
A Machine Learning Approach for Filtering Monte Carlo Noise

Nima Khademi Kalantari Steve Bako Pradeep Sen
University of California, Santa Barbara

Our result with a cross-bilateral filter (4 spp) Our result with a non-local means filter (4 spp)

Input

Ours

GT GT

Ours

Input

Figure 1: We propose a machine learning approach to filter Monte Carlo rendering noise as a post-process. In our method, we use a set
of scenes with a variety of distributed effects to train a neural network to output correct filter parameters. We then use the trained network
to drive a filter to denoise a new MC rendered image. We show the result of our approach with a cross-bilateral filter for the KITCHEN
scene (1200 × 800) on the left and with a non-local means filter for the SAN MIGUEL HALLWAY scene (800 × 1200) on the right. Both
of these scenes are path-traced and contain severe noise at 4 samples per pixel (spp). However, our trained network is able to estimate the
appropriate filter parameters and effectively reduce the noise in only a few seconds. Note, the tonemapping of the insets has been adjusted
for best visibility. Scene credits: KITCHEN – Jo Ann Elliott; SAN MIGUEL HALLWAY – Guillermo M. Leal Llaguno.

Abstract
The most successful approaches for filtering Monte Carlo noise use
feature-based filters (e.g., cross-bilateral and cross non-local means
filters) that exploit additional scene features such as world positions
and shading normals. However, their main challenge is finding the
optimal weights for each feature in the filter to reduce noise but
preserve scene detail. In this paper, we observe there is a complex
relationship between the noisy scene data and the ideal filter pa-
rameters, and propose to learn this relationship using a nonlinear
regression model. To do this, we use a multilayer perceptron neural
network and combine it with a matching filter during both training
and testing. To use our framework, we first train it in an offline pro-
cess on a set of noisy images of scenes with a variety of distributed
effects. Then at run-time, the trained network can be used to drive
the filter parameters for new scenes to produce filtered images that
approximate the ground truth. We demonstrate that our trained net-
work can generate filtered images in only a few seconds that are su-
perior to previous approaches on a wide range of distributed effects
such as depth of field, motion blur, area lighting, glossy reflections,
and global illumination.

CR Categories: I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism—Raytracing

Keywords: Monte Carlo rendering, neural networks

1 Introduction

Producing photorealistic images from a scene model requires com-
puting a complex multidimensional integral of the scene function
at every pixel of the image. For example, generating effects like
depth of field and motion blur requires integrating over domains
such as lens position and time. Monte Carlo (MC) rendering sys-
tems approximate this integral by tracing light rays (samples) in the
multidimensional space to evaluate the scene function. Although
an approximation to this integral can be quickly evaluated with just
a few samples, the inaccuracy of this estimate relative to the true
value appears as unacceptable noise in the resulting image. Since
the variance of the MC estimator decreases linearly with the num-
ber of samples, many samples are required to get a reliable estimate
of the integral. The high cost of computing additional rays results in
lengthy render times that negatively affect the applicability of MC
renderers in modern film production.

One way to mitigate this problem is to quickly render a noisy image
with a few samples and then filter it as a post-process to generate an
acceptable, noise-free result. This approach has been the subject of
extensive research in recent years [Dammertz et al. 2010; Bauszat
et al. 2011; Rousselle et al. 2012; Sen and Darabi 2012; Li et al.
2012; Rousselle et al. 2013; Moon et al. 2014]. The more successful
methods typically use feature-based filters (e.g., cross-bilateral or
cross non-local means filters) to leverage additional scene features
such as world positions that help guide the filtering process. Since
these features are highly correlated with scene detail, using them in
the filtering process greatly improves the quality of the results.

Some approaches have used this information to handle specific dis-
tributed effects such as global illumination [Dammertz et al. 2010;
Bauszat et al. 2011] and depth of field [Chen et al. 2011]. However,
the major challenge is how to exploit this additional information to
denoise general distributed effects, which requires setting the filter
weights for all features (called filter parameters hereafter) so that
noise is removed while scene detail is preserved. To do this, Sen
and Darabi [2011; 2012] proposed to use the functional dependen-
cies between scene features and random parameters calculated us-

4 spp (40.8 s)
776.48×10 -2

0.540

NLM RPF SBF Ours Ground truth

KITCHEN

Input MC

4 spp (48.6 s)
8.82×10 -2

0.788

4 spp (411.2 s)
3.25×10 -2

0.925

4 spp (159.4 s)
10.63×10 -2

0.869

4 spp (48.9 s)
2.05×10 -2

0.939

32K spp

Ours RD

4 spp (58.3 s)
4.71×10 -2

0.895

WLR

4 spp (47.2 s)
2.76×10 -2

0.906
RelMSE:

SSIM:

Figure 2: Comparison between our approach and several state-of-the-art algorithms on the KITCHEN scene rendered at 4 spp. Note that
the ground truth image is still noisy even at 32K spp. Non-local means filtering (NLM) [Rousselle et al. 2012] is a color-based method which
cannot keep geometry or texture detail. Random parameter filtering (RPF) [Sen and Darabi 2012], SURE-based filtering (SBF) [Li et al.
2012], robust denoising (RD) [Rousselle et al. 2013], and weighted local regression (WLR) [Moon et al. 2014] use additional scene features
(e.g., world positions) to keep the details. However, they often do not weight the importance of each feature optimally, resulting in under/over
blurred regions or splotches in the final result. Our approach preserves scene detail and generates a higher-quality, noise-free result faster
than most other methods. The relative mean squared error (RelMSE) and structural similarity (SSIM) index are listed below each image.
Larger SSIM values indicate better perceptual quality. Full images are available in the supplementary materials. Scene credit: Jo Ann Elliott.

ing mutual information, a process that removed noise but was slow.
Several algorithms [Li et al. 2012; Rousselle et al. 2013; Moon et al.
2014] build upon this by using error estimation metrics to select the
best filter parameters from a discrete set. The main drawback of
these methods is that their error metrics are usually noisy at low
sampling rates, reducing the accuracy of filter selection. Further-
more, they choose the filter parameters from a preselected, discrete
set that may not contain the optimum. As a result, these methods
produce images with over/under blurred regions, as shown in Fig. 2.

In this paper, we observe that there is a complex relationship be-
tween the input noisy data and the optimal filter parameters. More-
over, these filter parameters can be effectively estimated using dif-
ferent factors (e.g., feature variances and noise in local regions),
but each individual factor by itself cannot accurately predict them.
Based on these observations, we propose a supervised learning al-
gorithm that learns the complex relationship between these factors
and the optimal filter parameters to avoid the problems of previous
approaches. To do this, we train a nonlinear regression model on
a set of noisy MC rendered images and their corresponding ground
truth images, using a multilayer perceptron (MLP) tightly coupled
with a matching filter during both training and testing.

During the training stage, we render both the noisy images at low
sampling rates as well as their corresponding ground truth images
for a set of scenes with a variety of distributed effects. The noisy
images are then processed to extract a set of useful features in
square regions around every pixel. Finally, the proposed network
is trained on these features to drive the filter to produce images that
resemble the ground truth according to a specific error metric.

Once the network has been trained, we use it in the test stage to
filter new noisy renderings with general distributed effects. Our
method takes only a few seconds, yet produces better results than
existing methods for a wide range of distributed effects including
depth of field, motion blur, area lighting, glossy reflections, and
global illumination. Furthermore, unlike many of the state-of-the-
art approaches [Li et al. 2012; Rousselle et al. 2013], we achieve
this without adaptive sampling, so our method is a simple post-
process step that effectively removes MC noise. In summary, our
work makes the following contributions:

• We present a machine learning approach to reduce general
MC noise. Although machine learning has been used in graph-
ics before, our approach is the first to perform supervised
learning for MC noise reduction.

• Specifically, we show how a neural network can be effectively
trained in combination with a filter to generate results that are
close to the ground truth images.

2 Related work

Since the introduction of distributed ray tracing by Cook et
al. [1984], researchers have proposed a variety of algorithms to ad-
dress the noise in Monte Carlo (MC) rendering. Some of these
include variance reduction techniques [Veach and Guibas 1995;
Lawrence et al. 2004], low-discrepancy sampling patterns [Mitchell
1987; Shirley 1991], new Monte Carlo formulations with faster
convergence [Veach and Guibas 1997; Jensen 2001], and methods
that position or reuse samples based on the shape of the multidi-
mensional integrand [Hachisuka et al. 2008; Lehtinen et al. 2011].
In this discussion, we shall only focus on primarily filtering ap-
proaches like our own, since many of these previous methods can
be considered orthogonal to filtering methods. We refer readers
seeking more background on MC rendering to texts on the sub-
ject [Dutré et al. 2006; Pharr and Humphreys 2010].

Filtering approaches render a noisy image with a few samples and
then denoise it through a filtering process. Some methods adap-
tively sample as well, further improving the results. We divide
the previous work on MC filtering into two general categories: (1)
methods that only use sample color during filtering, and (2) meth-
ods, like our own, that use additional scene information.

