=eigs(A,k,’la’,options); % only compute ’k’ largest eigenvalues/vectors

Suppose that we set

Π := UZ,

3

for some matrix Z ∈ R
k×k . In this case,

Π′Π = Z ′U ′UZ = Z ′Z

and

trace(Π′AΠ) = traceZ ′U ′AUZ = traceZ ′DZ.

From this we conclude that the upper bound in (5) can be achieved exactly if the following conditions hold

1. D = I (i.e., there are k independent eigenvectors associated with the eigenvalue equal to one)

2. UZ is a k-partition matrix.

3. Z ′Z ≤ `Ik×k.

The algorithm that we propose to approximately solve the `-GP problem is applicable when 1 holds approx-
imately. It consists of setting

Π := argmin
Π̄

‖Π̄ − UZ‖F , (6)

where the minimization is carried out over the set of k-partition matrices and Z is a k×k matrix obtained by
an Heuristic algorithm aimed at making the conditions 2–3 approximately hold. For reasons that will become
clear shortly, we call this algorithm the clustering algorithm. Given a matrix Z, we call the computation of
optimal Π in (6) the projection algorithm. We now describe both algorithms.

2.1 Projection algorithm

Given a matrix Z the computation of Π that minimizes (6) is straightforward: Since

(Π̄′ − Z ′U ′)(Π̄ − ZU) = Π̄′Π̄ + Z ′Z − Z ′U ′Π̄ − Π̄UZ,

denoting by π̄vi and by ūvi the vith entries of the n× k matrices Π̄ and Ū := UZ, respectively, we conclude
that

‖Π̄ − UZ‖2
F = n + ‖Z‖F + 2 trace(Z ′U ′Π̄) = n + ‖Z‖F − 2

k
∑

i=1

n
∑

v=1

ūivπ̄vi

Denoting by iv the index of the (only) entry in the vth row of Π̄ whose entry is equal to one, we further
conclude that

‖Π̄ − UZ‖2
F = n + ‖Z‖F − 2

n
∑

v=1

ūivvπ̄viv

Therefore, to minimize ‖Π̄−UZ‖F one should simply chose iv to be equal to the index of the largest element
in the vth row of UZ. The computation of the optimal (sparse) matrix Π and the associated partition vector
p can be done very efficiently in MATLAB using the following commands:

[dummy,p]=max(U*Z,[],2);

Pi=sparse(1:length(p),p,1);

4

2.2 Clustering algorithm

Suppose that the n rows of the n × k matrix U are clustered around k orthogonal row vectors z1, z2, . . . , zk

and let ni denote the number of row clustered around zi. Defining

Z :=











z1

z2

...
zk











−1

=
[

z′

1

‖z1‖2

z′

2

‖z2‖2 · · · z′

k

‖zk‖2

]

,

the vth row of Ū := UZ is given by

ūv =
[

〈uv ,z1〉
‖z1‖2

〈uv ,z2〉
‖z2‖2 · · · 〈uv ,zk〉

‖zk‖2

]

,

where uv denotes the vth row of U . Since uv is close to one of the vi and all zi are orthogonal, we conclude
that ūv will be close to one of the vectors in the canonical base of R

k. In practice, this means that UZ is
close to a k-partition matrix. Moreover, since there are nk rows close to zk, the number of entries close to
one in the jth column of Ū := UZ is approximately nk. Therefore

Π′Π ≈ diag[n1, n2, . . . , nk].

The computation of Z can then be viewed as a clustering algorithm whose goal is to determine orthogonal
vectors z1, z2, . . . , zk around which the rows of U are clustered, with no cluster larger than `.

