
Digital Architectures for Hybrid
CMOS/Nanodevice Circuits

A Dissertation Presented

by

Dmitri B. Strukov

to

The Graduate School

in Partial Fulfillment of the Requirements

for the Degree of

Doctor of Philosophy

in

Electrical Engineering

Stony Brook University

August 2006

Stony Brook University

The Graduate School

Dmitri B. Strukov

We, the dissertation committee for the above candidate for the Doctor of Philosophy
degree, hereby recommend acceptance of this dissertation.

Konstantin K. Likharev
Distinguished Professor, Department of Physics and Astronomy

Advisor

Yuanyuan Yang
Professor, Department of Electrical and Computer Engineering

Co-Advisor

Alex Doboli
Associate Professor, Department of Electrical and Computer Engineering

Dissertation Chair

Ridha Kamoua
Associate Professor, Department of Electrical and Computer Engineering

James Lukens
Professor, Department of Physics and Astronomy

This dissertation is accepted by the Graduate School.

Dean of the Graduate School

ii

Abstract of the Dissertation

Digital Architectures for Hybrid
CMOS/Nanodevice Circuits

by

Dmitri B. Strukov

Doctor of Philosophy

in

Electrical Engineering

Stony Brook University

2006

This dissertation describes architectures of digital memories and reconfig-
urable Boolean logic circuits for the prospective hybrid CMOS/nanowire/
nanodevice (“CMOL”) technology. The basic idea of CMOL circuits is
to combine the advantages of CMOS technology (including its flexibil-
ity and high fabrication yield) with those of molecular-scale nanodevices.
Two-terminal nanodevices would be naturally incorporated into nanowire
crossbar fabric, enabling very high function density at acceptable fabrica-
tion costs. In order to overcome the CMOS/nanodevice interface problem,
in CMOL circuits the interface is provided by sharp-tipped pins that are
distributed all over the circuit area, on top of the CMOS stack.

The most straightforward possible application of CMOL circuits is
terabit-scale “resistive” memories, in which nanodevices (e.g., single mole-
cules) would be used as single-bit memory cells, while the semiconductor
subsystem would perform all the peripheral (input/output, coding/ de-
coding, line driving, and sense amplification) functions. Using bad-bit
exclusion and error-correcting codes synergistically we show that CMOL
memories with a nano/CMOS pitch ratio close to 1/3 may overcome purely

iii

semiconductor memories in useful density if the fraction of bad nanode-
vices is below ∼ 15%, even for the 30 ns upper bound on the total access
time. As the nanotechnology matures, and the pitch ratio approaches
an order of magnitude, the CMOL memories may be far superior to the
densest semiconductor memories by providing, e.g., 1 Tbit/cm2 density
even for the plausible defect fraction of 2%.

Even greater defect tolerance (about 20% for 99% circuit yield) can
be achieved in uniform a cell-FPGA-like CMOL circuits. In such cir-
cuits, two-terminal nanodevices provide programmable diode functionality
for logic circuit operation, and allow circuit mapping and reconfiguration
around defective nanodevices, while CMOS subsystem is used for signal
restoration and latching. The cell-based architecture is based on a uni-
form CMOL fabric of “tiles”, while each tile consists of 12 four-transistor
basic cells and one latch cell. To evaluate the potential performance of
CMOL FPGA we have developed a completely custom design automation
tools. Using these tools we have successfully mapped on CMOL FPGA
the well known Toronto 20 benchmark circuits and estimated their perfor-
mance. The results have shown that, in addition to high defect tolerance,
CMOL FPGA circuits may have extremely high density (more than two
orders of magnitude higher that that of usual CMOS FPGA with the same
CMOS design rules) while operating at higher speed at acceptable power
consumption.

iv

Dedicated to my parents.

Contents

List of Figures x

List of Tables xi

Acknowledgements xii

1 Introduction 1
1.1 Motivation . 1
1.2 Prior Work . 3

1.2.1 Devices . 3
1.2.2 Circuits . 7
1.2.3 Architectures . 9

2 CMOL Approach and Hardware Models 14
2.1 Concept . 14
2.2 CMOL Cousins . 16
2.3 Performance Model . 20

2.3.1 Nanodevices . 20
2.3.2 Nanowires . 21

2.4 Defect Model . 22

3 CMOL Memory 24
3.1 Architecture and Operation . 24
3.2 Defect Tolerance Calculation . 27
3.3 Area Calculation . 29

3.3.1 Total Area and Capacity . 29
3.3.2 Crossbar Arrays . 31
3.3.3 Decoders . 31
3.3.4 Control Circuitry . 32
3.3.5 ECC Decoders . 32

3.4 Speed and Power . 33
3.4.1 ECC Decoder . 33

vi

3.4.2 Intrablock Delay . 34
3.4.3 Interblock Delay . 35
3.4.4 Example . 35
3.4.5 Power . 36

3.5 Optimization . 36
3.6 Results . 38

4 CMOL Boolean Logic 41
4.1 Hardware Architecture . 41

4.1.1 One-Cell Fabric . 41
4.1.2 Two-Cell Fabric . 45

4.2 Design Automation . 46
4.2.1 General Flow . 46
4.2.2 Technology Mapping and Circuit Processing 48
4.2.3 Placement . 49
4.2.4 Global Routing . 50
4.2.5 Defect Tolerance: Defective Cell Avoidance 54
4.2.6 Defect Tolerance: Detailed Routing around Defective

Nanodevices . 54
4.3 Performance Calculation . 60

4.3.1 Area . 60
4.3.2 Delay . 61
4.3.3 Power . 63
4.3.4 Optimization . 63
4.3.5 Simplification . 65

4.4 Results . 66

5 Discussion 75
5.1 Conclusions . 75

5.1.1 CMOL Extension of Resistive Memory 75
5.1.2 CMOL Logic Circuits . 76

5.2 Main Challenges and Possible Future Work 78

A BCH Decoder 83
A.1 Introduction . 83
A.2 Model . 84

A.2.1 General Structure . 84
A.2.2 Syndrome Calculation . 84
A.2.3 Finding Error-Location Polynomial with Berlekamp-Massey Al-

gorithm . 85
A.2.4 Finding Error Location Numbers and Correction 87

vii

A.3 Results and Discussion . 89

B Prior Work on CMOL FPGA circuits 92
B.1 Architecture and Reconfiguration Algorithm 92
B.2 32-bit Kogge-Stone Adder . 92
B.3 A Full Crossbar . 94
B.4 Results . 95

C CMOL FPGA CAD 101
C.1 Structure . 101
C.2 Command Line Options . 103

Bibliography 117

viii

List of Figures

1.1 Two-terminal latching switch . 4
1.2 The concept of “floating electrodes” 6
1.3 Crossbar array structure . 7
1.4 Equivalent circuits of crossbar memory array 10

2.1 Generic CMOL circuits . 15
2.2 CMOS-to-nano interface yield . 16
2.3 A plausible CMOL fabrication process flow 17
2.4 CMOS-to-nano interface yield . 19
2.5 Comparison of CMOL and HP’s FPNI circuits 20
2.6 Nanowire capacitance in a crossbar as a function of nanowire half-pitch 21

3.1 Memory top-level architecture . 25
3.2 Example of addressing nanodevices in a memory block 26
3.3 Possible structure of CMOS relay cell 28
3.4 BCH decoder delay and area vs. specific code parameters 30
3.5 Assumed structure of peripheral circuits 31
3.6 Equivalent circuit for the readout operation 33
3.7 Total chip area and its components of one useful memory cell as func-

tions of CMOL memory array size . 37
3.8 Redundant cells and mapping table area overheads 38
3.9 Total chip area of one useful memory cell as a function of bad bit fraction 39

4.1 One-cell CMOL FPGA fabric . 42
4.2 CMOL FPGA cells . 43
4.3 Logic and routing primitives in CMOL FPGA circuits 44
4.4 Two-cell CMOL FPGA fabric . 45
4.5 Tile connectivity domain . 47
4.6 CMOL FPGA deisgn flow . 48
4.7 Example of preprocessing step . 49
4.8 Wiring cost function calculation example 51
4.9 Pseudo-code of the global routing algorithm 51
4.10 Pseudo-code of the global routing subroutines 53

ix

4.11 Example of first stage of the global routing 55
4.12 Example of second stage of the global routing 56
4.13 Pseudo-code of the detail routing algorithm 57
4.14 Example of a circuit fragment reconfiguration around “stuck-on-open”

defective nanodevice . 58
4.15 Equivalent circuit of a CMOL logic stage 61
4.16 Example of optimization results . 64
4.17 Example of defect-free placement for dsip.blif circuit 71
4.18 Example of global routing for dsip.blif circuit 72
4.19 Example of CMOL mapping with a presence of defective cells 73
4.20 Example of CMOL mapping with a presence of bad (stuck-on-open)

nanodevices . 74

5.1 Comparison of CMOL FPGA and HP’s FPNI logic architectures . . . 78
5.2 A possible structure of large-scale CMOL FPGA system 81
5.3 Boolean logic based on nanodevices with NDR characteristics 82

A.1 Syndrom calculation . 85
A.2 Finding error-location polynomial with Berlekamp-Massey algorithm . 86
A.3 Finding error location numbers and correction 88
A.4 BCH decoder area and delay as a functions of the code performance . 90

B.1 One-cell CMOL FPGA fabric with additional 45◦ crossbar tilt 93
B.2 The 32-bit Kogge-Stone adder . 94
B.3 Mapping of the 32-bit Kogge-Stone adder on CMOL FPGA fabric . . 97
B.4 Logic depth of considered circuits . 98
B.5 Full crossbar . 98
B.6 Defect tolerance results . 99
B.7 Small fragment of the adder after reconfiguration 100

C.1 General structure of CMOL FPGA CAD 102
C.2 Options compatibility . 103

x

List of Tables

3.1 Optimal parameters of CMOL memory 40

4.1 Performance results for Toronto 20 benchmark set mapped on CMOL
fabric with no defects . 67

4.2 Performance results of the Toronto 20 benchmark set mapped on CMOL
fabric in a presence of defective cells 68

4.3 Defect rate of bad (stuck-on-open) nanodevices requirement to achieve
90% and 99% final yield . 69

A.1 Complexity of key operations in BCH decoder 89
A.2 Complexity of proposed BCH decoder 89

xi

Acknowledgements

I would not have been able to complete my PhD without the aid and support of many
people over the past six and half years. First of all, I owe eternal gratitude towards
my advisor, Konstantin Likharev. It is because of his tremendous experience and
brainpower combined with exceptional personal qualities he became more a mentor
for me than a professor. I will always see his outstanding work ethic, hard work,
support, scholarship, as well as his never fading enthusiasm and true professionalism
as an example I should aspire.

Over the years, I have enjoyed the fruitful discussions of issues related to my
thesis work with our collaborators and research colleagues: Iris Bahar, Jacob Barhen,
Valeriu Beiu, Robert Brayton, Sat Chatterjee, Deming Chen, Shamik Das, Andre
DeHon, Neil Di Spigna, Dan Hammerstrom, Ramesh Karri, Alexandr Khitun, Ralf
Koetter, Phil Kuekes, Guy Lemieux, Alan Mishchenko, Csaba Moritz, Kundan Nepal,
Alex Orailoglu, Garrett Rose, Greg Snider, Mircea Stan, Stan Williams, Tong Zhang,
and Nikolai Zhitenev.

I am indebted to Pernille Jensen and Debbie Kloppenburg for all the instances in
which their assistance helped me along the way. I also thank my former and current
officemates, Yusuf Kinkhabwala and Jung Hoon Lee. They each helped make my
time in the PhD program more fun and interesting.

Last but not the least I would like to thank my friends and family members for
their support during the long years of my academic career. It is their understanding,
distraction, encouragement, and help that gave me the strength to finish this work.

Chapter 1

Introduction

1.1 Motivation

The phenomenal success of semiconductor electronics during the past three decades
dwelled on scaling down of Si complementary metal-oxide-semiconductor (CMOS)
technology, in particular field-effect transistors (MOSFETs), and the resulting in-
crease in density of logic and memory chips. The most authoritative industrial fore-
cast, the International Technology Roadmap for Semiconductors (ITRS) [1] predicts
that this exponential (“Moore-Law”) progress of silicon MOSFETs and integrated
circuits will continue at least for the next 15 years. By the end of this period, devices
with 10-nm minimum features (transistor gate length) should become commercially
available.

The prospects to continue the Moore Law with current VLSI paradigm, based on
a combination of lithographic patterning, CMOS circuits, and Boolean logic, beyond
the 10 nm frontier are more uncertain [36, 70]. The main reason is that at gate
length beyond 10 nm, the sensitivity of parameters (most importantly, the voltage
threshold) of MOSFETs to inevitable fabrication spreads grows exponentially. As a
result, the gate length should be controlled with a few-amstrong accuracy, far beyond
even the long-term projections of the semiconductor industry [1]. For example, for
the most promising double gate silicon-on-insulator (SOI) MOSFETs the definition
accuracy of 5-nm-long gate channel should be better than 0.2 nm in order to keep
fluctuations of the voltage threshold below reasonable value of 50 mV [70], i.e. much
smaller than ITRS projected value of 0.5 nm [1]. Even if such accuracy could be
technically implemented using sophisticated patterning technologies, this would send
the fabrication facilities costs (growing exponentially even now) skyrocketing, and
lead to the end of the Moore’s Law some time during the next decade.