Color-based filters – These methods are often inspired by tradi-
tional image denoising techniques and only use pixel color infor-
mation from the rendering system to remove MC noise. Early work
by Lee and Redner [1990] used nonlinear filters (median and alpha-
trimmed mean filters) to remove spikes while preserving edges.
Rushmeier and Ward [1994] proposed to spread the energy of input
samples through variable width filter kernels. To reduce the noise
in path-traced images, Jensen and Christensen [1995] separated il-
lumination into its direct and indirect components, filtered the indi-
rect portion, and then added the components back together. Bala et
al. [2003] exploited an edge image to facilitate the filtering process,
while Xu and Pattanaik [2005] used a bilateral filter [Tomasi and
Manduchi 1998] to remove MC noise. Egan et al. used frequency
analysis to shear a filter for specific distributed effects such as mo-
tion blur [2009] and occlusion/shadowing [2011a; 2011b], while
Mehta et al. [2012; 2013; 2014] used related analysis to derive sim-
ple formulas that set the variance of a screen-space Gaussian filter

to target noise from specific effects. Most of these last approaches
use the analysis to adaptively position samples as well.

For denoising general distributed effects, Overbeck et al. [2009]
adapted wavelet shrinkage to MC noise reduction, while Rous-
selle et al. [2011] selected an appropriate scale for a Gaussian fil-
ter at every pixel to minimize the reconstruction error. Rousselle
et al. [2012] improved this using a non-local means filter [Buades
et al. 2005]. Using the median absolute deviation to estimate the
noise at every pixel, Kalantari and Sen [2013] were able to apply ar-
bitrary image denoising techniques to MC rendering. Finally, Del-
bracio et al. [2014] proposed a method based on non-local means
filtering which computes the distance between two patches using
their color histograms. Although these color-based methods are
general and work on a variety of distributed effects, they usually
need many samples to produce reasonable results. At low sampling
rates, they generate unsatisfactory results on challenging scenes.

Filters that use additional information – The approaches in this
category leverage additional scene features (e.g., world positions,
shading normals, texture values, etc.) which are computed by the
MC renderer. Thus, they tend to generate higher-quality results
compared to the color-based approaches mentioned above.

For example, McCool [1999] removed MC noise by using depths
and normals to create a coherence map for an anisotropic diffu-
sion filter. To efficiently render scenes with global illumination,
Segovia et al. [2006] and Laine et al. [2007] used a geometry
buffer. Meanwhile, to reduce global illumination noise, Dammertz
et al. [2010] incorporated wavelet information into the bilateral fil-
ter and Bauszat et al. [2011] used guided image filtering. Shirley et
al. [2011] used a depth buffer to handle depth of field and motion
blur effects, while Chen et al. [2011] combined a depth map with
sample variance to filter the noise from depth of field. Note that all
of these specific methods focus on a fixed set of distributed effects
and are not general.

To handle general MC noise using additional scene features, Sen
and Darabi [2011; 2012] observed the need to vary the filter’s fea-
ture weights across the image. Specifically, they proposed to com-
pute these weights using mutual information to approximate the
functional dependencies between scene features and the random
parameters. Li et al. [2012] used Stein’s unbiased risk estimator
(SURE) [Stein 1981] to estimate the appropriate spatial filter pa-
rameter in a cross-bilateral filter, while hard coding the weights of
the remaining cross terms. Rousselle et al. [2013] significantly im-
proved upon this by using the SURE metric to select between three
candidate cross non-local means filters that each weight color and
features differently. Finally, Moon et al. [2014] compute a weighted
local regression on a reduced feature space and evaluate the error
for a discrete set of filter parameters to select the best one.

The main problem with such approaches, which constitute the state
of the art, is that they weight each filter term through either heuris-
tic rules and/or an error metric which is quite noisy at low sampling
rates. Thus, they are not able to robustly estimate the appropriate
filter weights in challenging cases, as shown in Fig. 2. In contrast,
our method learns the complex relationship between the noisy in-
put images and the ideal filter parameters in order to better leverage
these additional scene features. Because we use a neural network
to learn this relationship, we conclude this section with a brief sum-
mary of previous work using neural networks in computer graphics
and image denoising.

Neural networks in graphics/denoising – Grzeszczuk et al. [1998]
used neural networks to create physically realistic animation.
Nowrouzezahrai et al. [2009] used them to predict per vertex visi-
bility. Dachsbacher [2011] classified different visibility configura-
tions using neural networks. Ren et al. [2013] used a neural network

to model the radiance regression function to render indirect illumi-
nation of a fixed scene in real time. On the other hand, neural net-
works have also been used in image denoising where they have been
directly trained on a set of noisy and clean patches [Burger et al.
2012]. Finally, it is worth noting that Jakob et al.’s method [2011],
while not utilizing neural networks, performs learning through ex-
pectation maximization to find the appropriate parameters of a
Gaussian mixture model to denoise photon maps, a different but
related problem. To the best of our knowledge, our method is the
first to use neural networks (or even machine learning, for that mat-
ter) for MC noise reduction.

3 A new learning framework for MC filtering

The goal of our approach is to take a noisy input image rendered
with only a few samples and generate a noise-free image that is
similar to the ground truth rendered with many samples. As is com-
mon with filtering approaches, the filtered image ĉ = {ĉr, ĉg, ĉb}
at pixel i is computed as a weighted average of all of the pixels in a
square neighborhoodN (i) (e.g., 55× 55) centered around pixel i:

ĉi =

∑
j∈N (i) di,j c̄j∑
j∈N (i) di,j

, (1)

where di,j is the weight between pixel i and its neighbor j as de-
fined by the filter, and c̄j is the noisy pixel color computed by aver-
aging all the sample colors in pixel j. For example, for a standard
Gaussian filter, di,j would be the Gaussian-weighted distance be-
tween pixels i and j in the spatial domain. Previous work [Sen
and Darabi 2012; Li et al. 2012] has used more sophisticated fil-
ters such as the cross-bilateral filter [Tomasi and Manduchi 1998],
because they can leverage additional scene features (e.g., world po-
sitions, shading normals, texture values, etc.) to improve the quality
of filtering. In that case, di,j is given by:

di,j = exp
[
− ‖p̄i − p̄j‖2

2α2
i

]
× exp

[
− D(c̄i, c̄j)

2β2
i

]
×

K∏
k=1

exp
[
− Dk(f̄i,k, f̄j,k)

2γ2
k,i

]
, (2)

where p̄i and f̄i,k refer to pixel i’s screen space position and scene
feature k, respectively, and α2

i , β2
i , and γ2

k,i are the variances at
pixel i for the spatial, color, and kth feature terms. In this case, D
andDk are specific distance functions for colors and scene features
(see Sec. 3.2). Note that here we use the cross-bilateral filter to
explain our algorithm, but our framework can be extended to use
other differentiable filters in a similar way (see Appendix).

Since the filter parameters αi, βi, and γk,i control the widths for
this filter, the challenge is how to find the values for each to pro-
duce the highest-quality results possible. In fact, a key difference
between approaches such as random parameter filtering [Sen and
Darabi 2012], SURE-based filtering [Li et al. 2012], and robust de-
noising [Rousselle et al. 2013] is how they set the filter parameters.
To understand the difference between our approach and these meth-
ods, we begin by writing the filtering process more generally as:

ĉi = h(s̄N (i),θi), where s̄N (i) =
⋃

j∈N (i)

s̄j . (3)

Here, s̄N (i) is the collection of mean primary features1 in the neigh-
borhood of the ith pixel, h is the filter function which implements

1In this paper, the term “primary features” refers to scene features that
are computed directly by the rendering system when shading samples. This
includes sample positions, colors, and K scene features such as world po-
sitions, shading normals, and texture values. The word “mean” refers to the
fact that the features of every sample in a pixel are averaged together.

x1

1

xN

f 1
f 2

f 3

a2
1

a2
n2

1w1
1,1

w1
n0 ,1

w1
0,1

w3
1,1

w3
0,1

a1
1

a1
n1

1

w2
1,1

w2
n1 ,1

w2
0,1

w3
n2 ,1

0th layer
input

1st layer
hidden

3rd layer
output

2nd layer
hidden

θ1

θ2

θM

... ...

... ...

Figure 3: A multilayer perceptron (MLP) consists of multiple lay-
ers, each with several nodes. The nodes at each layer are fully
connected to the nodes in the next layer through a set of weights,
where weight wl

t,s connects node t in layer l− 1 to node s at layer
l, and wl

0,s is the bias for the sth node at layer l. The output of each
node is computed using Eq. 7. For clarity, we only show connec-
tions for one node at each layer. In our implementation, we used a
neural network with one hidden layer of size 10 to model G in Eq. 5.