The simple case When the vectors zi defined above exist and the clustering is tight, these vectors can
be easily found because they are orthogonal and therefore far apart. In practice, one simply needs to select
k-rows of U that are far apart from each other so that we can be sure that no two belong to the same cluster
and take then as “cluster representatives.” Find such rows is essentially a pivoting problem like the one that
arises in Gauss elimination. The following algorithm can be used to select such rows: Let (Q, R, E) be a
QR-factorization with pivoting of U ′, i.e., Qk×k is an orthonormal matrix, R ∈ R

k×n is an upper triangular
matrix with elements in the main diagonal of decreasing magnitude, and E ∈ R

n×n a permutation matrix
such that

U ′E = QR ⇔ E′U = R′Q′.

Partitioning E as

E =
[

E1 E2

]

∈ R
n×n, E1 ∈ R

n×k, E2 ∈ R
n×(n−k),

the k × k matrix Z in (6) should be selected by

Z := (E′
1U)−1,

This algorithm essentially select the zi’s to be the top k rows of the permuted matrix E ′U and Z maps these
rows to the vectors of the canonical basis of Rk. The computation of Z can be done efficiently by noting
that if we partition R as

R =
[

R1 R2

]

∈ R
k×n, R1 ∈ R

k×k, R2 ∈ R
k×(n−k),

we obtain

V ′
[

E1 E2

]

= Q
[

R1 R2

]

⇒ E′
1V = R′

1Q
′

and therefore Z can be obtained by the following product of k × k matrices

Z = Q(R′
1)

−1.

This can be done efficiently in MATLAB using the following commands:

5

[Q,R,E]=qr(U’,0);

Z=Q*(R(:,1:k)’)^(-1);

However, this algorithm provides no guarantee that the cluster sizes will not exceed `.

The tough case When the rows of U are not tightly clustered more sophisticated algorithms are needed.
In this case, one can use a general purpose clustering algorithm such as k-means or the Expectation Maxi-
mization (EM) algorithm. Note that the matrix Π can be obtained directly from the clustering procedure
by associating each cluster with one of the vectors in the canonical basis of R

k and replacing each row of U
by the basis vector associated with its cluster.

Since the k-mean clustering algorithm is implemented in MATLAB, we can use it to obtain the matrix
Π using the following commands:

[p,zs]=kmeans(U,k,’distance’,’cosine’);

Pi=sparse(1:length(p),p,1);

This algorithm also does not guarantee that the cluster sizes will not exceed `, but it can be adapted to do
so [5].

A Appendix

A.1 Technical Results

Proposition 1. A n × k matrix Π is a k-partition matrix if and only if each row of Π is a vector of the
canonical basic of R

k. �

Proof of Proposition 1. Let Π be a k-partition matrix with columns π1, π2, . . . , πk ∈ R
n. Each row of Π must

have at most a single one because otherwise, if there were two ones in columns πi and πj , then π′
iπj ≥ 1

and Π would not be orthogonal. On the other hand, every row of Π must have at least a one because for a
matrix whose entries are in {0, 1}, its squared Frobenius norm ‖Π‖2

F is exactly the total number of entries
equal to one. Since each row can have at most a one, every row must actually have a one to get ‖Π‖2

F = n.
This proves that if Π is a k-partition matrix then each row of Π is a vector of the canonical basic of R

k.

Conversely, suppose that each row of Π is a vector of the canonical basic of R
k. Then all entries of Π belong

to the set {0, 1} and ‖Π‖2
F = n since its squared Frobenius norm is equal to the number of entries equal to

one (one per row). Moreover, Π is orthogonal because if πi and πj are two distinct columns of Π then each
row of these vector must have at least one zero and therefore π′

iπj = 0, ∀i 6= j.

Proof of Lemma 1. To show that (1) defines a k-partition matrix, we must show that Π′Π is diagonal an
that its trace equal n. To this effect, let πi and πj be two distinct columns of Π. For every row v, at
least one of these column vectors must have a zero, since otherwise the corresponding node v would have
to belong to both Vi and Vj . This means that π′

iπj = 0, ∀i 6= j and therefore Π is orthogonal. On the
other hand, πi has an entry equal to one for each node than belongs to Vi so π′

iπi = Vi, ∀i. Therefore
traceΠ′Π =

∑

j |Vj | = |V | = n because the Vi are a k-partition of V .