Similar problems with scaling await today’s mainstream memory technologies
when their feature sizes will approach the 10-nm-scale regime. Indeed, the basic cell
(holding one bit of information) of todays mainstream memories, like static and dy-

1

namic random access memories (denoted as SRAM and DRAM, correspondingly), as
well as those of relatively new but already commercialized technologies like ferroelec-
tric, magnetic, and structural phase transition memories, needs at least one transis-
tor and hence will run into the aforementioned limitation in the future. Moreover,
the scaling of DRAM is problematic already now (i.e., for 90 nm half-pitch CMOS
technology node) because of more severe problem with the capacitance scaling [77].
Similarly, the scaling of Flash memories may stop much earlier, somewhere close to
45 nm CMOS technology node [97]. The problem is that reducing dimensions of the
Flash memory cell requires corresponding scaling down of the tunnel oxide thickness,
but too thin tunnel oxide will cause leaking of the charge from the floating gate.

The main alternative nanodevice concept, single-electronics [68, 70], offers some
potential advantages over CMOS, including a broader choice of possible materials.
Unfortunately, for room-temperature operation the minimum features of these devices
(single-electron islands) should be below ∼1 nm [68]. Since the relative accuracy of
their definition has to be between 10 and 20%, the absolute fabrication accuracy
should be of the order of 0.1 nm, again far too small for the current and realistically
envisioned lithographic techniques.

Fortunately, a critical dimensions of devices can be controlled much more accu-
rately via some other techniques, e.g., film deposition. Even more attractive would be
a “bottom-up” approach with the smallest active devices formed in a special way en-
suring their fundamental reproducibility. The most straightforward example of such
device is a specially designed and chemically synthesized molecule, implementing sin-
gle electron transistor.

However, integrated circuits consisting of molecular devices alone are hardly
viable, because of limited device functionality. For example, the voltage gain of a 1-
nm-scale transistor, based on any known physical effect (e.g., the field effect, quantum
interference, or single-electron charging), can hardly exceed one, i.e. the level neces-
sary for sustaining the operation of virtually any active digital circuit. This is why
the only plausible way toward high-performance nanoelectronic circuits is to integrate
nanodevices, and the connecting nanowires, with CMOS circuits whose (relatively
large) field-effect transistors would provide the necessary additional functionality, in
particular high voltage gain.

The novel hybrid technology paradigm will certainly require rethinking of the
current circuit architectures. Therefore, the purpose of this PhD work was to inves-
tigate plausible architectures for hybrid CMOS/nanodevice circuits. In the reminder
of this chapter we will review nanoscale devices suitable for hybrid circuits and then
discuss the most important unique circuit- and architectural-level challenges as well as
some of the proposed solutions. One of the most promising hybrid concepts, dubbed
“CMOL”, which was used as primary technology for all our architectures will be dis-
cussed in the next chapter. The rest of the Dissertation is devoted to the original

2

results for CMOL-based digital memories (Chapter 3) and reconfigurable Boolean-
logic circuits (Chapter 4). The thesis is concluded (Chapter 5) with a summary of
the major results and possible future directions. Finally, Appendix A discusses in
details the model of a key component of a memory circuitry, BCH decoder, Appendix
B presents results of our preliminary work on CMOL FPGA circuits, while Appendix
C describes the custom design automation tool which was developed to enable eval-
uation of Boolean CMOL logic circuits.

1.2 Prior Work

1.2.1 Devices

The first critical issue in the development of semiconductor/nanodevice hybrids is
making a proper choice in the trade-off between nanodevice simplicity and function-
ality. On one hand, simple molecule-based nanodevices (like the octanedithiols [126]),
which may provide nonlinear but monotonic I − V curves with no hysteresis (i.e. no
internal memory), are hardly sufficient for highly functional integrated circuits, be-
cause a semiconductor memory subsystem would hardly be able to store enough data
for processing by more numerous nanodevices. On the other hand, very complex
molecular devices (like a long DNA strand [89]) may have numerous configurations
that can be, as a matter of principle, used for information storage. However, such
molecules are typically very “soft”, so that thermal fluctuations at room tempera-
ture (that is probably the only option for broad electronics applications) may lead
to uncontrollable switches between their internal states, making reliable information
storage and usage difficult, if not totally impossible.

Moreover, so far there are only practical solutions for fabricating two-terminal
devices, because they may have just one critical dimension (distance between the
electrodes) which may be readily controlled by, e.g. film deposition or oxidation rate.
Equally, chemically-directed self-assembly of two-terminal devices would be immea-
surably simpler than the multi-terminal ones. This is why many realistic proposals
of hybrid circuits are based on two-terminal “latching switches” or “programmable
diodes” (see, e.g., Refs. 26, 27, 29, 40, 79 as well as circuits desribed in this Disserta-
tion [108–115], and also recent reviews [23,28,30,58,65,73,76,105]).1 The functionality
of such devices is illustrated on Fig. 1.1a. At low applied voltages, the device behaves

1As it will be shown later in this work the diode-like characteristic is necessary for the oper-
ation of the hybrid memory circuits and is helpful for the proposed logic circuits. However, sim-
ple programmable resistance switches could be enough for, e.g., nanoelectronic neuromorphic net-
works [63, 64, 72,122], programmable interconnect hybrid CMOS/nanodevice architectures [37, 102],
as well as Goto-pair-based circuit architectures [59, 99, 100]. (The latter group, however, runs into
serious architectural problems, which are discussed at the end of this chapter.)

3

N

O

O

N

O

O

R

NN

O

O

O

O

R

R

N

R

C

R

R

N

R

R

C

O

R

N

R

C

R

R

O O

O

R = hexyl

I

VV+0OFF

ON

ON

ON OFF
V-

OFF ON

(a) (b)

single-electron transistor

single-electron trap

tunnel
junction

Vs Vd

Cc

Cs

(c)

diimide groups as
single-electron islands

OPE chains as
tunnel junctions

isocyanide
group as
a clamp

nonconducting
support
group

-Vt

+Vt

Figure 1.1: Two-terminal latching switch: (a) I−V curve (schematically), (b) single-
electron device schematics [35], and (c) a possible molecular implementation of the
device (courtesy A. Mayr).

as a usual diode, but a higher voltage may switch it between low-resistive (ON) and
high-resistive (OFF) states.

Numerous devices with a similar functionality have been already demonstrated
using several materials, notably including amorphous metal-oxide films (see, e.g. Refs.
9,19), relatively thick organic films (both with [13,75] and without [61,96] embedded
metallic clusters), self-assembled monolayers (SAM) of molecules [22,66,127], and thin
chalcogenide layers [21, 60]. The physics of the ON-OFF switching in these devices
is still a matter of substantial discussion, with the reversible filament formation most
probable for organic systems, and trapped electric charge accumulation looking like
the most plausible candidate for amorphous oxide films. In both interpretations, the
conductance is due to some random active conducting centers (filaments or hopping
percolation paths) separated by distances of the order of a few nanometers. In order
to be reproducible, the device should have a large number of such centers. This is
why the extension of the excellent reproducibility demonstrated for such statistical
devices with a lateral size larger than 100 nm [19] to the most interesting range, i.e.
below 10 nm, presents a challenge.

The problem may be addressed using uniform self-assembled monolayers of spe-
cially designed molecules [72] implementing binary single-electron latching switches
[35]. Such switch may be readily implemented, for example, as a combination of

4

two single-electron devices: a “transistor” and a “trap” (Fig. 1.1b).2 If the applied
drain-to-source voltage V = Vd − Vs is low, the trap island in equilibrium has no
extra electrons (n = 0), and its net electric charge Q = −ne is zero. As a result, the
transistor is in the virtually closed (OFF) state, and source and drain are essentially
disconnected. If V is increased beyond a certain threshold value V+, its electrostatic
effect on the trap island potential (via capacitance Cs) leads to tunneling of an ad-
ditional electron into the trap island: n → 1. This change of trap charge affects,
through the coupling capacitance Cc, the potential of the transistor island, and sup-
presses the Coulomb blockade threshold to a value well below V+. As a result, the
transistor, whose tunnel barriers should be thinner than that of the trap, is turned
into ON state in which the device connects the source and drain with a finite resis-
tance RON. (Thus, the trap island plays the role similar to that of the floating gate
in the usual nonvolatile semiconductor memories [14].) If the applied voltage stays
above V+, this connected state is sustained indefinitely; however, if V remains low for
a long time, the thermal fluctuations will eventually kick the trapped electron out,
and the transistor will get closed, disconnecting the electrodes. This ON → OFF
switching may be forced to happen much faster by making the applied voltage V
sufficiently negative, V ≈ V−.

Figure 1.1c shows a possible molecular implementation of the device shown in
Fig. 1.1b. Here two different diimide acceptor groups play the role of single-electron
islands, while short oligo-ethynylenephenylene (OPE) chains are used as tunnel bar-
riers. The chains are terminated by isocyanide-group “clamps” (“alligator clips”)
that should enable self-assembly of the molecule across a gap between two metallic
electrodes.

A major challenge for such molecular devices is the reproducibility of the inter-
face between the monolayer and the second (top) metallic electrode, because of the
trend of the metallic atoms to diffuse inside the molecules during the electrode depo-
sition [129], and the difficulty in ensuring a unique position of the molecule relative to
the electrodes, and hence a unique structure and transport properties of molecular-to-
electrode interfaces. Recent very encouraging results towards the solution of the first
problem have been obtained using an intermediate layer of a conducting polymer [6].

The latter problem can be solved, e.g., by attaching relatively large “floating
electrodes” (large acceptor groups or metallic clusters - see Fig. 1.2) to the molecular
device. If the characteristic internal resistance RON of such a molecule is much higher
than the range of possible values of molecule/electrode resistances Ri, and the float-
ing electrode capacitances are much higher than those of the internal single-electron

2Metal-based, low-temperature prototypes of such switches, with multi-hour state retention times,
have been implemented and successfully tested experimentally, with electron trapping times beyond
12 hours [34, 50, 70]. However, so far molecular implementations have been only demonstrated (see,
e.g., Refs. 55, 88) for the main component of the device, the single-electron transistor [70], rather
than for the latching switch as the whole.

5

Ri

Ri

RON

(b)(a)

functional
two-terminal

molecule

“floating
electrodes”

Figure 1.2: A molecule with “floating electrodes” (a) before and (b) after its self-
assembly on “real electrodes”, e.g., metallic nanowires (schematically).

islands, then the transport through the system will be determined by RON and hence
be reproducible.3

Another possible way toward high yield is to form a SAM on the surface of the
lower nanowire level, and only than deposit and pattern the top layer. Such approach
has already given rather reproducible results (in the nanopore geometry) for simple,
short molecules [126]. The apparent problem here is that each crosspoint device
would have several parallel devices even if the nanowire width is scaled down to a few
nanometers, and this number may be somewhat different from one crosspoint device
to the other. However, the CMOL circuits discussed in Chapters 3, 4 can function
properly even in this case.

Finally, the potentially enormous density of nanodevices can hardly be used with-
out individual contacts to each of them. This is why the fabrication of wires with
nanometer-scale cross-section is another central problem of nanoelectronics. The
currently available photolithography methods, and even their rationally envisioned
extensions, will hardly be able to provide such resolution. Several alternative tech-
niques, like the direct e-beam writing and scanning-probe manipulation can provide
a nm-scale resolution, but their throughput is forbiddingly low for VLSI fabrication.
Self-growing nanometer-scale-wide structures like carbon nanotubes or semiconductor
nanowires can hardly be used to solve the wiring problem, mostly because these struc-
tures (in contrast with the nanodevices that have been discussed above) do not have
means for reliable placement on the lower integrated circuit layers with the necessary

3Actually, this approach to interfaces is very much parallel to that accepted de facto in semi-
conductor electronics. Indeed, despite decades of research, properties of silicon-to-metal interfaces
(in particular, the Fermi level pinning due to surface traps) are still neither completely understood
nor fully predictable. This is why in most semiconductor circuit technologies, metal-semiconductor
junctions are used only as passive Ohmic contacts, while active devices are built around much better
explored p − n junctions formed inside the semiconductor.

6

bottom nanowire
level

top
 nanowire

level

similar
two-terminal
nanodevices

at each crosspoint

Figure 1.3: Crossbar array structure.

(a-few-nm) accuracy. Fortunately, there are several new patterning methods, notably
nanoimprint [42, 120, 124] and interference lithography [15, 103], which may provide
much higher resolution than the standard photolithography. Indeed, the layers of
parallel nanowires with a nano half-pitch Fnano = 17 nm have already been demon-
strated [51], and there are good prospects for the half-pitch reduction to 3 nm or so
in the next decade [42, 120, 124]. (The scaling of the pitch below 3 nm value would
be not practical because of the quantum mechanical tunneling between nanowires.)