Eq. 1, and θi is an array ofM filter parameters at pixel i. For exam-
ple, for the cross-bilateral filter shown in Eq. 2, θi has M = K+ 2
parameters (θi = {α, β, γ1, · · · , γK}i) corresponding to the stan-
dard deviations for each component of the filter. In theory, the
optimal filter parameters at every pixel would minimize the error
between the filtered pixel value (Eq. 3) and ground truth color ci:

θ∗i = arg min
θi

E(h(s̄N (i),θi), ci), (4)

where E is an error metric (e.g., mean squared error). To find the
approximate filter parameters, θ̂i, that estimate the optimum ones,
θ∗i , the noisy mean primary features in a pixel’s neighborhood can
be processed to generate a set of more meaningful data, which we
call secondary features xi = {x1, x2, · · · , xN}i. These secondary
features include feature variances, noise approximation in local re-
gions, and so on. We then can approximate the filter parameters
through a function G of the secondary features:

θ̂i = G(xi). (5)

We observe that function G, which attempts to approximate the re-
lationship between the secondary features and the optimal filter pa-
rameters, is complicated and difficult to model explicitly. For this
reason, we propose to find this function with a learning system that
performs the following energy minimization on training data:

G∗ = arg min
G
E(h(s̄N (i),G(xi)), ci). (6)

Once we minimize this energy function to find approximate Ĝ,
given a new test scene we can compute the filter parameters θ̂i =

Ĝ(xi) that will be used in the filter to generate a filtered image that
is close to the ground truth.

This framework allows us to observe that many of the previous MC
filtering approaches can be classified into two categories: 1) meth-
ods that perform the minimization in Eq. 4 using an error estima-
tion metric, and 2) algorithms that attempt to model G directly. Er-
ror minimization approaches [Li et al. 2012; Rousselle et al. 2013;
Moon et al. 2014] rely on an error estimate (e.g., SURE) to select
filter parameters, but this estimate is often noisy at low sampling
rates which negatively affects the accuracy of the filter selection.
Furthermore, they still have to do a search through the parameter
space at run-time to minimize Eq. 4, which is often done by loop-
ing through a discrete set of parameters.

Multilayer perceptron

Filter

...

...

x1

x2

xN

Secondary
feature

extractor Filtered
pixelLocal mean

primary features

MC
renderer

Scene mean
primary features

...

...

...

θ

Figure 4: Our approach combines a standard MLP (Fig. 3) with
a matching filter. The local mean primary features (illustrated by
a stack of images) contain color, position, and additional features
such as world positions, shading normals, etc. A set of secondary
features {x1, · · · , xN}i (see Sec. 3.3) are extracted from the mean
primary features in a local neighborhood of each pixel. The MLP
takes the secondary features and outputs the parameters of the filter.
The filter then takes the block of mean primary features and outputs
a filtered pixel. During training, we minimize the error between the
filtered pixel and the ground truth. Once trained, the network can
generate appropriate filter parameters for an arbitrary test image.

On the other hand, approaches in the second category (e.g., Sen and
Darabi [2012]) avoid error estimation by trying to model G directly,
but the underlying relationship is complex and difficult to express
explicitly. We avoid all of these problems by approximating G with
a learning system that directly minimizes the error in Eq. 6. Specif-
ically, we represent G using a neural network (see Fig. 3) and di-
rectly combine it with a matching filter during training and testing
(see Fig. 4). Note that since the ground truth images are available
during training, we can directly compute the error between the fil-
tered and ground truth image without need for error estimation. At
test time, we then use the trained Ĝ on the secondary features from
new scenes to compute filter parameters that will allow the filter to
produce results close to the ground truth.

We now describe how to train a neural network in combination with
the filter by minimizing the energy function from Eq. 6.

3.1 Our proposed neural network

As with any machine learning system, there are three crucial ele-
ments we must decide: (1) the choice of model for representing G,
(2) an appropriate error metric E to measure the distance between
the filtered and ground truth images, and (3) an optimization strat-
egy to minimize the energy function in Eq. 6.

For our representation, we use a neural network, formally a multi-
layer perceptron (MLP), as a regression model since it is a simple,
yet powerful system for discovering complex nonlinear relation-
ships between its inputs and outputs. Moreover, MLPs are inher-
ently parallel and can be efficiently implemented on a GPU. How-
ever, our proposed approach differs from standard MLPs in that we
have incorporated the filter into the training process, which requires
us to “backpropagate” through it to update the weights of the net-
work during training. This implies that the filter must be differen-
tiable with respect to its filter parameters. Fortunately, common fil-
ters such as the Gaussian, cross-bilateral, and cross non-local means
filters are all differentiable and can be applied in our system.

As shown in Fig. 3, MLPs consist of multiple layers known as
the input, hidden, and output layers. Each layer has several nodes
which are fully connected to all nodes in the next layer through
weights. The output of a certain node is a function of the weighted
sum of the outputs of the nodes from the previous layer plus an ad-
ditional bias term used as an offset. Specifically, the output of the
sth node at the lth layer is given by:

als = f l

nl−1∑
t = 1

wl
t,sat

l−1 + wl
0,s

 , (7)

where nl−1 is the number of nodes in layer l−1, wl
t,s is the weight

associated with the connection between node t in layer l − 1 and
node s in layer l, wl

0,s is the bias for this node, and f l is the activa-
tion function for layer l. If we use linear activation functions (e.g.,
f l(x) = x) in all layers, the neural network becomes a simple lin-
ear regression model. Therefore, we typically use nonlinear activa-
tion functions, such as the sigmoid function f l(x) = 1/(1 + e−x).
See Sec. 4.1 for a complete description of the actual MLP architec-
ture we used in this paper.

Next, we describe our metric to measure the error between the fil-
tered and ground truth pixel values. Rather than using standard
MSE, we use the relative mean squared error (RelMSE) metric pro-
posed by Rousselle et al. [2011] which is better suited for our ap-
plication, since the human visual system is more sensitive to color
variations in darker regions of the image. However, we modify rel-
ative MSE slightly to get:

Ei =
n

2

∑
q∈{r,g,b}

(ĉi,q − ci,q)2

c2i,q + ε
, (8)

where n is the number of samples per pixel, ĉi,q and ci,q are the qth

color channel of the filtered and ground truth pixels, respectively,
and ε is a small number (0.01 in our implementation) to avoid di-
vision by zero. Here, the division by c2i,q accounts for the afore-
mentioned perceptual effect by giving higher weight to the regions
where the ground truth image is darker.

Our modification to Rousselle et al.’s original relative MSE met-
ric is the multiplication by n/2. Since the squared error decreases
linearly with the number of samples in MC rendering, images with
fewer samples have greater error than images with more samples.
This would make our learning system biased in favor of training im-
ages with lower sampling rates. By multiplying the squared error by
n, we cancel this inverse relationship and force all of the images to
have an equal contribution to the error regardless of their sampling
rate. Furthermore, the error is divided by 2 to produce a simpler
derivative (see Eq. 10). Note that our proposed metric is different
than the commonly used error metrics in the neural network com-
munity, such as mean squared error (MSE) and cross-entropy error.

Finally, we describe our optimization strategy to train the network.
To do this, we first need a large set of input data and the cor-
responding ground truth images, which can be generated prior to
training. For each noisy image, we extract a set of secondary fea-
tures at each pixel (see Section 3.3). With this data in hand, we
can then train the network through an iterative, three-step process
called backpropagation [Rumelhart et al. 1986]. The goal of this
process is to find the optimal weights wl

t,s for all nodes in the net-
work which minimize the error between the computed and desired
outputs (i.e., ground truth values) for all pixels in the training im-
ages, E =

∑
i∈all pixels Ei.

Before starting the backpropagation process, the weights are ran-
domly initialized to small values around zero (between−0.5 to 0.5
in our implementation). Then in the first step, known as the feed-
forward pass, the output of the network is computed using all in-
puts. This can be implemented efficiently using a series of matrix
multiplications and activation functions applied to the input data to
evaluate Eq. 7. In the second step, the error between the computed
and desired outputs is used to determine the effect of each weight
on the output error. This requires taking the derivative of the error
with respect to each weight ∂E/∂wl

t,s. Thus, the activation func-
tions (and in our case, the filter as well) need to be differentiable.
These two steps are performed for all of the data in the training set
and the error gradient of each weight is accumulated. Finally, in
the third step, all the weights are updated according to their error
gradient. This completes a single iteration of training, known as an

epoch, and typically many epochs are needed to properly train the
system and obtain a converged set of weights.