To show that the sets defined by (2) define a k partition of V , we must show that they are disjoint and their
union is equal to V . These sets are indeed disjoint because otherwise if v ∈ Vi and v ∈ Vj , then πvi = πvj = 1
and therefore the inner product of the corresponding columns would be nonzero. Moreover, the ith element
of the main diagonal of Π′Π is equal to the number of ones in Vi and therefore

∑

j |Vj | = traceΠ′Π = n
because Π is a k-partition matrix. �

6

Proof of Lemma 2. From the definition of A, we have that

AΠ =
[

∑

v̄∈V

c(v, v̄)πv̄j

]

=
[

∑

v̄∈Vj

c(v, v̄)
]

.

Therefore

C(P) :=
∑

i6=j

∑

v∈Vi

∑

v̄∈Vj

c(v, v̄) =
∑

i6=j

∑

v∈Vi

(AΠ)vj

where (AΠ)vj denotes the vith entry of the matrix AΠ. We can re-write the above summation as

C(P) =
∑

i6=j

∑

v∈V

πvi(AΠ)vj =
∑

i6=j

(Π′AΠ)ij

where now (Π′AΠ)ij denotes the ijth entry of the matrix Π′AΠ. The result then follows by decomposition
the last summation as

C(P) =
∑

i,j

(Π′AΠ)ij −
∑

i

(Π′AΠ)ii

= 1′
kΠ′AΠk1− trace(Π′AΠ)

= 1′
nA1n − trace(Π′AΠ)

where we used the property of k-partition matrices that Π1k = 1n.

A.2 MATLAB script

The algorithm described in this paper can be implemented using the following MATLAB script. A more
complete version of this script is available online at http://www.ece.ucsb.edu/~hespanha/techrep.html

function [ndx,Pi,cost]= grPartition(C,k,nrep);

% Inputs:

% C - n by n edge-weights matrix.

% k - desired number of partitions

% nrep - number of repetion for the clustering algorithm

% Outputs:

% ndx - n-vector with the cluster index for every node

% Pi - Projection matrix

% cost - cost of the partition (sum of broken edges)

%

% By Joao Pedro Hespanha, Copyright 2004

% Make C double stochastic

C=C/(max(sum(C)));

C=C+sparse(1:n,1:n,1-sum(C));

% Spectral partition

options.issym=1; % matrix is symmetric

options.isreal=1; % matrix is real

options.tol=1e-6; % decrease tolerance

options.maxit=500; % increase maximum number of iterations

options.disp=0;

[U,D]=eigs(C,k,’la’,options); % only compute ’k’ largest eigenvalues/vectors

% Clustering -- requires the Statistics Toolbox

[ndx,zs]=kmeans(U,k,’Distance’,’cosine’,’Start’,’sample’,’Replicates’,nrep);

Pi=sparse(1:length(ndx),ndx,1);

cost=full(sum(sum(C))-trace(Pi’*C*Pi));

7

References

[1] A. A. Ageev and M. I. Sviridenko. An approximation algorithm for hypergraph max k-cut with given
sizes of parts. BRICS Report Series RS-99-49, BRICS, Dept. of Computer Science, University of Aarhus,
Denmark, Dec. 1999.

[2] A. Frieze and M. Jerrum. Improved approximation algorithms for max k-cut and max bisection. Algo-
rithmica, 18(1):67–81, 1997.

[3] J. P. Hespanha. grPartition — a MATLAB function for graph partitioning. Available at http:

//www.ece.ucsb.edu/~hespanha, Oct. 2004.

[4] R. Phillips and P. Kokotović. A singular perturbation approach to modeling and control of markov
chains. IEEE Trans. on Automat. Contr., 26(5):1087–1094, Oct. 1981.

[5] S. Zhong and J. Ghosh. Scalable, balanced model-based clustering. In Proc. 3rd SIAM Int. Conf. Data
Mining, pages 71–82, May 2003.

8