1.2.2 Circuits

The novel device and patterning technologies may allow to extend microelectronics
into the few-nm range. However, they impose a number of challenges and limitation
for integrated circuit design.

• Defect Tolerance - Perhaps, the main challenge faced by the hybrid circuits
might be the requirement of very high defect tolerance. Indeed, it is natural to expect
that at the initial stage of development of all nanodevices, their fabrication yield for
Fnano < 30 nm will be considerably below 100%, and, for Fnano ∼ 3 nm, will possibly
never approach this limit closer than a few percent. This number can be compared
with at most 10−8% of bad transistors for the mature CMOS technology [1].

• Circuit Regularity - Nanoimprint and interference lithography cannot be
used for the fabrication of arbitrary integrated circuits, in particular because they
lack adequate layer alignment accuracy (“overlay”). This means that the nanowire
layers should not require precise alignment with each other. The remedy to this
problem can be a very regular “crossbar” nanowire structures [43] with two layers
of similar wires perpendicular to those of the other layer (Fig. 1.3). On one hand,
such structures are ideal for the integration of two-terminal nanodevices which can
be sandwiched, e.g. by self-assembly or film deposition, in between two layers of
nanowires. On the other hand, if all nanodevices are functionally similar to each

7

other, the relative position of one nanowire layer with respect to the other is not
important. Not surprisingly, virtually all proposals for digital CMOS/nanodevice
hybrids, most importantly including memories [8,20,29,110,112,113,127] and Boolean
logic circuits [26,27,40,41,79,99–102,109,111,114,115,125,130], are based on crossbar
structures (see also reviews of such circuits in Refs. 23, 28, 30, 58, 73, 105).4

• Micro-to-Nano Interface - The lack of alignment accuracy of novel pattern-
ing technologies also results in much harder problem of building CMOS-to-nanowire
interfaces. In fact, the interface should enable the CMOS subsystem, with a relatively
crude device pitch 2βFCMOS (where β ∼ 1 is the ratio of the CMOS cell size to the
wiring period and FCMOS is a CMOS half-pitch), to address each wire separated from
the next neighbors by a much smaller distance Fnano.

Several solutions to this problem, which had been suggested earlier, seems to
be not very efficient. In particular, almost all of the proposed interfaces are based
on statistical formation of semiconductor-nanowire field-effect transistors gated by
CMOS wires [31, 39, 56, 57] and can only provide a limited (address-decoding-type)
connectivity, which might present a problem for sustaining sufficient data flow in and
out of the nanoscale subsystem. Moreover, such demux-based interfaces presents ar-
chitectural challenges since they are both needed for configuration of the nanodevices,
as well as transferring data between CMOS and nano subsystems. Even more impor-
tantly, the technology of ordering chemically synthesized semiconductor nanowires
into highly ordered parallel arrays has not been developed, and there is probably no
any promising idea that may allow such assembly.

A more interesting approach was discussed in Ref. 130 (see also Refs. 105 and
17). It is based on a cut of the ends of nanowires of a parallel-wire array, along a
line that forms a small angle α = arctan(Fnano/FCMOS) with the wire direction. As a
result of the cut, the ends of adjacent nanowires stick out by distances (along the wire
direction) differing by 2FCMOS, and may be contacted individually by the similarly
cut CMOS wires. Unfortunately, the latter (CMOS) cut has to be precisely aligned
with the former (nanowire) one, and it is not clear from Ref. 130 how exactly such a
feat might be accomplished using available patterning techniques.

Finally, the idea of achieving CMOS-to-nano interface without any “overlay”
alignment using precisely angled cuts, suggested recently [33], is very similar to the
CMOL concept proposed earlier by K. Likharev [70, 71] and will be discussed in the
next chapter.

4Another, not less exciting, application of the crossbar nanoelectronic hybrids, mixed-signal neu-
romorphic networks [63, 64, 72, 122], is out of the scope of this work.

8

1.2.3 Architectures

A) Memories

The most straightforward application of crossbar CMOS/nanodevice hybrids is in
memory circuits - see, e.g., theoretical proposals [29, 74] and the first experimental
demonstrations [20,127]. Note that such circuits can be thought of as an extension of
more general “crossbar” or “resistive” memory species. In particular, it includes very
promising crossbar memories with CMOS-scale wires [21], which have a potential to
be the densest among memories based on the conventional photolithography-based
technologies. This is why our discussion of these circuit (as well as the results in
Chapter 3 of this thesis) is somewhat relevant for a much wider types of memories.

In crossbar memories, nanodevices are used as a single-bit memory cells, while
the semiconductor transistor subsystem performs all the peripheral (input/output,
coding/decoding, line driving, and sense amplification) functions that require rela-
tively smaller number of devices (scaling as N1/2, where N is the memory size in
bits). If area overhead associated with periphery circuits is negligible then the foot-
print of the crossbar memories can be as small as (2Fnano)

2, which might result in the
unprecedented density in excess of 1 Terabit/cm2 at the end of the hybrid technol-
ogy roadmap (for Fnano = 3 nm), i.e. three orders of magnitude higher than that in
existing semiconductor memory chips. 5

The basic operation of crossbar memories can be explained using simplified equiv-
alent circuits shown on Fig. 1.4. In the low-resistive state presenting binary 1, the
nanodevice is essentially a diode, so that the application of voltage Vt < VREAD < V+

to one (say, horizontal) nanowire leading to the memory cell gives a substantial cur-
rent injection into the second wire (Fig. 1.4a). This current pulls up voltage Vout

which can now be read out by a sense amplifier. The diode property to have low
current at voltages above −Vt prevents parasitic currents which might be induced in
other state-1 cells by the output voltage - see the red line in Fig. 1.4a. On the other
hand, it is easy to show that memory arrays with purely linear (resistive) nanodevices
do not scale well and hardly practical [104].

In state 0 (which presents binary zero) the crosspoint current is very small, giving
a nominally negligible contribution to output signals at readout. In order to switch
the cell into state 1, the two nanowires leading to the device are fed by voltages
±VWRITE (Fig. 1.4b), with VWRITE < V+ < 2VWRITE. (The left inequality ensures
that this operation does not disturb the state of “semi-selected” devices contacting
just one of the biased nanowires.) The write 0 operation is performed similarly using
the reciprocal switching with threshold V- (Fig. 1.1). It is evident from Figs. 1.4a, b

5Here, we do not include in our comparison the data storage systems (such as hard disk drives,
etc.) which cannot be used for bit-addressable memories because of their very large (millisecond-
scale) access time.

9

VREAD

Vout

A

+VWRITE

-VWRITE

A

(a) (b)

Figure 1.4: Equivalent circuits of the crossbar memory array showing (a) read and
(b) write operations for one of the cells (marked A). On panel (a), green arrow shows
the useful readout current, while red arrow shows the parasitic current to the wrong
output wire, which is prevented by the nonlinearity of the I −V curve of device A (if
the output voltage is not too high, Vout < Vt).

that the read and write operations may be performed simultaneously with all cells of
one row.6

The two main approach for fighting errors in semiconductor memory technology
is reconfiguration, i.e. the replacement of memory array lines (rows or columns)
containing bad cells by spare lines [18, 90]. The effectiveness of the replacement
depends on how good its algorithm is [18, 46]. The Exhaustive Search approach
(trying all possible combinations) finds the best repair solution, though it is not
practicable because of the exponentially large execution time. A more acceptable
choice is the “Repair Most” method that allows a simple hardware implementation
and an execution time scaling linearly with the number of bits. In this approach, the
number of defects in each line of a memory block (matrix) is counted, and the lines
having the largest number of defects are replaced with a spare lines.

For a larger fraction of bad bits, better results may be achieved [29, 106, 116]
by combining the bad line exclusion with ECC techniques. The simulation results
for application of such technique for crossbar hybrid memories [29, 116] have shown
that defect tolerance up to ∼ 10% may be achieved using very powerful ECC, e.g.
Reed-Solomon and Bose-Chaudhuri-Hocquenghem (BCH) codes [11]. Unfortunately,

6Actually, only one of the “write 0” and “write 1” operations can be performed simultaneously
with all cells. Because of the opposite polarity of the necessary voltages across nanodevices for these
two operations, the complete write may be implemented in two steps, e.g., first writing 0s and then
writing 1s.

10

in those works, the contributions of the circuits implementing these codes to the
memory access time (which for some codes may be extremely large) and the total
memory area have not been estimated. Also the account of the finite leakage current
through nominally closed crosspoints (which was neglected in Ref. 29) may change
the memory scaling rather substantially [8].

Section 3 describes our own approach to terabit-scale defect tolerant CMOL-
based nanoelectronic memories. In our first paper we have proposed the concept of
CMOL memories based on continuous-nanowire structure [110], which would have
quite low ∼ 50% interface yield. Moreover, since only light ECC were employed in
early version of CMOL memories, like Hamming codes [11], the defect tolerance even
with a synergy of Exhaustive search reconfiguration was not very encouraging, e.g., 2%
of defects allowed to achieve a 10-fold increase in density with respect to the defect-free
pure semiconductor densest memories. This is why this thesis describes an advanced
version of CMOL memories [112, 113]. First of all, the defect tolerance of improved
version of CMOL memories is boosted by using a more aggressive codes. Secondly,
their segmented structure allows for virtually 100% interface yield (for latter point,
see, e.g. Section 2.1). Finally note, that the presented analysis of CMOL memories is
more detailed than that of other groups, since it includes a possible tradeoff between
density, defect tolerance, and speed performance accounting for all most important
overheads from memory circuitry.

B) Logic Circuits

The practical techniques for high defect tolerance in digital (Boolean) logic is less
obvious. In the usual custom logic circuits the location of a defective gate from outside
is hardly possible, while spreading around additional logic gates (e.g., providing von
Neumann’s majority multiplexing [123]) for error detection and correction becomes
very inefficient for fairly low fraction q of defective devices. For example, even the
recently improved von Neumann’s scheme requires a 10-fold redundancy for q as low
as ∼ 10−5 and a 100-fold redundancy for q ≈ 3 × 10−3 [93].

This is why the most significant previously published proposals for the imple-
mentation of logic circuits using CMOL-like hybrid structures had been based on
reconfigurable regular structures like the field-programmable gate arrays (FPGA).
Before this work, two FPGA varieties had been analyzed, one based on look-up ta-
bles (LUT) and another one using programmable-logic arrays (PLA).

In the former case, all possible values of an m-bit Boolean function of n binary
operands are kept in m memory arrays, of size 2n × 1 each. (For m = 1, and some
representative applications the best resource utilization is achieved with n close to
4 [5], while the famous reconfigurable computer Teramac [43] is using LUT blocks
with n = 6 and m = 2.) The main problem with this approach is that the memory
arrays of the LUTs based on realistic molecular devices cannot provide address de-

11

coding and output signal sensing (recovery). This means that those functions should
be implemented in the CMOS subsystem, and the corresponding overhead may be
estimated using our results discussed in the previous section. Using the results for
from Chapter 3 one can show that for the memory array with 26 × 2 bits, performing
the function of a Teramac’s LUT block, and for a realistic ratio FCMOS/Fnano = 10
the area overhead would be above four orders of magnitude (!), and would even loose
the density (and hence performance) competition to a purely-CMOS circuit perform-
ing the same function. On the other hand, increasing the memory array size to the
optimum is not an option, because the LUT performance scales (approximately) only
as a log of its capacity [5].

The PLA approach is based on the fact that an arbitrary Boolean function can
be re-written in the canonical form, i.e. in the two-level logical representation. As a
result, it may be implemented as a connection of two crossbar arrays, for example one
performing the AND, and another the OR function [105]. The first problem with the
application of this approach to the CMOS/nanodevice hybrids is the same as in the
case of LUT’s: the optimum size of the PLA crossbars is finite, and typically small [54],
so that the CMOS overhead is extremely large. Moreover, any PLA logic built with
diode-like nanodevices faces an additional problem of high power consumption. In
contrast with LUT arrays, where it is possible to have current only through one
nanodevice at a time, in PLA arrays the fraction of open devices is of the order
of one half [23]. Let us estimate the static power dissipated by such an array. The
specific capacitance of a wire in an integrated circuit is always of the order of 2×10−10

F/m (for justification, see, e.g., Fig. 2.6.). With Fnano = 3 nm, this number shows
that in order to make the RC time constant of the nanowire below than, or of the
order of the logic delay in modern CMOS circuits (∼10−10s), the ON resistance RON

of a molecular device has to be below ∼ 7 × 107 ohms. For reliable operation of
single-electron transistor (and apparently any other active electronic nanodevice) at
temperature T , the scale VON of voltage V = Vs − Vd across it has to be at least
10kBT [70]. For room temperature this gives VON > 0.25 Volt, so that static power
dissipation per one open device, PON = V 2

ON/RON is close to 10 nW. With the open
device density of 0.5/(2Fnano)

2 ≈ 1012 cm−2, this creates a power dissipation density
of at least 10 kW/cm2, much higher than the current and prospective technologies
allow to manage [1].