We now examine the differentiability of our system as required by
backpropagation. Using the chain rule, we express the derivative of
the energy function from Eq. 8 with respect to the weights wl

t,s as:

∂Ei

∂wl
t,s

=

M∑
m=1

 ∑
q∈{r,g,b}

[
∂Ei,q

∂ĉi,q

∂ĉi,q
∂θm,i

]
∂θm,i

∂wl
t,s

 , (9)

where M is the number of filter parameters. The first term is the
derivative of the error with respect to the filtered pixels ĉi,q , which
can be easily calculated as follows:

∂Ei

∂ĉi,q
= n

ĉi,q − ci,q
c2i,q + ε

. (10)

In addition, the θm,i’s are the outputs of a standard MLP net-
work (see Fig. 3), so the last term in Eq. 9 can be analytically
calculated as usual [Rumelhart et al. 1986]. Finally, the middle
term requires that our filter be differentiable so we can compute
the derivative of the filtered color with respect to the filter pa-
rameters ∂hq(s̄N (i),θi)/∂θm,i. Fortunately, as shown in the Ap-
pendix, the common filters used for MC denoising such as the
cross-bilateral [Li et al. 2012] and cross non-local means [Rous-
selle et al. 2013] filters are differentiable.

To summarize the training process, we compute the derivative in
Eq. 9 for each weight in the network, and update the weights after
every epoch. This iterative process continues until convergence.

3.2 Primary features

Primary features are those directly output by the rendering system.
We use 7 primary features (M = 7) in our cross-bilateral filter
(Eq. 2), consisting of screen position, color, and five additional fea-
tures (K = 5): (1) world position, (2) shading normal, (3,4) texture
values for the first and second intersections, and (5) direct illumi-
nation visibility. This last feature was also used by Rousselle et
al. [2013] and we found it to be useful in our system.

During rendering, for each sample we output screen position in x
and y, color in RGB format, world position in Cartesian coordi-
nates (x, y, and z), shading normal (i, j, and k), texture values for
the first and second intersections in RGB format, and a single binary
value for the direct illumination visibility, for a total of 18 floating
point values. We then average these values for all samples in a pixel
to produce the mean primary features for every pixel in the image.
Note that at this point, the average direct illumination visibility rep-
resents the fraction of shadow rays that see the light and is not a
binary value. Moreover, as was done in Rousselle et al. [2013], we
prefilter the additional features using a non-local means filter in an
11× 11 window with patch size 7× 7.

Similar to recent approaches [Li et al. 2012; Rousselle et al. 2013],
we normalize the distance of the color and additional features by
their variances. We use the following function for the color term:

D(c̄i, c̄j) =
‖c̄i − c̄j‖2

ψ2
i + ψ2

j + ζ
, (11)

where ψi and ψj are the standard deviation of color samples at
pixel i and j, respectively, and ζ is a small number (10−10) to avoid
division by zero. For the additional features, we use:

Dk(f̄i,k, f̄j,k) =
‖f̄i,k − f̄j,k‖2

max(ψ2
k,i, δ)

, (12)

where ψk,i is the standard deviation of the kth feature at pixel i and
δ is a small number (10−4) to avoid division by zero. These param-
eters are all similar to those of Rousselle et al. [2013]. On a final
note, we smooth the noisy standard deviations for the additional
features, ψk,i, by filtering them using the same weights computed
by the non-local means filter when filtering the primary features.

3.3 Secondary features

At every pixel, we compute a set of secondary features from the
neighboring noisy samples to serve as inputs to our neural network.
Most features are inspired by (or are direct implementations of)
those used in previous algorithms for MC denoising.

Feature statistics: We compute the mean and standard deviation
for the K = 5 additional features of all samples in the pixel. To
capture more global statistics, we also calculate the mean and stan-
dard deviation of the pixel-averaged features in a 7×7 block around
each pixel. We compute the statistics for each component (e.g., i, j,
k for shading normal) separately and average them together to get
a single value per feature. Thus, we have 20 total values for each
pixel and the block around it.

Gradients: The gradients of features have been previously used to
decrease the weight of a feature in regions with sharp edges [Rous-
selle et al. 2013]. We calculate the gradient magnitude (scalar) of
the K additional features using a Sobel operator (5 values total).

Mean deviation: This term is the average of the absolute difference
between each individual pixel in a block and the block mean. A
normalized version of this metric was proposed by Hachisuka et
al. [2008] as an error metric for adaptive sampling. This feature can
help identify regions with large error so the network can adjust the
filter parameters accordingly. For each of theK additional features,
we compute the mean deviation of all the pixel-averaged features
in a 3 × 3 block around each pixel. As with feature statistics, this
is computed on each component separately and then averaged to
obtain a single value for each additional feature (5 values total).

MAD: We use the median absolute deviation (MAD) used by
Kalantari and Sen [2013] to estimate the amount of noise in each
pixel, which is directly related to the size of the filter. We compute
MAD for each K additional features (5 values total).

Sampling rate: Finally, we use the inverse of the sampling rate.
The variance of MC noise decreases linearly with the number of
samples and, therefore, the filter parameters should reflect this.
Since we only train a single network, it should be able to handle
different sampling rates and adjust the filter size accordingly.

In summary, we compute a total of N = 36 secondary features for
each pixel. The network takes these features as input and outputs
the parameters to be used by the filter to generate the final filtered
pixel. This is done for all the pixels to produce the final result.

4 Implementation Details

4.1 Neural network structure

The complexity of a network is determined by the number of lay-
ers and the node count of each. Although a more complex network
containing several layers with many nodes can model more com-
plicated relationships between its inputs and outputs, training such
networks is difficult and there is an increased likelihood of overfit-
ting to the training data. In these cases, the network could model the
noise rather than the underlying relationships and, therefore, would
perform poorly on actual test data. We empirically found that one
hidden layer of size 10 provides the best performance in general

(see Sec. 6). The input layer consists of 36 nodes corresponding
to our secondary features, while our output layer has one node for
each filter parameter (6 total). Note that we use a fixed color weight,
βi, and, thus, our output layer only requires 6 nodes (see Sec. 4.2).

For the hidden layer, we chose the sigmoid activation function
f(x) = 1/[1 + exp(−x)] and for the output layer, we used the
softplus function f(x) = log(1 + ex), a smooth differentiable ap-
proximation to the rectifier function. The output of the softplus
function is always positive (0,∞), making it the ideal candidate to
output the filter parameters in the final layer of the MLP network.

4.2 Training

As explained in Section 3, training is done using the iterative back-
propagation algorithm [Rumelhart et al. 1986]. At every iteration,
all of the weights in the network are updated based on the error gra-
dient with respect to the weights. We used the resilient backprop-
agation (RPROP) method [Riedmiller and Braun 1993] to update
the weights, rather than the commonly used gradient descent. In
RPROP, the weights are updated based on the signs of the gradients,
rather than their magnitudes. At every iteration of the backpropaga-
tion process, the gradients of a particular weight are rewarded if the
current and previous iterations are consistent (have the same sign)
and penalized otherwise. We found this method results in faster
convergence for our system compared to gradient descent. To fur-
ther speed up convergence, we normalize the network features by
subtracting the mean and dividing by the standard deviation of the
training set, as is frequently done in neural networks [Le Cun et al.
1998]. Finally, we observed that, in practice, optimizing the fil-
ter parameter for the color term of the cross-bilateral filter results
in overfitting. We experimentally found that setting this parameter
to a fixed value, βi = 7, is sufficient to keep the necessary scene
details while removing noise.

In our training set, we used 20 scenes with different distributed ef-
fects such as depth of field, motion blur, and global illumination
(see Fig. 7). For each scene, we rendered the ground truth image
with a large number of samples (e.g., 32K). To handle scenes with
different sampling rates, we rendered each training scene with 4, 8,
16, 32, and 64 samples per pixel and trained all of the images on
a single network. Moreover, to avoid overfitting to one particular
noise pattern, we rendered each scene five times at each sampling
rate (a total of 25 images for each scene). To train the network
on all of these images efficiently, we performed mini-batch train-
ing [Hastie et al. 2009], where each iteration of the backpropagation
process is performed on a subset of the training set. Specifically, we
compute the derivative from Eq. 9 for each pixel across all of the
images in the subset. We then average all of the gradients and use
the result to update the weights. In our implementation, our sub-
set consisted of one image at each sampling rate from all of the
training scenes. Furthermore, we alternated between the five noisy
examples at each iteration.

4.3 Handling high dynamic range spikes

MC rendered images have high dynamic range and could contain
spikes, pixels with radiance values orders of magnitude greater than
their neighbors. Usually these high energy pixels cannot be spread
efficiently, even with a big filter, and, thus, need to be handled dif-
ferently. After applying the filter, we identify these spikes in the
filtered result by first calculating the mean and standard deviation
of the RGB colors for all the neighboring pixels in a block of size
3 × 3. If any color channel of the center pixel has values more
than 2 standard deviations away from the block average, then it is
labeled as a spike and replaced with the median block color. Fig. 5
shows how spike removal affects KITCHEN, a test scene. As can

Ground truthFull approachBefore removing spikes

Figure 5: The image on the left shows the result of our approach
before spike removal on an inset of the KITCHEN scene. In our
method, we remove high magnitude spikes in the filtered image as a
post-process to produce the result shown in the middle. The ground
truth image is shown on the right for comparison.

be seen, our system does not heavily rely on spike removal and can
spread the energy of most of the high magnitude pixels itself. Al-
though this spike removal process is not differentiable, we found
that it does not aversely affect the training. A better way of han-
dling spikes within our framework is left for future investigation.

5 Results

We implemented our algorithm, called learning-based filtering
(LBF), in C++ and integrated it into PBRT2 [Pharr and Humphreys
2010]. The neural network and filter were written in CUDA for
GPU acceleration. All timings were obtained on an Intel quad-core
3.7 GHz machine with 24GB of memory and a GeForce GTX TI-
TAN GPU. We used uniform low-discrepancy samples to generate
the noisy images for both the training and test sets. Note that we
trained a single network on scenes with 4, 8, 16, 32, and 64 samples
per pixel to produce all the results in this paper. Moreover, we used
a cross-bilateral filter (of size 55× 55) unless otherwise noted.

We begin by evaluating the robustness of our learning system to the
training set. To do this, we randomly selected 8 test scenes from a
pool of 42 scenes spanning a variety of distributed effects. We then
trained four different networks on random training sets composed
of 16 randomly selected scenes from the remaining 34. To compare
the convergence of these four networks, we evaluated the progress
of each network during training by computing the average error (see
Eq. 8) on the 8 test scenes at every epoch. As seen in Fig. 6, all four
networks converge to approximately the same error, showing that
our learning system is fairly robust to the choice of training set.

For the main comparisons, we trained our network on 20 scenes
with a variety of Monte Carlo effects (see Fig. 7). As the robustness
test in Fig. 6 shows, the network typically converges after approx-
imately 25 epochs. However, to ensure that the network was fully
converged, we performed 50 epochs which took approximately 9
hours, and then used these converged weights to generate the results
for comparisons. Note that all results shown in this paper (with the
exception of Fig. 7) are produced on test scenes that were not part
of our training set.

We compare our method against state-of-the-art approaches includ-
ing non-local means filtering (NLM) [Rousselle et al. 2012], ran-
dom parameter filtering (RPF) [Sen and Darabi 2012], SURE-based
filtering (SBF) [Li et al. 2012], robust denoising (RD) [Rousselle
et al. 2013], and weighted local regression (WLR) [Moon et al.
2014]. Note that with the exception of RPF, all the other algo-
rithms are significantly benefiting from adaptive sampling in these
comparisons, while our approach is not adaptive. We also com-
pare against adaptive sampling and reconstruction (ASR) [Rous-
selle et al. 2011] and ray histogram fusion (RHF) [Delbracio et al.
2014] in the supplementary materials.

For all algorithms, we used the implementations provided by the au-
thors with their default parameters. For RD, we used a window size
of 20 for higher quality, as suggested by the authors [Rousselle et al.

0.0005

0.001

0.0015

0.002

0.0025

0.003

0 20 40 60 80

Av
er

ag
e

R
el

M
S

E

Epoch number

Set 1

Set 2

Set 3

Set 4

Figure 6: We evaluate the robustness of our learning system to
the choice of training set by training four different networks on 16
randomly selected scenes drawn from a pool of 34. We plot the av-
erage relative MSE of each network for a set of 8 test scenes at each
epoch of the training. As can be seen, all four networks converge
to roughly the same test error which shows the robustness of our
approach to the training set. The images used in each set as well as
the test images are available in the supplementary materials.

Figure 7: A subset of our training scenes (cropped for best fit).
These images have different distributed effects including depth of
field, motion blur, glossy reflections, and global illumination. All
20 training images are available in the supplementary materials.
Scene credits: POOLBALL – Toshiya Hachisuka; BUDDHA, DRAGONS – Stanford
3D Scanning Repository; RASPBERRIES – turbosquid.com user sirin 3d (raspberries),
openfootage.net (wall/floor textures); CONFERENCE – Anat Grynberg and Greg Ward.

2013]. For quantitative comparisons, we calculated relative MSE as
proposed by Rousselle et al. [2011]: RelMSE = (ĉ− c)2/(c2 + ε)
averaged over all pixels, where ĉ and c are the filtered and ground
truth pixel colors, respectively, and ε is a small number (0.01) to
avoid division by zero. We also measure the perceptual quality of
the results using the structural similarity (SSIM) index [Wang et al.
2004] which is a value from 0 to 1, where 1 indicates perfect quality
with respect to the ground truth image.

Fig. 8 compares our approach to state-of-the-art methods on four
scenes with different distributed effects. Although our algorithm is
faster than all other methods shown here, we perform equal-sample
comparisons to ensure fairness (please refer to the supplementary
materials for additional equal-time comparisons for some scenes).
For completeness, we also show the approximate results of equal-
time Monte Carlo, since the low-discrepancy sampling in PBRT2
requires a power-of-two sampling rate.

First, we examine the path-traced DOWNTOWN scene with global
illumination and motion blur. NLM uses only color information
when filtering, so it cannot preserve the geometry and texture de-
tails in the scene. Moreover, although the other approaches use ad-
ditional features, they often do not have appropriate filter weights,
resulting in either overblurred textures or residual motion blur
noise. Our approach is not only the fastest but it also preserves
the textures while removing the motion blur noise, resulting in an
image with fewer artifacts than the other techniques. Note, for ex-
ample, that only our approach is able to preserve the thin lines be-
tween the stripes on the car (indicated by the blue arrow).

The TEAPOT ROOM scene is a challenging, path-traced scene con-
taining one glossy and two diffuse teapots with mostly indirect il-
lumination. None of the other methods can effectively remove the
strong indirect illumination noise on the back wall without intro-
ducing artifacts or overblurring the glossy reflections on the body
and spout of the teapot. Note the ground truth image still has visible
spikes at 96K spp, while we produce a relatively noise-free result.

8 spp (48.7 s)
1.75×10 -2

0.958

8 spp (33.7 s)
11.84×10 -2

0.806

16 spp (1785.1 s)
3.30×10 -2

0.894

16 spp (83.8 s)
15.78×10 -2

0.876

16 spp (36 s)
1.92×10 -2

0.933

96K sppTEAPOT ROOM 16 spp (37.3 s)
38.47×10 -2

0.817

16 spp (27.3 s)
1011.22×10 -2

0.404

8 spp (815.5 s)
1.72×10 -2

0.892

8 spp (299.3 s)
8.16×10 -2

0.841

8 spp (133.7 s)
1.92×10 -2

0.899

64K sppSAN MIGUEL BALCONY 8 spp (147.6 s)
3.07×10 -2

0.754

8 spp (125.3 s)
121.2×10 -2

0.458

Ours RPF SBF Ours Ground truth

8 spp (818.4 s)
2.40×10 -2

0.913

8 spp (137.9 s)
1.28×10 -2

0.965

8 spp (41.9 s)
1.18×10 -2

0.969

2K sppCABIN

NLMEqual time MC

8 spp (689.5 s)
7.81×10 -3

0.950

8 spp (199 s)
6.15×10 -3

0.962

8 spp (44.9 s)
5.40×10 -3

0.968

4K sppDOWNTOWN 8 spp (50.7 s)
8.50×10 -3

0.918

16 spp (52.1 s)
89.20×10 -3

0.797

16 spp (62.8 s)
2.11×10 -2

0.935

8 spp (161.4 s)
1.61×10 -2

0.883

RD

8 spp (71.9 s)
1.01×10 -2

0.960

8 spp (74.3 s)
4.79×10 -3

0.954

16 spp (40.4 s)
2.99×10 -2

0.862

8 spp (154.2 s)
4.05×10 -2

0.781

WLR

8 spp (51.6 s)
1.55×10 -2

0.955

8 spp (55.6 s)
4.84×10 -3

0.951
RelMSE:

SSIM:

RelMSE:
SSIM:

RelMSE:
SSIM:

RelMSE:
SSIM:

Figure 8: We compare our algorithm against several state-of-the-art techniques as well as equal-time Monte Carlo. Our algorithm is faster
than all these filtering approaches, but we perform equal-sample comparisons to guarantee fairness. Note that since the low-discrepancy
sampling pattern in PBRT2 requires a power-of-two sampling rate, we could not match timings exactly for equal-time MC. The relative MSE
and SSIM index values are listed below each image (for SSIM higher is better). Tonemapping of the insets have been adjusted equally for
all algorithms for best visibility. Full images are available in the supplementary materials. Scene credits: DOWNTOWN – Herminio Nieves (buildings),
tf3dm.com user ysup12 (car); TEAPOT ROOM – Martin Newell; CABIN – Andrew Kin Fun Chan and Dan Konieczka (cabin, mountain, tree), tf3dm.com user 3dregenerator (truck);
SAN MIGUEL BALCONY – Guillermo M. Leal Llaguno.