As a matter of principle, power consumption may be reduced by using dynamic
logic, but this approach requires more complex nanodevices. For example, Refs.
26–28 describe a dynamic-mode PLA-like structure (with improved functional den-
sity via wrapped logic mapping) using several types of molecular-scale devices, most
importantly including field-effect transistors which are formed at crosspoints of two
nanowires. In such transistor, one (semiconductor) nanowire would serve as a drain/
channel/source structure, while the perpendicular nanowire would play the role of

12

the gate. Unfortunately, such circuits would fail because of the same fundamental
physical reason that provides the fundamental limitation to the Moore’s Law: any
semiconductor MOSFET with a-few-nm-long channel is irreproducible because of ex-
ponential dependence of the threshold voltage on the transistor dimensions [118].7

Similar problems are likely to prevent hybrid circuits described in Refs. 101,125 from
scaling down beyond 10-nm range, since they are based on nanoscale FETs.

Finally, the last significant category of suggested crossbar hybrids includes cir-
cuits based on Goto-pair logic [105]. In particular, Refs. 99, 100 describe an ar-
chitecture where Goto-pair logic is implemented with two-terminal resistive crossbar
latches [59]. The main architectural challenge of this approach is due to the fact that
nanodevice bistability is employed during Goto pair operation. 8 Since the assumed
nanodevices have no third state, and hence, cannot be enabled or disabled, it is un-
clear how to mapping a particular circuit on such architectures. (Having a third state
is probably not very practical since multi-state devices are not very reliable.)

Moreover, the use of bistability in the circuit operation is rather impractical due
to the relation between the retention time and the switching speed in the crossbar
latches. In order to be useful for most electronics applications, the latches should be
switched very fast (in a few picoseconds in order to compete with advanced MOS-
FETs), but retain their internal state for the time necessary to complete the calcula-
tion (ideally, for a few years, though several hours may be acceptable in some cases).
This means that the change of the applied voltage by the factor of two (the differ-
ence between the fully selected and semi-selected crosspoints of a crossbar) should
change the switching rate by at least 16 orders of magnitude. However, even the
most favorable physical process we are aware of (the quantum-mechanical tunneling
through high-quality dielectric layers like the thermally-grown SiO2) may only pro-
duce, at these conditions, the rate changes below 10 orders of magnitude, even if
uncomfortably high voltages of the order of 12 V are used [14].

In Section 4 we present an alternative approach to Boolean logic circuits based
on CMOL concept [109,111,114], that is closed to the so-called cell-based FPGA [91].
We will show that such circuits can have much better area-delay performance as
compared to purely CMOS FGPAs, and at the same time provide very high defect
tolerance.

7In principle, this problem can be alleviated by making the width of nanowires in one dimension
comparable with that of lithographically defined wires [27]. However, that also means that such
hybrid circuits cannot take full advantage (only in one dimension) of nanodevice nanometer-scale
footprints.

8As a reminder, in all discussed crossbar circuits above, as well as in our approach for Boolean
logic (Chapter 4), the state of nanodevices remains unchanged during circuit operation.

13

Chapter 2

CMOL Approach and Hardware Models

2.1 Concept

Figure 2.1 shows the so-called CMOL approach [70, 71, 73] to the interface problem.
The difference between this approach (based on earlier work on the so-called “InBar”
neuromorphic networks [72, 122]), and the suggestions discussed in Section 1.2.2 is
that in CMOL the CMOS-to-nanowire interface is provided by pins distributed all
over the circuit area. In the generic CMOL circuit (Fig. 2.1), pins of each type
(contacting the bottom and top nanowire levels) are located on a square lattice of
period 2βFCMOS. Relative to these arrays, the nanowire crossbar is turned by a
(typically, small) angle α which is found as (Fig. 2.1c):

α = arctan
1

a
= arcsin

Fnano

βFCMOS
� 1, (2.1)

where a is a (typically, large) integer. Such tilt ensures that a shift by one nanowire
(e.g., from the second wire from the left to the third one in Fig. 2.1c) corresponds
to the shift from one interface pin to the next one (in the next row of similar pins),
while a shift by a nanowires leads to the next pin in the same row. This trick enables
individual addressing of each nanowire even at Fnano � βFCMOS. For example, the
selection of CMOS cells 1 and 2 (Fig. 2.1c) enables contacts to the nanowires leading
to the left one of the two nanodevices shown on that panel. Now, if we keep selecting
cell 1, and instead of cell 2 select cell 2’ (using the next CMOS wiring row), we contact
the nanowires going to the right nanodevice instead.

It is also clear that a shift of the nanowire/nanodevice subsystem by one nano-
wiring pitch with respect to the CMOS base does not affect the circuit properties.
Moreover, a straightforward analysis of CMOL interface (Fig. 2.2) shows that at an
optimal shape of the interface pins (for example, when top radius of both upper and
lower level interface pins, the nanowire width and nanowire spacing are all equal),
even a complete lack of alignment of these two subsystems leads to a theoretical

14

nanodevices
nanowire
crossbar
interface

pins
CMOS
stack

A

2aFnano

 pin 2

2 FCMOS

pin 2’

A

pin 1

2Fnano

(a)A-A

(c)

selected
nanodevice

selected
word

nanowire

selected bit
nanowire

interface
pin 1

interface
pin 2

(b)

CMOS
cell 2

CMOS
cell 1

Figure 2.1: The generic CMOL circuit: (a) a schematic side view; (b) a schematic top
view showing the idea of addressing a particular nanodevice via a pair of CMOS cells
and interface pins, and (c) a zoom-in top view on the circuit near several adjacent
interface pins. On panel (b), only the activated CMOS lines and nanowires are shown,
while panel (c) shows only two devices. (In reality, similar nanodevices are formed at
all nanowire crosspoints.) Also disguised on panel (c) are CMOS cells and wiring.

15

fine

Shift along the top level:

Shift along the bottom level:

fine fine fine fine bad!

fine fine fine fine bad? bad!

Figure 2.2: The idea of 100% CMOS-to-nano interface yield without any overlay
alignment.

interface yield of 100%. (Note that the last statement is only true for the latest version
of CMOL [112, 114] in which pin, going to the upper nanowire level, intentionally
interrupts a lower layer wire - see Fig. 2.1.) Even if the interface yield will be less
than 100%, it may be acceptable, taking into account that the cost of the nanosystem
fabrication, including the chemically-directed assembly of molecular devices may be
rather low, especially in the context of an unparalleled density of active devices in
CMOL circuits.

Figure 2.3 shows plausible fabrication steps required to create described CMOS-
to-nano interface and nanowire crossbar with intermediate nanodevice layer.

2.2 CMOL Cousins

More recently, at least two approaches to the interface between CMOS and nano
subsystems, very similar to CMOL, have been proposed . In Ref. 33, interface between
nano and CMOS wires is supposed to be formed by exposing portions of CMOS wires
with precisely angled cut in the insulator layer (Fig. 2.4). The key point in this
proposal is that the interface yield can be up to 100% without any overlay alignment
between nano and CMOS layers if the vertical gap wgap between CMOS openings
and its height are exactly equal to nanowire width wnano and nanowire spacing sspace,
correspondingly. Clearly, the idea behind it is the same as that discussed in previous
section, if one replace CMOS area openings with CMOS pillars.

The advantage over CMOL approach is that the cut is much easier to imple-

16

(a)

(b)

(c)

(d)

Figure 2.3: A plausible CMOL fabrication process flow (crudely): (a) Formation of
pins on top of CMOS layer (e.g, using technique used for fabrication of the tips in
field-emission arrays - see Ref. 49) and covering them with the insulator (oxidation),
(b) deposition of a base resist layer, etching lower layer pins, deposition of metal
and device layers (SAM or any film of a material with a properties discussed in Sec.
1.1), and transferring nanowire pattern on the upper resist layer, (c) etching device
and metal layers to form low level nanowires, and (d) deposition of supporting resist,
patterning upper level nanowires.

17

ment than the pins. On the other hand, this approach has also rather substantial
disadvantages:

• The interface density is more than twice lower that the maximum possible
one 1/(2FCMOS × 2Fnano). More specifically, if wCMOS, sCMOS, and wcut, are
CMOS wire width, spacing and the width of the cut, respectively, the following
equations should be satisfied [33]:

wnano = wgap = sCMOS/ tan α − wcut/ sin α, (2.2)

snano = wCMOS/ tan α + wcut/ tan α, (2.3)

where angle α of the cut can be found similarly to Eq. (2.1) as

tan α =
wnano + snano

wCMOS + sCMOS
. (2.4)

Assuming that, as in our previous section, the minimum nano- and micro-scale
feature sizes are Fnano and FCMOS, correspondingly, it is clear from Eqs. (2.2, 2.3,
2.4) that picking minimum spacing and width for both nanowires and CMOS
wires is not possible. The largest density of the interface can be found assuming
that wnano = wcut = Fnano, wCMOS = FCMOS, and optimizing sCMOS and snano.
For the most interesting case FCMOS/Fnano � 1, and hence solving Eqs. (2.3)
and (2.4) together gives

sCMOS � 2FnanoFCMOS/(snano − Fnano). (2.5)

Therefore, the maximum density of the interface is roughly equal to 1/(2FCMOS×
4Fnano), i.e. about 50% of CMOL density, since optimal values are sCMOS =
FCMOS, snano = 3Fnano.

• The proposed interface is peripheral since the suggested technique only feasible
for interfacing one layer of nanowires at a time. Hence, it may be used on the
crossbar periphery rather than distributed over all the area as CMOL. As a
result, the implmentation of logic circuits in this technology is hardly feasible
(cf. Chapter 4).

The area interface without nanometer-scale pins is suggested recently in HP’s
FPNI circuits [102]. According to the authors, such FPNI circuits is a generalization
of the CMOL FPGA approach, allowing for simpler fabrication and more conserva-
tive process parameters. More specifically, authors indicate that the sharply-pointed
interface pins with nanometer-scale top radii present a fabrication challenge and at
the initial stage it is easier to replace them with CMOS-scale pins. For such change

18

wCMOS sCMOS

wcut

open
cuts

CMOS
wire

wgap

insulator

nanowire

(b)

(a)

snano

wnano

Figure 2.4: The idea of 100% CMOS-to-nano interface yield without any overlay
alignment [33].

the nanowire crossbar requires CMOS-scale alignment with respect to CMOS subsys-
tem and will be much sparser than the original used in CMOL (Fig. 2.5). Another
feature that simplifies fabrication of FPNI is the fact that nanodevices are used only
as programmable resistance switches. The downside of FPNI approach is that more
functionality is transferred in CMOS subsystem and together with sparser nanowire
crossbar, as it will be shown later in Chapter 5, the areal density of such circuits is
substantially lower than that of CMOL-based ones.

This is why, these recently suggested CMOL varieties might be seen as just an
intermediate steps towards real CMOL circuits which are superior in characteristics,
though more challenging for fabrication.

19

pin
pad

pin
CMOS

nano

CMOS

nano

FPNI

pinpinpin

CM OL

pad
post

Figure 2.5: Comparison of CMOL and HP’s FPNI circuits (adapted from Ref. 102).

2.3 Performance Model

2.3.1 Nanodevices

We have assumed that each crosspoint programmable diode is implemented as a
parallel connection of D single-electron latching switches [35,72], so that the resistance
of the single crosspoint nanodevice is RON/D and ROFF/D in the ON and OFF states,
correspondingly. (Estimates for the devices based on electron trapping in random
localized states are in the same ballpark, because the basic physics of their operation
[98] is very close to that of single-electron devices.) Based on the experimental data
for self-assembled monolayers (see, e.g., Ref. 128), the footprint of a single molecule
may be estimated as 0.25 nm2; so for D we have used the following value:

D ≈ (Fnano)
2

0.25 nm2
. (2.6)

20

3 10 50
0.10

0.20

0.30

0.40

0.50

0.60

Nanowire layer
separation

 2 nm
 3 nm
 4 nm

C
w

ire
/L

 (f
F/

m
)

Fnano (nm)

Figure 2.6: Specific capacitance of a nanowire with Fnano × Fnano cross-section, in a
crossbar with several values of interlayer spacing (for dielectric constant κ = 3.9).

Resistances RON and ROFF are related by the equation for the second-order quantum
effect, elastic co-tunneling [48]:

ROFF/RON = RON/RQ, (2.7)

where RQ ≡ �/e2 ≈ 4.1 kΩ is the quantum unit of resistance.
The thermally-induced suppression of ROFF resulting from the classical thermal

activation [38], i.e.
ROFF

RON

= cosh2 VREAD

2kBT
, (2.8)

where kB is a Boltzman constant and T is a (room) temperature, is typically negligible.