The CABIN scene is a path-traced scene that includes global illu-
mination and depth of field. NLM and RPF remove the depth of
field noise, but overblur the geometry of the steps and texture in the
water. SBF and WLR do not weight the features appropriately and
thus their results contain residual noise in the depth of field regions.
Although both our approach and RD handle the depth of field re-
gions well, RD produces visible artifacts in the smooth regions due
to the low sampling rate. Meanwhile, we are able to generate a
smooth result that is closer to ground truth.

Finally, SAN MIGUEL BALCONY is a path-traced scene with severe
noise at 8 spp. Again, NLM overblurs the textures on the floor

and the wall. Moreover, SBF and WLR produce results that are
overblurred or contain residual noise. Although RPF, RD, and our
method preserve the floor texture, RD and RPF cannot properly
remove the noise in the smooth regions, including the back wall.
Despite having a slightly higher relative MSE than RPF and RD,
we produce a relatively noise-free result that is better than the other
algorithms both visually and in terms of SSIM.

To test the convergence of our method as the sampling rate in-
creases, we provide convergence plots in Fig. 9 using relative MSE
and SSIM metrics for the DOWNTOWN scene and provide compar-
isons against low-discrepancy samples, NLM, SBF, RD, and WLR.

0.0005

0.005

0.05

4 8 16 32 64 128 256

R
el

at
iv

e
M

SE

Samples per pixel

0.8

0.85

0.9

0.95

1

4 8 16 32 64 128 256

SS
IM

Samples per pixel

MC
NLM
SBF
RD
WLR
Ours

Figure 9: On the left, we show the convergence plot in terms of
relative MSE for the DOWNTOWN scene with our approach and
several state-of-the-art approaches. Our relative MSE consistently
decreases despite the fact that the network has not been trained
on sampling rates higher than 64 samples per pixel. We show the
convergence plot in terms of SSIM index on the right. Our method
produces results with higher perceptual quality, particularly at low
sampling rates. Note that although WLR has strong relative MSE,
the perceptual quality of its results is lower than SBF, RD, and our
approach because of visible artifacts. Also, our algorithm is faster
than the others, so equal number of samples is not equal time.

Since RPF is computationally expensive, we omit its comparison.
As can be seen, our relative MSE consistently decreases even at the
sampling rates that the network has not been trained on, demonstrat-
ing the network’s ability to extrapolate. Although higher sampling
rates could be included in the training set, we found our set to be
sufficient for the purposes of this paper. Moreover, the perceptual
quality of our method is higher than others based on SSIM index,
particularly at lower sampling rates. Our method is a consistent es-
timator because the distances in the color term are normalized by
the variances. Thus, as the sampling rate increases, these variances
are reduced and the filter approaches identity.

We also demonstrate how other filters can be used in our framework
by training with the cross non-local means filter [Li et al. 2012;
Rousselle et al. 2013]. Since every filter has a different relationship
between the secondary features and its filter parameters, we cannot
simply use the network weights from the previous cross bilateral
filter. In Fig. 10, we compare our method against NLM, SBF, and
RD (all with non-local means filters) and show that our method
produces a smoother result and preserves most of the scene detail.

Finally, to handle animated sequences, we simply use the same net-
work from before without retraining and extend our cross-bilateral
filter to operate on 3-D spatio-temporal volumes. This modification
to the filter is necessary to reduce the flickering that might appear
if we filter each frame independently. We tested our extension on
the SCI-FI CITY, KITCHEN, SIBENIK, and SAN MIGUEL video se-
quences, which can be found in the accompanying video. In all
cases, we used only three neighboring frames on each side of the
current frame (7 frames total) for spatio-temporal filtering. Our ap-
proach is able to generate high-quality, temporally-coherent videos
from noisy input sequences with low sampling rates.

In terms of timing, the overhead of our algorithm is roughly inde-
pendent of the sampling rate. In general, our algorithm with a cross-
bilateral filter removes noise from a 1200 × 800 image in roughly
8.4 seconds, where calculating the features takes approximately 5
seconds and evaluating the network and filtering takes 3.4 seconds.
For video sequences, the spatio-temporal filter increases our tim-
ings to roughly one minute for each 1200 × 800 frame, which is
reasonable given the quality of our videos.

6 Discussion, limitations, and future work

In our method, we estimate G by training a network through di-
rect minimization of the error between the filtered and ground truth
images (Eq. 6). An alternative approach might be to approximate
G by minimizing the error between the estimated and ground truth

Ours SBF Ours Ground truth

4 spp (572 s)
12.96×10 -2

0.835

4 spp (118 s)
6.33×10 -2

0.891

64K sppSAN MIGUEL HALLWAY

NLM

4 spp (112 s)
8.15×10 -2

0.705

RD

4 spp (112 s)
7.65×10 -2

0.849

8 spp (389 s)
1.73×10 -2

0.888

8 spp (38 s)
1.04×10 -2

0.926

8K sppART STUDIO 8 spp (37 s)
1.94×10 -2

0.809

8 spp (46 s)
1.00×10 -2

0.905

RelMSE:
SSIM:

RelMSE:
SSIM:

Figure 10: Comparison between our approach and three other
methods all using non-local means filters. In both scenes, NLM
overblurs structure and textures while SBF and RD have notice-
able artifacts in both smooth and textured regions. Scene credits: SAN

MIGUEL HALLWAY – Guillermo M. Leal Llaguno; ART STUDIO – Giorgio Luciano.

0.0005

0.001

0.0015

0.002

0.0025

0.003

0 20 40 60 80 100

Av
er

ag
e

R
el

M
S

E

Epoch number

(5)

(10)

(30)

(10, 10)

(10, 10, 10)

Figure 11: We evaluate the effect of network size on learning per-
formance. Here, we train 5 networks of different sizes and compute
the average relative MSE on 8 test images at every epoch. The sizes
differ in the number of hidden layers and the number of nodes in
each layer. For example, (10, 10) is a network with 2 hidden layers
and 10 nodes in each layer. We found that the network with one
hidden layer of size 10 provides slightly better performance than
the other sizes. The sizes of the input and output layers, which
correspond to the number of secondary features and the number of
output filter parameters, respectively, are both fixed.

filter parameters, i.e., E(G(xi),θ
∗
i). However, this approach has

two major problems. First, it provides a suboptimal solution to G
since it does not minimize the error between the filtered and ground
truth images, which is our final goal. In some cases, a small error
in filter parameters might result in a large error in the final image.
Second, it requires calculating the optimum filter parameters θ∗i for
each pixel in every image of the training set. This requires an ex-
pensive, brute-force search in the parameter space to perform the
error minimization in Eq. 4.

As discussed in Sec. 4.1, network size affects performance and thus
it is important to size it appropriately. We evaluate this effect by
training five networks of different sizes on the first training set of the
robustness experiment from Fig. 6. Fig. 11 shows convergence plots
for the different network sizes based on the average relative MSE
of 8 test scenes (also from the robustness experiment) evaluated
after each epoch. Since the network with one hidden layer of size
10 produces slightly better results than the other configurations, we
use it for all the results in this paper.

The foundation of our approach lies in having an effective train-
ing stage that can generate high-quality results on the test scenes.

Ground truthTraining with
glossy scenes

Training without
glossy scenes

Figure 12: We show the effect of training on scenes without glossy
reflections on the TEAPOT ROOM test scene. Even without glossy
scenes in the training set, our method is able to capture the glossy
reflections on the teapot. However, the result has fewer artifacts
when the glossy effect is present in the training set.

Therefore, the training set should include scenes with a variety of
distributed effects so that the network can learn how to robustly
handle diverse test scenes. To evaluate the effect of a particu-
lar distributed effect, we remove all scenes with glossy reflections
from the training set used in Fig. 8 and replace them with non-
glossy scenes containing other distributed effects. We show the re-
sult of the new trained network on the TEAPOT ROOM test scene
in Fig. 12. Although the glossy reflections are preserved better
than most other approaches (see Fig. 8), the result has lower qual-
ity when compared to the network trained with scenes containing
glossy effects.

Our network uses various secondary features to estimate filter pa-
rameters and perform filtering. We evaluated the impact of the sec-
ondary features in each of the 5 categories defined in Section 3.3
by excluding all the features from each category one at a time and
training the network. Based on this experiment, we observed that
feature statistics have the most impact on the quality of the result
while removing the other features only slightly reduced the quality.
However, since these other features are fast to compute, we used
them all in our framework to have improved quality.

Like many other MC filtering approaches, the main limitation of
our algorithm is that it produces biased but consistent results. As
such, it may not be an adequate solution for applications requir-
ing complete physical accuracy. However, we see strong potential
in fields that focus more on perceptual quality such as digital film
production, particularly for previsualization when quick rendering
times are important and very low sampling rates are used. How-
ever, as shown in Fig. 13, our approach produces reasonable results
at high sampling rates as well, which are comparable in quality to
other methods.

In this paper, we focused on reconstruction using uniform low-
discrepancy samples as input, and showed we could get good results
without adaptive sampling. However, methods like SBF, NLM,
RDFC, and WLR all significantly benefit from adaptive sampling
by dedicating more samples to problematic regions, and it is pos-
sible our method could benefit as well. A straightforward way of
including adaptive sampling in our framework is to use an existing
approach to adaptively generate samples that we would then train
on. However, a good avenue for future research is to use a similar
learning approach to generate sampling densities as well.

Finally, our approach may be the first attempt to apply machine
learning to Monte Carlo noise reduction, but it is probably not the
only way to do this. We used a neural network as our nonlinear re-
gression model since it was simple, effective, and fast. However, it
might be possible to replace the neural network with another non-
linear regression model, such as a support vector machine [Drucker
et al. 1997; Suykens and Vandewalle 1999]. We leave the investi-
gation of such possibilities for future work.

Ours RD Ours Ground truth

64 spp (200 s)
1.52×10 -3

0.985

64 spp (185 s)
1.69×10 -3

0.990

4K sppDOWNTOWN

WLR

64 spp (200 s)
1.13×10 -3

0.988
RelMSE:

SSIM:

64 spp (279 s)
1.69×10 -3

0.993

64 spp (238 s)
3.68×10 -3

0.992

2K sppCABIN 64 spp (282 s)
3.24×10 -3

0.991
RelMSE:

SSIM:

Figure 13: Comparison between our approach and two other
methods using a cross-bilateral filter at 64 samples per pixel. Our
method produces results with comparable quality to other algo-
rithms at this high sampling rate. Note that these results are pro-
duced using the network trained with 4, 8, 16, 32, and 64 sam-
ples per pixel, as in Fig. 8. Scene credits: DOWNTOWN – Herminio Nieves
(buildings), tf3dm.com user ysup12 (car); CABIN – Andrew Kin Fun Chan and Dan
Konieczka (cabin, mountain, tree), tf3dm.com user 3dregenerator (truck).

7 Conclusion

We have presented a machine learning approach to reduce noise in
Monte Carlo (MC) rendered images. In order to model the complex
relationship between the ideal filter parameters and a set of features
extracted from the input noisy samples, we use a multilayer per-
ceptron (MLP) neural network as a nonlinear regression model. To
effectively train the network, we combine the MLP network with
a filter such that the standard MLP takes in a set of secondary fea-
tures extracted from a local neighborhood at each pixel and outputs
a set of filter parameters. These parameters and the noisy samples
are given as inputs to the filter to generate a filtered pixel that is
compared to the ground truth pixel during training. We train our
proposed system on a set of scenes with a variety of distributed
effects and then test it on different scenes containing motion blur,
depth of field, area lighting, glossy reflections, and global illumi-
nation. Our results show that this simple approach demonstrates
visible improvement over existing state-of-the-art methods.

Appendix: Filter derivatives

Since we use the backpropagation algorithm [Rumelhart et al.
1986] to train the network, we need to analytically compute the
derivative of the output error with respect to the weights. Accord-
ing to Eq. 9, this requires the filter be differentiable with respect
to the filter parameters. Observing that the filter weights di,j are
a function of the filter parameters θi and using the chain rule and
Eq. 1, we have:

∂ĉi,q
∂θm,i

=
∂hq(s̄N (i),θi)

∂θm,i
=

∑
j∈N (i)

∂hq(s̄N (i),θi)

∂di,j

∂di,j
∂θm,i

. (13)

Using the quotient rule, we can write the first term as:

∂hq(s̄N (i),θi)

∂di,j
=

c̄j,q
∑

n∈N (i) di,n −
∑

n∈N (i) di,nc̄n,q

(
∑

n∈N (i) di,n)2
.

(14)

The second term in Eq. 13 depends on the filter choice. For the
cross-bilateral filter defined in Eq. 2, we need to take the derivative
with respect to the position (αi), color (βi), and additional features
(γk,i) filter parameters:

∂di,j
∂αi

= di,j
‖p̄i − p̄j‖2

α3
i

,

∂di,j
∂βi

= di,j
D(c̄i, c̄j)

β3
i

,

∂di,j
∂γk,i

= di,j
Dk(f̄i,k, f̄j,k)

γ3
k,i

. (15)

Other differentiable filters can be applied similarly in our system.
For example, we can use the cross non-local means filter [Li et al.
2012; Rousselle et al. 2013]:

di,j = exp(−D(Q̄i, Q̄j)

2ρ2i
)×

K∏
k=1

exp(−Dk(f̄i,k, f̄j,k)

2γ2
k,i

), (16)

where Q̄i is a small patch (5 × 5 in our implementation) of mean
sample colors around pixel i and ρi is the standard deviation at pixel
i for the non-local means term. Furthermore, D is defined as:

D(Q̄i, Q̄j) =
1

|Q̄|
∑
k∈K

‖c̄i+k − c̄j+k‖2

ψ2
i+k + ψ2

j+k + ζ
(17)

where |Q̄| is the number of pixels in the patch (25 for a 5×5 patch)
andK is a set of offsets from the center pixel within a patch. More-
over, ψi+k and ψj+k are the standard deviations of color samples
at pixel i + k and j + k, respectively, and ζ is a small number
(10−10) to avoid division by zero. The derivative of this filter with
respect to the filter parameters can be calculated similarly to the
cross-bilateral filter. The only difference is that, instead of the po-
sition and color terms in Eq. 15, we have:

∂di,j
∂ρi

= di,j
D(Q̄i, Q̄j)

ρ3i
(18)

Note that the cubic terms in the denominator of Eqs. 15 and 18
increase computational complexity. Therefore, in our implemen-
tation, we define auxiliary filter parameters λm,i = 1/(2θ2m,i) to
use instead of the original filter parameters. The filter derivatives
with respect to these auxiliary parameters do not have the cubic
term in the denominator and are, therefore, more computationally
efficient. To reflect this change in our system, the network outputs
these auxiliary parameters and the filters defined in Eqs. 2 and 16
are modified appropriately.

Acknowledgments

We thank Nvidia for the hardware donation of a GeForce GTX TI-
TAN. This work was funded by National Science Foundation CA-
REER grants IIS-1342931 and IIS-1321168.

References

BALA, K., WALTER, B., AND GREENBERG, D. P. 2003. Combin-
ing edges and points for interactive high-quality rendering. ACM
Trans. Graph. 22, 3 (July), 631–640.

BAUSZAT, P., EISEMANN, M., AND MAGNOR, M. 2011. Guided
image filtering for interactive high-quality global illumination.
Computer Graphics Forum 30, 4, 1361–1368.

BUADES, A., COLL, B., AND MOREL, J. M. 2005. A review of
image denoising algorithms, with a new one. Multiscale Model-
ing & Simulation 4, 2, 490–530.

BURGER, H., SCHULER, C., AND HARMELING, S. 2012. Image
denoising: Can plain neural networks compete with BM3D? In
IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), 2392–2399.

CHEN, J., WANG, B., WANG, Y., OVERBECK, R. S., YONG, J.-
H., AND WANG, W. 2011. Efficient depth-of-field rendering
with adaptive sampling and multiscale reconstruction. Computer
Graphics Forum 30, 6, 1667–1680.

COOK, R. L., PORTER, T., AND CARPENTER, L. 1984. Dis-
tributed ray tracing. SIGGRAPH Comput. Graph. 18, 3 (Jan.),
137–145.

DACHSBACHER, C. 2011. Analyzing visibility configurations.
IEEE Transactions on Visualization and Computer Graphics 17,
4 (April), 475–486.

DAMMERTZ, H., SEWTZ, D., HANIKA, J., AND LENSCH, H. P.
2010. Edge-avoiding À-trous wavelet transform for fast global
illumination filtering. In Proceedings of High Performance
Graphics (HPG), 67–75.

DELBRACIO, M., MUSÉ, P., BUADES, A., CHAUVIER, J.,
PHELPS, N., AND MOREL, J.-M. 2014. Boosting Monte Carlo
rendering by ray histogram fusion. ACM Trans. Graph. 33, 1
(Feb.), 8:1–8:15.

DRUCKER, H., BURGES, C. J. C., KAUFMAN, L., SMOLA, A.,
AND VAPNIK, V. 1997. Support vector regression machines.
In Advances in Neural Information Processing Systems 9, MIT
Press, 155–161.

DUTRÉ, P., BALA, K., BEKAERT, P., AND SHIRLEY, P. 2006.
Advanced Global Illumination. AK Peters Ltd.

EGAN, K., TSENG, Y.-T., HOLZSCHUCH, N., DURAND, F., AND
RAMAMOORTHI, R. 2009. Frequency analysis and sheared re-
construction for rendering motion blur. ACM Trans. Graph. 28,
3 (July), 93:1–93:13.

EGAN, K., DURAND, F., AND RAMAMOORTHI, R. 2011. Prac-
tical filtering for efficient ray-traced directional occlusion. ACM
Trans. Graph. 30, 6 (Dec.), 180:1–180:10.