2.3.2 Nanowires

Specific capacitance Cwire/L of nanowires has been calculated using the well-known
FASTCAP code [83] for the crossbar structure (Fig. 2.1a, c) in which both the width
and the thickness of the nanowire, as well as the horizontal distance between the
wires, were assumed to be all equal to Fnano, while the vertical distance between two
layers was varied from 2 to 4 nm. The insulator between and around the wires is
assumed to have a dielectric constant of 3.9 (corresponding to SiO2); the use of a
low-κ dielectric would give the corresponding increase of the circuit operation speed
cited below. The result of the calculation is shown in Fig. 2.6. In particular, Fig.
2.6 shows that the capacitance of nanowires per unit length for the most interesting

21

range of Fnano is about 0.2 fF/µm.
In order to calculate the specific resistance Rwire/L of a metallic nanowire with

the assumed square-shaped cross-section Fnano × Fnano, the usual formula ρ/(Fnano)
2

has to be generalized to include the increase of resistivity ρ due to possible diffu-
sive surface scattering of electrons. (This effect becomes substantial when Fnano is
decreased below the electron mean free path λ due to scattering on phonons.) A
reasonable approximation for ρ is given by the Matthiessen rule [52] in the form

ρ ≈ ρ0 × (1 + λ/Fnano), (2.9)

where ρ0 is the table (bulk) resistivity of a pure metal. In our calculations we have
assumed values ρ0 = 2 µΩ-cm and λ = 10 nm which are typical for good metals at
room temperature.

2.4 Defect Model

It is believed that the most numerous and hence the most significant types of “hard”
(fabrication-induced) faults will be

• “Stuck-on-open” defects in nanodevices - Such defects corresponds to
permanently disconnected crosspoints. We will assume that stuck-on-open de-
fects are uniformly distributed with probability q. (Note, that any clustering of
defects would be much easier to cope with, e.g., via reconfiguration.)

This assumption is justified by recent experimental works (see, e.g., Ref. 20). It is
important, therefore, for an architecture to provide first of all the defect tolerance
with respect to these kind faults. This is why only these kind of defects were taken
into account in most of the hybrid circuit papers [32, 101].

While stuck-on-open defects will be considered both in CMOL memories (Chap-
ter 3) and CMOL Boolean logic circuits (Chapter 4), we will also simulate the defect
tolerance with respect to other types of faults for the latter case. The other, less
important types of defects, might include:

• Defective nano-to-CMOS interface pins - The technology of formation of
sharply pointed pins (e.g., etching down from a larger cylindrical structure
or growing on the substrate) is stochastic in nature. This means that the
locations of the end points of the pins may deviate from precisely defined ones.
Alternatively, a defective interface can be resulted from a too small overlapping
area between the surface of a pin and nanowire.

• Broken or shortened nanowires - For example these might be due to some
imperfections in nanowire mold.

22

• Defective CMOS circuitry - Such faults may be simply resulted from defects
in CMOS circuitry, in particular, due to narrow voltage threshold margins of
MOSFETs.

• “Stuck-on-close” defects in nanodevices - This type of defects corresponds
to permanently shorted nanowire crosspoints.

23

Chapter 3

CMOL Memory

3.1 Architecture and Operation

Figure 3.1a shows the assumed general structure of the CMOL memory. Essentially,
it is similar to that of the conventional memories, i.e. it is a rectangular array of L
crosspoint memory banks (“blocks”), so that during a single operation, a particular
row of CMOL blocks is accessed with the help of block address decoders. In contrast,
the block architecture (Fig. 3.1b) is specific for the CMOL interface which allows the
placement of CMOS “relay” cells under the nanowire crossbar. These cells are con-
trolled by CMOS-level decoders, four per each block (Fig. 3.1b). At each elementary
operation, one pair of block decoders (shown in magenta in Fig. 3.1b, as well as in
Figs. 3.2 and 3.3 below) addresses one vertical and one horizontal CMOS line, and
thus selects a certain relay cell at their crosspoint. This cell (Fig. 3.3) applies the data
signal to a “red” interface pin contacting a bottom-layer nanowire. The other pair
of decoders (shown in violet in Figs. 3.1b, 3.2 and 3.3) selects a set of different relay
cells which provide similar biasing of the corresponding top level nanowires through
“blue” pins. These nanowires may now address all crosspoint nanodevices (memory
cells) of a particular nanowire segment. Thus the four decoders of the block, working
together, can provide every memory cell of the segment with voltages necessary for
the read and write operations.

The remaining circuitry shown in Fig. 3.1b, i.e. CMOS-based mapping table and
address control circuits, is needed to convert the logical (external) addresses, which
are fed to the CMOL blocks, into internal addresses of memory cells inside the block.
In particular, the mapping table converts the logical address of the segment (which is
the same for all selected blocks) into a pair of block-specific physical addresses, Acol1

and Arow1, and CMOS-implemented decoders activate the corresponding CMOS-level
lines.

Figure 3.2 shows the low-level structure of the CMOL memory for a particular
(unrealistically small) values of the block size and the main topological parameter of

24

(a)

cell addresses block row
address

data
I/O

block address decoder

ECC unit

block block block

block

block

block block

block block

(b)

select
decoder

data I/O

external address

memory cell
array

select
decoder

address
control

mapping
table

data decoder

data decoder

Acol1

Acol2

Arow2

Arow1

Figure 3.1: CMOL memory structure considered in this work: (a) global and (b)
block architectures.

25

select

select

Arow1

Arow2a

Arow2b

data Acol1

select

select

Arow1

Arow2a

select

Arow2b

data (a2 lines)

data Acol1

(a)

(b)

barrel shifter

barrel shifter

data (a2 lines)

select

Acol2

Acol2

Figure 3.2: CMOL block architecture: Addressing of an interior column of nanowire
segments (for a = 4). The figure shows only one (selected) column of the segments,
the crosspoint nanodevices connected to one (selected) segment, and continuous top-
level nanowires connected to these nanodevices. (In reality, the nanowires of both
layers fill all the array plane, with nanodevices at each crosspoint.) The block arrows
indicate the location of CMOS lines activated at addressing the shown nanodevices.

26

CMOL, a = 4. The top-level nanowires (here shown quasi-horizontal) stretch over
the whole block, but the low-level (nearly-vertical) nanowires are naturally cut into
segments of equal length. An elementary analysis of the CMOL geometry (Fig. 2.1)
shows that each nanowire segment stretches over a CMOS cells and contacts a2 (in
Fig. 3.2, sixteen) crosspoint nanodevices.

Signals Acol1 and Arow1 are applied to CMOS wires, feeding the “red” lines of
the corresponding CMOS-implemented relay cells (Fig. 3.3). By opening all pass
transistors of the row, Arow1 selects a specific “red” pin of column Acol1, so that
the data Acol1 are fed only to a specific nanowire segment contacting a2 crosspoint
nanodevices. In parallel, addresses Acol1 and Arow1 are sent to the CMOS-based
address control circuitry to generate another pair of physical addresses Arow2 and
Acol2. Signal Arow2 opens the “blue”-pin pass transistors in relay cells of a row, and
thus connects each of a2 quasi-horizontal nanowires of the top layer to a specific
CMOS lines (shown purple), thus enabling a read or write operation.

For large CMOL arrays (say, a square array with W relay cells on a side, with
W � a2), most nanowire segments are well inside the array. In order to address such
segments, Arow2 might just reproduce Arow1. The problem with such scheme is that
it would allow addressing only W (W − a2) internal nanowire segments, of the total
number W 2. In order to decrease the associated loss of Wa4 memory cells (of the
total W 2a2 relay cells in the block), we prefer to address simultaneously two lines:

Arow2a = Arow1 + a/2, (3.1)

Arow2b = Arow1 − a/2. (3.2)

Such addressing scheme (Fig. 3.2) reduces the loss to just Wa3 memory cells per
block. (For the case shown in Fig. 3.2, the lost cells are located in two rectangular
W × a/2 areas on the top and at the bottom of the array.) The associated area
penalty is negligible in most cases (see the analysis below).

Note that of W output CMOS lines (purple arrows on the bottom of each panel of
Fig. 3.2), at each operation only a2 lines are connected to nanodevices of the selected
fragment. The selection of these useful lines (or a part of them, see Sec. 3.2 below)
and their connection to the system output are provided by the data decoder controlled
by signal Acol2 (Fig. 3.1b). The necessary circuit is rather simple (essentially, a barrel
shifter) and may be readily implemented in the CMOS subsystem.

3.2 Defect Tolerance Calculation

We have calculated the tolerance of our memories to “hard” (fabrication-induced)
defects; however, in future, it is certainly desirable to extend the analysis to other
defects, see, e.g., Section 2.4. Here, in Chapter 5 we only briefly discuss the possible

27

data

Arow2

select

Arow1

select

data Acol1

Rpd

Figure 3.3: Possible structure of CMOS relay cell. Red and blue points indicate the
corresponding interface pins.

effect of such defects on the performance of the memory.
In the synergetic approach of combining the memory array reconfiguration with

ECC [106], memory cells are divided into fragments of certain size (“granularity”).
Each of these fragments is tested using ECC circuitry, and those of them which
may not be ECC-corrected are excluded from operation. (For that, the addresses of
good fragments are written into the mapping table, see Fig. 3.1b). If the fraction
q of bad bits is large, the large granularity of exclusion is impracticable, due to the
exponential growth of the number of necessary redundant resources. (In particular,
this was one of the reasons of the relatively poor defect tolerance achieved in our
previous work [110], where only global nanowires might be excluded.) On the other
hand, fine granularity requires an unacceptably large mapping table. In this work we
use a new, more flexible approach when the granularity of exclusion is not related
to the physical structure of the memory array. This means that the data fragment
length, equal to g nanowire segments (i. e. ga2 memory cells) may be either smaller
or larger than the one segment (which has a2 memory cells).

In the former case (g < 1), the fragment is physically placed on a part of one
nanowire segment. This can be easily implemented by keeping an additional “displace-
ment” address inside the mapping table, and an additional circuitry which multiplies
the displacement by ga2 and adds the result to Acol2. In the latter case (g > 1), the
fragment is physically placed (at the same intrablock address) into g nanowire seg-
ments of g adjacent blocks of the same block row -see Fig. 3.1a. (Their location inside
the same block would result in a larger block size, and hence in larger global nanowire

28

capacitance and delay time - see Sec. 3.4.) This requires the address mapping table
to be shared between g neighboring blocks.

For a binary ECC with length n and the information length k, which can fix up
to t errors in any of the n bits, the probability Pf to fix a fragment is

Pf =

[
t∑

i=0

(
n

i

)
qi(1 − q)n−i

]ga2/n

. (3.3)

Here n is assumed to divide ga2 exactly. (If this is not so, the bits in the reminder
cannot be used and are wasted.) If each block has b spare and m useful fragments
(with the sum m + b = W 2), the probability Psb for a “superblock” (consisting of g
adjacent blocks which share data fragments) to be fully functional can be calculated
as

Psb =
b∑

i=0

(
m + b

i

)
(1 − Pf)

iPm+b−i
f , (3.4)

and the yield Y of the total memory is

Y = P
L/g
sb . (3.5)

In order to characterize the defect tolerance, we fix Y at a certain level (usually,
90%), and numerically optimize the granularity (fragment length g) and ECC param-
eters n and k to calculate the maximum manageable fraction q of bad memory cells.
Since for realistic parameters (in particular, W 2 � 1), Pf drops from nearly one to
zero extremely fast at a certain value q � 1, the block size (and hence the number L
of blocks at a fixed total memory size) and Y virtually do not affect these results.

3.3 Area Calculation

3.3.1 Total Area and Capacity

In Ref. 110 we have showed that for realistic block dimensions the area of block
decoders is negligible, therefore the total memory area may be calculated as

A = L × Ablock = L × (Aarray + Acell decoder + Adrive/sense

+Acontrol/g + Amapping table/g),
(3.6)

while useful capacity of the memory is

N =
L

g
mk

⌊
ga2

n

⌋
, (3.7)

29

1 2 4 8 16 32 64
101

102

103

104
1 2 4 8 16 32 64

105

106

107

108

109

1010

A
re

a,
 (F

C
M

O
S)2

D
el

ay
, F

O
4

Number of errors, t

 code length, n
31
127
511

1 mm2, 22 nm

1 mm2, 45 nm

1 ns, 45 nm

1 ns, 22 nm

8 32 128 512 2048 8192
101

102

103

104
8 32 128 512 2048 8192

105

106

107

108

109

1010

A
re

a,
 (F

C
M

O
S
)2

D
el

ay
, F

O
4

Code length, n

number of errors, t
 1
 2
 3

1 mm2, 45 nm

1 mm2, 22 nm

1 ns, 22 nm

1 ns, 45 nm

(a)

(b)

Figure 3.4: Delay (black lines) and area (blue lines) of a bit-parallel decoder for binary
BCH codes as functions of the number of errors t the code can correct for several values
of code length n. The delay is measured in delays of a standard CMOS fan-out-of-four
inverter, while the area in the CMOS half-pitch units. For convenience, horizontal
lines show the delay of 1 ns and the area of 1 mm2, for the 22 nm and 45 nm ITRS
technology nodes (solid and dashed lines, respectively).