EGAN, K., HECHT, F., DURAND, F., AND RAMAMOORTHI, R.
2011. Frequency analysis and sheared filtering for shadow light
fields of complex occluders. ACM Trans. Graph. 30, 2 (Apr.),
9:1–9:13.

GRZESZCZUK, R., TERZOPOULOS, D., AND HINTON, G. 1998.
Neuroanimator: Fast neural network emulation and control of
physics-based models. In ACM SIGGRAPH ’98, ACM, New
York, NY, USA, 9–20.

HACHISUKA, T., JAROSZ, W., WEISTROFFER, R. P., DALE, K.,
HUMPHREYS, G., ZWICKER, M., AND JENSEN, H. W. 2008.
Multidimensional adaptive sampling and reconstruction for ray
tracing. ACM Trans. Graph. 27 (Aug.), 33:1–33:10.

HASTIE, T., TIBSHIRANI, R., FRIEDMAN, J., HASTIE, T.,
FRIEDMAN, J., AND TIBSHIRANI, R. 2009. The elements of
statistical learning, vol. 2. Springer.

JAKOB, W., REGG, C., AND JAROSZ, W. 2011. Progres-
sive expectation-maximization for hierarchical volumetric pho-
ton mapping. Computer Graphics Forum 30, 4, 1287–1297.

JENSEN, H. W., AND CHRISTENSEN, N. J. 1995. Optimizing
path tracing using noise reduction filters. In Winter School of
Computer Graphics (WSCG) 1995, 134–142.

JENSEN, H. W. 2001. Realistic Image Synthesis Using Photon
Mapping. A. K. Peters, Ltd., Natick, MA, USA.

KALANTARI, N. K., AND SEN, P. 2013. Removing the noise in
Monte Carlo rendering with general image denoising algorithms.
Computer Graphics Forum 32, 2pt1, 93–102.

LAINE, S., SARANSAARI, H., KONTKANEN, J., LEHTINEN, J.,
AND AILA, T. 2007. Incremental instant radiosity for real-time
indirect illumination. In Proceedings of the 18th Eurographics
Conference on Rendering Techniques, EGSR’07, 277–286.

LAWRENCE, J., RUSINKIEWICZ, S., AND RAMAMOORTHI, R.
2004. Efficient BRDF importance sampling using a factored rep-
resentation. ACM Trans. Graph. 23, 3 (Aug.), 496–505.

LE CUN, Y., BOTTOU, L., ORR, G. B., AND MÜLLER, K.-R.
1998. Efficient backprop. In Neural Networks, Tricks of the
Trade, Lecture Notes in Computer Science LNCS 1524. Springer
Verlag.

LEE, M., AND REDNER, R. 1990. A note on the use of nonlinear
filtering in computer graphics. IEEE Computer Graphics and
Applications 10, 3 (May), 23–29.

LEHTINEN, J., AILA, T., CHEN, J., LAINE, S., AND DURAND,
F. 2011. Temporal light field reconstruction for rendering distri-
bution effects. ACM Trans. Graph. 30, 4 (Aug.), 55:1–55:12.

LI, T.-M., WU, Y.-T., AND CHUANG, Y.-Y. 2012. Sure-based op-
timization for adaptive sampling and reconstruction. ACM Trans.
Graph. 31, 6 (Nov.), 194:1–194:9.

MCCOOL, M. D. 1999. Anisotropic diffusion for Monte Carlo
noise reduction. ACM Trans. Graph. 18, 2 (Apr.), 171–194.

MEHTA, S., WANG, B., AND RAMAMOORTHI, R. 2012. Axis-
aligned filtering for interactive sampled soft shadows. ACM
Trans. Graph. 31, 6 (Nov.), 163:1–163:10.

MEHTA, S. U., WANG, B., RAMAMOORTHI, R., AND DURAND,
F. 2013. Axis-aligned filtering for interactive physically-based
diffuse indirect lighting. ACM Trans. Graph. 32, 4 (July), 96:1–
96:12.

MEHTA, S. U., YAO, J., RAMAMOORTHI, R., AND DURAND,
F. 2014. Factored axis-aligned filtering for rendering multiple
distribution effects. ACM Trans. Graph. 33, 4 (July), 57:1–57:12.

MITCHELL, D. P. 1987. Generating antialiased images at low
sampling densities. SIGGRAPH Comput. Graph. 21, 4 (Aug.),
65–72.

MOON, B., CARR, N., AND YOON, S.-E. 2014. Adaptive render-
ing based on weighted local regression. ACM Trans. Graph. 33,
5 (Sept.), 170:1–170:14.

NOWROUZEZAHRAI, D., KALOGERAKIS, E., AND FIUME, E.
2009. Shadowing dynamic scenes with arbitrary BRDFs. Com-
puter Graphics Forum 28, 2, 249–258.

OVERBECK, R. S., DONNER, C., AND RAMAMOORTHI, R. 2009.
Adaptive wavelet rendering. ACM Trans. Graph. 28, 5 (Dec.),
140:1–140:12.

PHARR, M., AND HUMPHREYS, G. 2010. Physically Based Ren-
dering: From Theory to Implementation, second ed. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA.

REN, P., WANG, J., GONG, M., LIN, S., TONG, X., AND GUO,
B. 2013. Global illumination with radiance regression functions.
ACM Trans. Graph. 32, 4 (July), 130:1–130:12.

RIEDMILLER, M., AND BRAUN, H. 1993. A direct adaptive
method for faster backpropagation learning: the RPROP algo-
rithm. In IEEE International Conference on Neural Networks,
586–591 vol.1.

ROUSSELLE, F., KNAUS, C., AND ZWICKER, M. 2011. Adap-
tive sampling and reconstruction using greedy error minimiza-
tion. ACM Trans. Graph. 30, 6 (Dec.), 159:1–159:12.

ROUSSELLE, F., KNAUS, C., AND ZWICKER, M. 2012. Adaptive
rendering with non-local means filtering. ACM Trans. Graph.
31, 6 (Nov.), 195:1–195:11.

ROUSSELLE, F., MANZI, M., AND ZWICKER, M. 2013. Ro-
bust denoising using feature and color information. Computer
Graphics Forum 32, 7, 121–130.

RUMELHART, D. E., HINTON, G. E., AND WILLIAMS, R. J.
1986. Learning representations by back-propagating errors. Na-
ture 323 (Oct.), 533–536.

RUSHMEIER, H. E., AND WARD, G. J. 1994. Energy preserving
non-linear filters. In ACM SIGGRAPH ’94, 131–138.

SEGOVIA, B., IEHL, J. C., MITANCHEY, R., AND PÉROCHE,
B. 2006. Non-interleaved deferred shading of interleaved
sample patterns. In Proceedings of the 21st ACM SIG-
GRAPH/EUROGRAPHICS Symposium on Graphics Hardware,
ACM, New York, NY, USA, GH ’06, 53–60.

SEN, P., AND DARABI, S. 2011. Implementation of random pa-
rameter filtering. Tech. Rep. EECE-TR-11-0004, University of
New Mexico.

SEN, P., AND DARABI, S. 2012. On filtering the noise from
the random parameters in Monte Carlo rendering. ACM Trans.
Graph. 31, 3 (June), 18:1–18:15.

SHIRLEY, P., AILA, T., COHEN, J., ENDERTON, E., LAINE, S.,
LUEBKE, D., AND MCGUIRE, M. 2011. A local image re-
construction algorithm for stochastic rendering. In Symposium
on Interactive 3D Graphics and Games, ACM, New York, NY,
USA, I3D ’11, 9–14.

SHIRLEY, P. 1991. Discrepancy as a quality measure for sample
distributions. In Proc. Eurographics, vol. 91, 183–194.

STEIN, C. M. 1981. Estimation of the mean of a multivariate
normal distribution. The Annals of Statistics 9, 6, 1135–1151.

SUYKENS, J., AND VANDEWALLE, J. 1999. Least squares support
vector machine classifiers. Neural Processing Letters 9, 3, 293–
300.

TOMASI, C., AND MANDUCHI, R. 1998. Bilateral filtering for
gray and color images. In Sixth International Conference on
Computer Vision, 839–846.

VEACH, E., AND GUIBAS, L. J. 1995. Optimally combining
sampling techniques for Monte Carlo rendering. In ACM SIG-
GRAPH ’95, ACM, New York, NY, USA, 419–428.

VEACH, E., AND GUIBAS, L. J. 1997. Metropolis light transport.
In ACM SIGGRAPH ’97, ACM, New York, NY, USA, 65–76.

WANG, Z., BOVIK, A., SHEIKH, H., AND SIMONCELLI, E. 2004.
Image quality assessment: from error visibility to structural sim-
ilarity. IEEE Transactions on Image Processing 13, 4 (April),
600–612.

XU, R., AND PATTANAIK, S. N. 2005. A novel Monte Carlo noise
reduction operator. IEEE Computer Graphics and Applications
25, 31–35.