30

(a)

(b)

A0
~A0
A1
~A1
A2
 ~A2

v

CMOL array data lines

Barrel shifter

Data
in/out

Acol2

Figure 3.5: The assumed structure of peripheral circuits: (a) cell decoder, and (b)
barrel shift decoder.

where m is the number of good data fragments per block, L/g is the number of
“superblocks”, and ga2 is the number of memory cells in one fragment - see Sec. 3.2
above. The ratio k/n < 1 reflects the area loss due to the ECC. The memory density
may be characterized by the total area per one useful cell, i.e. the ratio A/N , which
may be conveniently expressed in the units of (FCMOS)

2.

3.3.2 Crossbar Arrays

The area of a CMOL array of W ×W relay cells is simply

Aarray = W 2 × (2βFCMOS)
2. (3.8)

For the CMOS relay cell area, we have used an estimate of (5FCMOS)
2, resulting in

β ≥ 1.6. We believe this is a fair estimate for the cell shown in Figure 3.3 implemented
in a style similar to the usual NAND flash memory cell [14]. If this estimate seems too
optimistic, note that it does not affect the results in the most realistic case m+b � a2.

3.3.3 Decoders

Our decoders are essentially the pass-gate-based multiplexers (Fig. 3.5a), with all
CMOS transistors of minimum width. We assume that one pass gate, consisting of

31

one nMOS and one pMOS transistors, can be placed in the area of 4FCMOS×2βFCMOS,
i.e. matching the CMOS pitch of the memory array. In this case the height of the
2W -input decoder is simply 2log2W × 2FCMOS. Similarly, we have assumed that
the height of the a2-out-of-W barrel shifter implementation (Fig. 3.5b) is equal to
(2log2W + a2) × 2FCMOS.

Considering a 6-transistor latch-style implementation of sense amplifiers [91]
with Asense = 100 × (FCMOS)

2, and 2-transistor drive buffers (inverters) with Adrive =
25 × (FCMOS)

2, the increase in the linear size of the crossbar array in the horizontal
direction, due to decoders, is

∆w1 = [12log2W + 2Adrive/(2βFCMOS)] × FCMOS. (3.9)

Similarly, the array increase in the vertical dimension due to one decoder and one
barrel shifter is

∆w2 = [8log2W + 2a2 + (2Adrive + Asense)/(2βFCMOS)] × FCMOS. (3.10)

3.3.4 Control Circuitry

The control circuitry consists of two adders of length log2W (bits). Since it is relatively
short, we assume the ripple carry implementation with the area of a 1-bit full adder
equal to 2000 × (FCMOS)

2 [112], so that

Acontrol = 4000log2W × (FCMOS)
2. (3.11)

Control circuitry may be placed into the corner areas between the adjacent cell de-
coders; therefore the area contribution from the first four terms in Eq. (3.6) may be
calculated as

Aarray + Acell decoder + Adrive/sense + Acontrol/g =

(W × 2βFCMOS + ∆w1)(W × 2βFCMOS + ∆w2)

+max(0, Acontrol/g − ∆w1∆w2).

(3.12)

The area of mapping table implemented in CMOS is assumed to be

Amapping table = 2mlog2W × (2FCMOS)
2. (3.13)

3.3.5 ECC Decoders

Earlier, we have studied the area and delay tradeoffs of fast bit-parallel decoding for
a popular class of multiple error-correcting linear codes - BCH codes [107, 112]. (For
example, the Reed-Solomon codes [11], which are a subclass of the BCH family, are
broadly used in today’s flash memories and storage devices [90].) While BCH ECC

32

buffer

sense
amplifier

senseR
OFF

wire
R

R
D

ONR
D

3
wirea R

Figure 3.6: Equivalent circuit for the readout operation.

may not be the absolutely best option for our particular problem, they are among the
most efficient short codes (with n ≤ 512), and, e.g., certainly much more powerful
than the Hamming codes assumed in our previous work [110]. Our model of a fast
bit-parallel decoder for BCH codes is presented in Appendix A. Its analysis shows,
in particular, that the decoder area, in the (FCMOS)

2 units, may be estimated as

ABCH ≈ 125nt(log2n)2 + 40n(log2n)2 + 250ntlog2n

+190nlog2n + 1200t(log2n)2 + 300t2log2n.
(3.14)

Figure 3.4 shows several examples of application of this formula. The results indicate
that the decoder area (even for this completely parallel, i.e., most spacious, imple-
mentation) is negligible in comparison with that of memory arrays, so that it will not
be considered in the optimization procedure described below.

3.4 Speed and Power

3.4.1 ECC Decoder

The BCH ECC decoder delay is also described in the Appendix A. In the units of
the standard CMOS fan-out-of-four delay, it may be expressed as

τBCH ≈ 0.7tlog2n + 0.7t + 8tlog2log2n + 3.6tlog2t

+2.5log2log2n + 1.8log2t + 1.8.
(3.15)

Figure 3.4 shows several results obtained using this formula. We will now show that
the delays of read and write operations1 in the crossbar arrays with metallic nanowires,

1The actual write delay can be affected by the fundamental relationship between the retention
time and write/erase speed in two-terminal devices. For the usual uniform barriers, the ratio of
these two time constants can hardly exceed 9 orders of magnitude, and only for the (so far, hypo-
thetical) structures with optimized barrier profile [69] may be increased to ∼ 17 orders of magnitude.
Unless such advanced barriers have been implemented, a crossbar memory with a-few-nanosecond

33

as well as those of moving data between the blocks, are much shorter than that of
ECC decoding, expressed by Eq. (3.15). Indeed, let us first estimate the delays inside
the blocks.

3.4.2 Intrablock Delay

In order to speed up the intrablock latency, it is beneficial to reduce the signal swing
of sense amplifier’s input voltage Vswing, by decreasing the Rsense. The voltage swing
can be found from the equivalent circuit shown in Fig. 3.6. Here we have assumed
that all unselected nanowire segments are pulled to the ground through resistance
(RwireROFF/D)1/2 which is the input resistance of a semi-infinite ladder formed by
the wire resistances Rwire of the length 2Fnano and crosspoint nanodevices in OFF
state ROFF/D. Note that the pulldown resistance Rpd shown in Fig. 3.3 may be
neglected here since it is much less than ROFF/D. Also, in the equivalent circuit we
neglect the resistance of bottom layer nanowires, which is at most a2Rwire/2, i. e.
much smaller than the worst-case resistance a3Rwire of the top level (quasi-horizontal)
nanowire.

For all reasonable parameter sets, it is possible to pick a realistic value of RON

such that the following conditions are satisfied:

RON/D � a3Rwire, (3.16)

Rsense � a3Rwire, (3.17)

Rsense � (RwireROFF/D)1/2. (3.18)

In this case, all the formulas describing the equivalent circuit may be significantly
simplified. In particular, the voltage swing is simply

Vswing ≈ Rsense/(a
3Rwire) × VREAD. (3.19)

The limit to the reduction of Vswing, is set up by the requirement for the swing
Vswing to be larger than the possible total noise swing ∆VN. In general, the equivalent
circuit shown in Fig. 3.6 allows one to calculate the total noise r.m.s. voltage fluctua-
tion VN contributed by the shot noise on the nanodevices in their ON and OFF states,
and the thermal (Johnson-Nyquist) noise on the nanowires and Rsense. However, the
inequalities (3.16)-(3.18) ensure that VN is dominated by the thermal noise of Rsense,
so that

VN ≈ [kBT/(2Cwire + CCMOS)]
1/2, (3.20)

write/erase time may need periodic refresh similar to that used in DRAM. Alternatively, when
microsecond-scale write time is acceptable, the retention time may be above 10 years, the industrial
standard for non-volatile operation.

34

where Cwire is the capacitance of the global quasi-horizontal nano-wire, of length
Wa×2Fnano, while CCMOS is a capacitance of the CMOS data line of the same length
(see the violet data lines in Fig. 3.2). The typical value of CCMOS for the considered
CMOS technology nodes is about 0.1 fF/µm. The doubling of Cwire in Eq. (3.20) is
due to the fact that two CMOS select lines have to be activated for a read operation
(Fig. 3.2) and therefore two quasi horizontal nanowire lines will be charged.

Assuming Gaussian distribution of the noise and very strict requirement for the
bit error rate to be below qgate = 10−23 (corresponding for example, to a mean time
between failures of at least 108 hours [1] at the very aggressive aggregate memory
bandwidth of 1Tbit/s), the maximum swing ∆VN of this noise, calculated from the
equation

1 − erf(∆VN/
√

2VN) = 2qgate, (3.21)

is equal to 10VN.2

The full intrablock latency may be estimated as

τintrablock ≈ Rsense(2Cwire + CCMOS). (3.22)

3.4.3 Interblock Delay

This delay can be reduced by adding repeaters on the periphery of each block, so that
the delay is

τinterblock ≈
√

LRCMOSCCMOS/2, (3.23)

where resistance RCMOS is, similarly to CCMOS, proportional to the linear block size.
Here we assume that the area overhead to the repeaters is insignificant.

3.4.4 Example

Now let us consider a particular, but typical case W = 256, FCMOS = 45 nm and
Fnano = 4.5 nm (and hence a = 16). In this case the nanowire resistance Rwire turns
out to be about 14 Ω, a3Rwire ≈ 57 KΩ, while Cwire = 7.4 fF. By using nanodevices
with RON = 400 KΩ ∼= 102RQ, and therefore ROFF

∼= 40 GΩ, the resistances of the
crosspoint devices are, respectively, RON/D ≈ 5 KΩ, and ROFF/D ≈ 0.5 GΩ, since for
the considered value of Fnano the packing factor D is about 80. Using typical CMOS
value VREAD = 1 V [1], the smallest possible Rsense may be found from Eqs. (3.19)
and (3.20) to equal 3 KΩ, i.e. a level much lower than the parallel resistance of the
semi-infinite ladder (RwireROFF/D)1/2 ≈ 85 KΩ. It is easy to check that all conditions
(3.16)-(3.18) are satisfied, so that our approximate formulas are indeed valid. The

2Note that the additional erroneous factor of 2 in the same equation in Ref. 109 resulted in the
underestimated performance of CMOL logic circuits.

35

corresponding intrablock delay in this case is about 55 ps, i.e. much smaller than that
of the ECC decoding and hence can be neglected. (Even in case of FCMOS = 22 nm
and Fnano = 2.2 nm the intrablock delay, which is linearly proportional to the Rwire,
is only 400 ps.)

Similarly, the interblock delay (Eq. 3.23) can be neglected since it is below 1 ns
even for the “worst” case of FCMOS = 22 nm. Indeed, for CMOS metal 1 layer lines,
the typical specific resistance is about 40 Ω/µm [1], i.e. for the block size W = 256,
the CMOS wire resistance RCMOS is approximately 700 Ω. Assuming Fnano = 2.2 nm
and N = 1 Tbit (which gives

√
L of the order of 1000), the corresponding interblock

delay is about 0.65 ns, i.e. also much smaller than ECC decoding delay.
Due to this fact, our results are rather insensitive to the hardware assumptions

made above.

3.4.5 Power

The assumptions and formulas given above allow also a calculation of power con-
sumption in all components of the memory. Such calculations show that the power
consumption is well below the ITRS-specified limits [1]. Indeed, the consumption is
dominated by the static power dissipated in nanowires connected to the nanodevices
in ON state. Since there might be at most a2 such nanowires (with the average re-
sistance a3Rwire/2) in a block, the corresponding power for the whole memory can be
estimated as

√
L×2(VREAD)2/(aRwire), giving the power density well below 1 W/cm2

for all cases we have studied. Note, however, that local overheating is still possible and
should be carefully evaluated in future. At such analysis, one may consider an option
of a modest increase of RON and/or decrease of VREAD, since the resulting increase of
the block latency would not affect the total memory access time significantly.

3.5 Optimization

Requiring that the total yield Y described by Eq. (3.5) is fixed at a certain level, we
can use the area model of the Section 3.3 to calculate the total chip area A necessary
to achieve a certain useful bit capacity N , and hence the area per useful bit, A/N .
The last number, normalized to the CMOS half-pitch area,

a ≡ A

N(FCMOS)2
, (3.24)

is a very convenient figure of merit that depends only on the ratio FCMOS/Fnano rather
than on the absolute parameters of the fabrication technology.

We first investigate how a depends on the block size W . Figure 3.7 shows the
results of this calculation for fixed granularity and ECC code parameters. Not sur-

36

25 27 29 211 213 215
10-5

10-4

10-3

10-2

10-1

100

CMOL array linear size, W

A
re

a
pe

r u
se

fu
l b

it,
 a

=
A

/N
(F

C
M

O
S
)2

 Total
 Mapping table
 Cell decoder
 Control circuitry
 Redundant memory cells
 Useful memory cells

 n = 255, k = 147, FCMOS/Fnano=10,
 g = 8, q = 0.01, Y = 0.9

Figure 3.7: The total chip area per one useful memory cell, and its components (all
in the units of (FCMOS)

2), as functions of CMOL array size W (at fixed total memory
size N).

prisingly, the exponential explosion of redundancy at W → ∞, pertinent to the global
crossbar memory architecture [110], disappears in the considered defect tolerance ap-
proach, since the granularity of exclusion does not depend on the block size.

Concerning other contributions to A, for large arrays (in the case shown in
Fig. 3.7, for W > 100), the most important contributor is the mapping table whose
area grows logarithmically with W - see Eq. (3.13). This overhead can be reduced
dramatically by choosing appropriate granularity parameter g - see below. The next
most important overhead is that of the cell address decoders, which does not allow
the reduction of W below ∼ 27. Because of that, in our calculations we have used
the fixed value W = 28 = 256. This is very convenient for the most interesting case
FCMOS/Fnano = 10, because in this case W = a2 = 256, and there is no need in the
barrel shifter (Fig. 3.2). Moreover, in this case, and g ≥ 1, all CMOS data wires
of each array are fully used at each operation, resulting in the maximum possible
throughput.

Let us now return to the mapping table overhead. Figure 3.8 shows this overhead
in comparison with that due to the redundant cells, as a function of data fragment size
(granularity). As Eq. (3.13) shows, when the granularity is increased, the mapping
table shrinks (because the memory has fewer fragments). On the other hand, the
redundancy overhead is skyrocketing, because the use of heavy BCH codes, which
are necessary to handle such long fragments, is very expensive in terms of decoding
latency. Only if the fraction of bad bits is very low, this increase of the redundant

37

23 25 27 29 211 213 215
0.1

0.2

0.4

0.6

0.8

1

N
or

m
ili

ze
d

A
re

a
O

ve
rh

ea
d

Granularity, g×a2

Redundant memory cell
overhead for ECC (n, k, t)

 (255,147,14), q=0.1
 (255,147,14), q=0.03
 (255,147,14), q=0.01
 (7,4,1), q=0.003
 (7,4,1), q=0.001
 (7,4,1), q=0.0003

Mapping table
overhead

Figure 3.8: The normalized memory area overheads due to the redundant memory
cells and the mapping tables. Each absolute overhead Ax is normalized as Ax/(Ax +
Auseful), where Auseful = 4N(Fnano)

2 is the area of useful memory cells.

cell number (in order to get fixed yield Y) is deferred to very high data fragment size.

3.6 Results

Figure 3.9 presents typical final results3 of our optimization procedure, carried out
for several values of the total access time (for our parameters, dominated by the
ECC decoding time). The cusps on the curves are due to sudden changes of discrete
parameters (ga2, n and k) for which the largest memory density is achieved. These
changes are clearly visible in Table 3.1 which provides details of the optimization
results for the particular case τ = 10 ns and FCMOS/Fnano = 10. One can see that as
the fraction q of bad memory cells is increased, the granularity ga2 has to be decreased
in order to sustain acceptable probability of ECC-correctable data fragments. (Only
for very high q the fragment length ga2 becomes less than the nanowire segment size
a2, i.e. the fragment may be stored in a single block.) As a result, optimal error
correcting codes become shorter, i.e. n and k decrease.

In particular, Fig. 3.9 shows that CMOL memories may become denser than
purely CMOS ones at the fraction of bad bit devices as high as ∼ 15 if the latency

3Though formally the results depend on the total memory size N and yield Y , they are rather
insensitive to these parameters in the range of our interest (N ≈ 1012 bits, Y ≈ 90%). As Fig. 3.9
shows, the required memory access time τ also has a marginal effect on density, provided that τ is
not too small.

38

10-5 10-4 10-3 10-2 10-1 100
10-1

100

101

FCMOS/Fnano=3.3

Ideal CMOL

Ideal CMOS

Access time (ns)
 3 10
 30 100

Fraction of bad nanodevices, q

A
re

a
pe

r u
se

fu
l b

it,
 a

=
A

/N
(F

C
M

O
S
)2

10-5 10-4 10-3 10-2 10-1 100
10-2

10-1

100

101

 FCMOS/Fnano=10

Ideal CMOS

A
re

a
pe

r u
se

fu
l b

it,
 a

=
A

/N
(F

C
M

O
S
)2

Fraction of bad nanodevices, q

Access time (ns)
 3
 10
 30
 100

Ideal CMOL

(a)

(b)

Figure 3.9: The total chip area per one useful memory cell, as a function of the bad
bit fraction q, for several values of the memory access time and two typical values of
the FCMOS/Fnano ratio. The horizontal lines indicate the area for “perfect” CMOS
and CMOL memories. In the latter case, this line shows our results for negligible
q, while for the former case we use the ITRS data [1] for the densest semiconductor
(flash) memories.

39

Fraction
of bad
bits, q

Redundant
segments

per block, b

Useful
segments

per block, m

Granularity,
ga2

ECC
useful
bits, k

ECC total
bits, n

ECC
correctable

errors, t

ECC
latency,

(ns)

Area per
useful bit,

a
0.00001 136 61063 131072 239 255 2 1.70 0.057
0.00003 1108 60091 131072 239 255 2 1.70 0.058
0.00010 116 61083 131072 231 255 3 2.55 0.059
0.00032 1389 59810 65536 231 255 3 2.55 0.06
0.00100 271 60928 131072 215 255 5 4.27 0.063
0.00316 724 60475 131072 199 255 7 5.77 0.069
0.01000 2433 58766 32768 179 255 10 8.71 0.081
0.03162 9266 51933 8192 57 127 11 9.36 0.156
0.10000 33698 27501 1024 16 63 11 9.19 0.707

Table 3.1: Optimal parameters of CMOL memory for the case FCMOS = 45 nm,
Fnano = 4.5 nm, Y = 90%, N = 1 Tb, for several values of the fraction q of bad
crosspoint devices.

requirement is not too small (i.e. > 10 nm) for both considered cases of pitch ra-
tio. On the other hand, to reach 5x and 10x advantage in density such fraction of
bad bits should be below 5% and 2% for FCMOS/Fnano = 3.3 and 10 pitch ratios,
correspondingly.

The results in this work are much better than those obtained in our earlier
work [110], where, for example a 5x density advantage could only be reached (for the
same FCMOS/Fnano = 3.3 ratio) at q ∼= 3% using the impracticably long Exhaustive
Search algorithm, while for the realistic Repair Most algorithm, qmax was as low as
∼ 10−3. This improvement is due mostly to the use of more advanced error correcting
codes.

Note, however, that our optimistic results for the memory speed are based on
the fundamental physical limitations for the crosspoint nanodevice parameters, in
particular, RON. For the currently implemented programmable diodes, the picture is
somewhat different. For example, for the simple and reproducible CuOx devices [19],
scaled down to Fnano = 3 nm, the effective value of RON/D would be ∼ 2 MΩ,
resulting in intrablock latency of about 50 ns. This means that our results (Fig. 3.9)
would degrade only slightly. On the other hand, for the demonstrated reproducible
molecular monolayers [6], typical RON/D of a similarly scaled crosspoint device would
be in the GΩ range, so that the memory speed would be much lower. Nevertheless, a
considerable progress of the improvement of molecular programmable diodes during
the next few years may be readily anticipated.

40

Chapter 4

CMOL Boolean Logic

4.1 Hardware Architecture

4.1.1 One-Cell Fabric

We have studied two varieties of CMOL FPGA fabrics [109,111,114]. The architecture
of the simplest variety, one-cell fabric [109], is very convenient for elaborating the
concept and basic properties of CMOL FPGA, though it cannot be used for sequential
circuit design. On the other hand, a two-cell fabric [111,114], which is a generalization
of the single cell structure, can be used for mapping arbitrary circuits, and all analysis
in subsequent sections we will be given for a such variety of CMOL FPGAs. (The
discussion of our early results for one-cell CMOL FPGA circuits can be found in
Appendix B.)

Figure 4.1 shows a fragment of one-cell CMOL FPGA fabric. Essentially, it
is a uniform structure which is built by replicating “basic” cells with an area A =
(2βFCMOS)

2. In this case, the angle α is given by the generic formula for CMOL, i.e.
tan α ≡ 1/a (Eq. 2.1), where a is an integer defining the range of cell interaction
(Fig. 4.1).1 For fixed fabrication technology parameters FCMOS, Fnano, and βmin, the
lower bound on a is given by inequality:

a2 > (βminFCMOS/Fnano)
2 − 1. (4.1)

Each basic cell (Fig. 4.2a) consists of an inverter and two pass transistors that
serve two pins (one of each type) serving as the cell input and output, respectively.
During the configuration stage, all inverters are disabled by an appropriate choice of
global voltages VDD and Vgnd (Fig. 4.2a), and testing and setting of all nanodevices is
carried out absolutely similarly to memory write operation described in the Sections
3.1 (see also Section ?? and Figure 2.1).

1Note that even though the nanowire crossbar in Ref. 109 was rotated by the additional 45◦

angle, which was convenient for manual mapping, it does not affect the performance results.

41

(a)2 FCMOS 2 FCMOS a

(b) 2 FCMOS a

 2Fnano

 2aFnano

2
CMOS

nano

2()F
F

Figure 4.1: The fragment of one-cell CMOL FPGA fabric for the particular case
a = 4. In panel (a), output pins of M = a2 − 2 = 14 cells (which form so-called input
cell connectivity domain) painted light-gray may be connected to the input pin of
a specific cell (shown dark-gray) via a pin-nanowire-nanodevice-nanowire-pin links.
Similarly, panel (b) shows cells (painted light gray) whose inputs may be connected
directly to the output pin of a specific cell (called output connectivity domain).

42

in out

CMOS
column 1

CMOS
column 2

CMOS
row 2

CMOS
row 1

CMOS
latch

4 FCMOS

CMOS
column 1

CMOS
column 2

CMOS
row 2

CMOS
row 1

input
nanowire

output
nanowire

CMOS
inverter

2 FCMOS

(a) (b)

Figure 4.2: CMOL FPGA cell structures: (a) the basic cell and (b) the latch cell. For
the sake of clarity both panels shows only nanowires which are contacted by interface
pins of the given cells.

In contrast with CMOL memories, nanowires in upper layer are also fabricated
with small breaks repeated with period L = 2(βFCMOS)

2/Fnano. With this arrange-
ment, each nanowire segment is connected to exactly one interface pin.2 As a re-
sult, each input or output of a basic cell can be connected through a pin-nanowire-
nanodevice-nanowire-pin link to each of

M = a2 − 2 (4.2)

other cells located within a square-shaped “cell connectivity domain” around the
initial cell - see Fig. 4.1. (For infinitesimal gaps, M would equal a2 − 1, but for a
more feasible gap width of the order of 2Fnano, the connectivity domain is by one
cell smaller.) Note that in reality both input and output cell connectivity domains
would be much larger than those shown in Fig. 4.1 for practical values of a > 10
and have the same roughly square shape (with some protrusions of the cells on the
perimeter of the domain). This fact, as it will be shown in Sec. 4.2, simplifies the
design automation for CMOL FPGA circuits.

When the configuration stage has been completed, the pass transistors are used

2The best performance is achieved if the pin contacts the wire fragment in its middle, and our
analysis has been carried out with this assumption. Since lower layer nanowire segments are cut by
upper layer pins, a connection exactly in a center is easily achievable, i.e. by locating upper level
pins correspondingly. For upper layer pins, a similar trick can be done, if upper layer nanowire
breaks are provided by features of the smae lithographic mask that defines interface pin positions.
Also note, that a modest misalignment of the pin and the breaks (by ∼ FCMOS) reduces the circuit
performance only by a small factor of the order of 1/β � 1.

43

H

 A B

CMOS
inverter

nanodevices

pass
transistor

A
H

RON

Rpass
Cwire

B

A

H

(b)(a)

BA

H

E

D G

F

C

A
B
C
D
E
F
G

H

B

(c)

A

B

C

D

H
B

A

H

D

C

(d)

Figure 4.3: Logic and routing primitives in CMOL FPGA circuits: (a) equivalent
circuit of fan-in-two NOR gate, (b) its physical implementation in CMOL, (c) the
example of 7-input NOR gate and (d) the example of fan-out of signal to four cells.
Note that only several (shown) nanodevices on the input nanowires in panels (b), (c),
and output nanowire in panel (d) of cell H are set to the ON state, while others (not
shown) are set to the OFF state. Also, for the sake of clarity panels (b), (c), and (d)
shows only the nanowires used for the gate and the broadcast.

44

tile boundary latch cell basic cell

2 FCMOS

2Fnano

2aFnano

interface pin
to bottom layer
nanowires

interface pin
to upper layer
nanowires

Figure 4.4: A fragment of two-cell CMOL FPGA fabric for the particular case a = 4.

as pull-down resistors, while the nanodevices set into ON (low-resistive) state are
used as pull-up resistors. Together with CMOS inverters, these components may be
used to form the basic “wired-NOR” gates (Fig. 4.3). For example, if only the two
nanodevices shown in a Fig. 4.3b are in the ON state, while all other latching switches
connected to the input nanowire of cell H are in the OFF (high resistance) state, then
cell H calculates NOR function of signals A and B. Clearly, the gates with high fan-in
(Fig. 4.3c) and fan-out or broadcast (Fig. 4.3d) may be readily formed as well by
turning ON the corresponding latching switches. Having these primitives is sufficient
to implement any Boolean function, as well as to perform routing, providing that the
hardware resources are sufficient.

4.1.2 Two-Cell Fabric

A genuine optimization of CMOL FPGA circuit architectures would require a com-
pletely new set of CAD tools, whose development is a challenging task. At this
preliminary stage, our choice was instead to get as much leverage as possible from
the existing ideas and algorithms used for mapping and architecture exploration of
semiconductor logic, in particular, from the design automation algorithms for island-

45

type CMOS FPGAs [10].
In order to use such design automation algorithms, we have restricted our design

to a specific, simple two-cell-species CMOL fabric. The fabric is a uniform mesh
of square-shaped “tiles” (Fig. 4.4). Each tile consists of a shell of T basic cells
(Fig. 4.2a) surrounding a single “latch” cell (Fig. 4.2b). The latter cell is just a
level-sensitive latch implemented in the CMOS subsystem, connected to 8 interface
pins, plus two pass transistors used for circuit configuration. Note that all four pins
of each (either input or output) group are always connected, so that the nanowires
they contact always carry the same signal. This means that at configuration, groups
of four nanodevices sitting on these wires may be turned on or off only together. A
simple analysis shows that this does not impose any restrictions on the CMOL FPGA
fabric functionality.

CMOS layout estimates assuming a compact layout from, e.g., Ref. 44 have
shown that the latch cell requires an area approximately four times larger than that
of the basic cell. As a result, for this analysis we have accepted T = 12, so that the
total tile area is T + 4 = 16 = 4× 4 basic cells (Fig. 4.4). This provides a latch/logic
resource ratio comparable to those of the conventional FPGAs. In fact, the 4-input
parity function (the worst-case Boolean function of 4 inputs) can be implemented with
14 four-input NOR gates, while an average 4-input Boolean function requires much
less (6 to 8) of such gates. Hence each CMOL tile is crudely similar in functionality
to the basic logic element consisting of a four-input LUT and one latch [10].

4.2 Design Automation

4.2.1 General Flow

The convenience of the proposed two-cell CMOL FPGA structure is that, from the
design point of view, the CMOL tile can be treated in the same way as that of the
island-type CMOS FPGA.

Let us first introduce a very useful concept of “tile connectivity domain” which
makes routing of CMOL FPGA circuits similar to CMOS FPGA ones. Similarly to
the cell connectivity domain, the tile connectivity domain of a given tile is defined as
such fabric fragment that any cell within it can be connected to any cell of the initial
tile directly, i.e. via one pin-nanowire-nanodevice-nanowire-pin link (Fig. 4.5). Just
as for cell connectivity domains all tile connectivity domains are similar and have
square shape. (Note that we assume that input and output tile connectivity domain
are the same.) The linear size A of the tile connectivity domain for the assumed tile
size T = 16 can be found as

A = 2�a/8� − 1. (4.3)

For instance, Fig. 4.5 shows a tile connectivity domain for the case A = 5. (In more

46

4×A×2 FCMOS 4×2 FCMOS

I

O1

O2

R

Figure 4.5: Tile connectivity domain: Any cell of the central tile (shown dark gray)
can be connected with any cell in the tile connectivity domain (shown light gray)
via one pin-nanowire-nanodevice-nanowire-pin link (e.g., cells I and O1). Cells out-
side of each other’s tile connectivity domain (e.g., I and O2) can be connected with
additional routing inverters (e.g., R). Note that nanowire width and nanodevice size
are boosted for clarity. For example, for the considered CMOL parameters, 1600
crosspoint nanodevices may fit on one basic cell area.

47

SIS: Technology (NOR gate and latch) mapping
Input circuit blif format

Initial value
of K

Heuristic
placement

 Global router

Exit with
success

Increase K

countmax < T-K -countmax > T-K
K = 0

Circuit
processing

Defective
cells

Decrease K

otherwise

Exit without
success

Detail router Defective
nanodevicesfailed

passed

Figure 4.6: CMOL FPGA design flow used in this work.

realistic cases a = βFCMOS/Fnano ≈ 40, i.e. A ≈ 9.)
The main idea of the proposed design flow for CMOL FPGAs (Fig. 4.6) is to

reserve some number of basic cells (T −K) inside each tile for routing purposes, while
use the rest (K) cells for logic during the placement step. The placer tries to put gates
into such locations (with maximum one latch and K NOR gates per tile) so that their
interconnect is local or, equivalently, is within tile connectivity domain of each other.
At the global routing step, idle cells inside each tile are used to interconnect global
connections. If there is a congestion after the global routing step, i.e. the number
of requested basic cells during routing countmax is larger than the actual number of
idle cells T − K − ∆ (here ∆ is parameter which allows to trade-off the number of
iterations with the mapping quality), then we decrease K and repeat the flow again
until there is no congestion.

4.2.2 Technology Mapping and Circuit Processing

More specifically, every circuit is first mapped into the network of NOR gates (so
far with a rather artificial maximum fan-in of 7) and latches, using the SIS package
[95]. After that, at the circuit processing step, all inverters (1-input NOR gates)
are removed from the circuit (Fig. 4.7). (For the considered benchmark set, such
inverters comprise about 28% of the total number of gates on the average.) The idea

48

I

O1

O2

O3

-

+

+I

O1

O2

O3

Figure 4.7: Example of preprocessing step. At preprocessing step the inverter between
gates I and O3 is removed and polarity of the connection between these gates is set
to negative.

behind the processing step is that inverters which are synthesized by SIS are not
different logically from the routing inverters and can be more efficiently (in terms of
performance and CAD running time) used during the global routing step (as opposed
to the situation when they are treated as logic gates and have fixed positions after
the placement step). Instead of the removed inverters, every connection a net3 is
assigned a “polarity” property, which is just an additional information for a placer
and global router to specify whether an odd or even number of routing inverters
should be used when interconnecting nets. A negative polarity (shown with “-” sign
on figures and representing by integer 1) assumes that the signal should be inverted,
while the positive polarity (shown with “+” sign and represented by 0) means no
inversion. Note that even if two gates, connected with the negative polarity net, are
located in the tile connectivity domain of each other, the connection should be made
with at least one (or odd number in general) routing inverter(s).

4.2.3 Placement

The placement algorithm follows very closely the heuristic one used in the VPR
tool [10, 78]. It is based on a simulated annealing algorithm with some additional
techniques employed for a faster and better solution. According to our simulation
results, the best area and delay in mapping circuits to CMOL FPGA can be achieved
using the timing-driven placement algorithm with λ = 0.5, the criticality exponent
equal to 1, the time-analysis interval of about 10000 successful swap/moves, and
with similar temperature and Dlim schedules. (For a detailed explanation of these
parameters and the algorithm, see Ref. 78, in particular Fig. 2.)

In this algorithm, the wiring cost is calculated as a sum of costs for all connections
in the circuit, while the cost of a single connection (Hop) reflects the number of hops

3Here by “net” we denote the interconnect between gates running the same signals, while “con-
nection” always assume interconnect between one pair of gates. A net may be comprised of more
than one connection. For example the net on Fig. 4.7 consists of three connections, i.e. I to O1, I
to O2, and I to O3.

49

(routing inverters) needed between the tiles having the input and output gates of
the connection with the account of polarity. The latter is calculated via SimpleHop
function, which returns the number of hops between two tiles without accounting for
polarity property), i.e.

SimpleHop(tilein, tileout) =

⌊
2max (|xin − xout|, |yin − yout|) − 1

A− 1

⌋
, (4.4)

Hop(tilein, tileout, polarity) = 2

⌈
SimpleHop(tilein, tileout) + polarity

2

⌉
− polarity,

(4.5)

WiringCost =

Nconnections∑
i=1

Hop[tilein(i), tileout(i), polarity(i)]. (4.6)

Here x, y is the location of a tiles with input and output gates of the considered
connection, and Nconnections is the total number of connections in the circuit.

The timing cost was calculated according to the Eqs. (6-8) of Ref. 78, using the
slack (normalized with respect to inverter delay), also obtained through Eqs. (4),
(5) of that work. Using cost functions, a placement algorithm tries to put connected
gates close to each other, ideally within each other’s tile connectivity domains.

Note that, in contrast with typical CMOS FPGA placement tools [10], the swap-
ping and moving is performed with gates rather than clusters of gates. Even though
the clustering helps to perform the placement step faster, it also has disadvantages.
First of all, it is not obvious how to pack the gates into clusters (tiles), since any gate
connection within the tile connectivity domain (as opposed to connections within a
tile in most of CMOS FPGAs) is virtually free. (This is because the nanodevice uti-
lization is rather small, see, e.g. final results in table 4.1.) On the contrary, placement
of two gates as far as connectivity domain allows, might help to reduce the number of
routing inverters. Second, clustering is rather impracticable if each tile has different
number of basic cells, which can be due to the fact that some of the cells are defective
(for the discussion of this point see Section 4.2.5).

Figure 4.8 gives an example of wiring cost calculation for A = 5. In this example,
one input (I) and three output (O1, O2, and O3) gates are located in tiles with
positions (1, 1), (6, 10), (10, 6), and (7, 1), correspondingly. Hence, according to Eqs.
(4.4, 4.5, 4.6) the wiring cost function is WiringCost = 4 + 4 + 3 = 11.

4.2.4 Global Routing

The next operation, global routing, which is needed to connect the gates which are not
within tile connectivity domains of each other, performed in two stages (Fig. 4.9). At
the first stage the algorithm connects global nets by allocating the routing inverters,

50

O1

O2

O3I
6 7 8 9 101 2 3 4 5

9
10

8
7
6

4
5

3
2
1

tile

4
4

3

+

+

-

O2
+

basic cell

latch
cell

Figure 4.8: Wiring cost function calculation example. Assuming the linear size of the
tile connectivity domain A = 5, the wiring cost of the circuit mapping with connec-
tions between gate I and gates O1, O2 and O3 is 11.The numbers shown in red are the
contributions of specific connections to the cost function. In this particular example,
these numbers also give parameters Hopmin used in the global routing procedure (see
Sec. 4.2.4 below). Note, that the actual location of gates inside the tile does not
matter at this stage.

INPUT:
A) mapping of gates to tiles
B) map of defective cells (def)
START:
1: Generate input_netlist from input mapping
2: Initialize counter (count) of unused basic cells for each tile and
 adjusting accordingly to def
3: Create sorted_netlist by sorting input_netlist by the number of outputs
 (largest first) while sorting entries with the same number of outputs by
 the cost function (lowest first)
4: For each net (curnet) from the sorted_netlist
5: RouteNetGreedy(input, outputlist),
 where input, outputlist are the coordinates of an input and
 output gates of curnet, respectively
6: If there are congestions (for some tiles count > T - N) {
7: For each tile (curtile) {
8: For each curgate from curtile {
9: If (curgate from curtile is inverter and fanout = 1) {
10: Remove curgate and all consecutive inverters with
 (fanout =1) connected to curgate’s input and output
11: If (RouteNetExhaustively(curnet) is false)
12: Exit without success
13: }}}} Exit with success

Figure 4.9: A top-level pseudo code for global routing algorithm.

51

so far without any tile capacity limitations. In this step, each connection of the net is
routed with the smallest possible number of inverters. Moreover, if the net has more
than one output, the algorithm tries to minimize the number of routing inverters by
sharing them among connections of the same net. Since this problem is equivalent to
finding the shortest-path Steiner tree [47], which is exponentially hard, our algorithm
is heuristic.

The algorithm, formally presented in Fig. 4.10, is close to the so-called RSA
heuristic algorithm [92]. It is based on the recursive function (RouteNetGreedy) which,
in a single iteration, finds the quasi-optimal position for the routing inverter in the
tile connectivity domain of the input gate (input) for the given set of output gates
(outputlist).

The algorithm can be better explained using the example shown in Fig. 4.11.
Let us consider the case A = 5 and suppose that the algorithm needs to route input
gate I to three output gates O1, O2, and O3 (corresponding to the tiles colored yellow
and cyan, respectively. At first, for each pair of input and output gates from output-
list , the algorithm determines the minimal number Hopmin of inverters required for
routing, taking into account the polarity of each connection. Then RouteNetGreedy
function ranks all tiles of the input tile connectivity domain (step I in Fig. 4.11).
The rank of a tile shows how many output gates from outputlist can be routed to
the input gate with the minimal path, i.e. with Hopmin inverters, using a routing
cell in the given tile. In the new iteration, the routing cell tile location (R1), chosen
“greedily” among the tiles with maximum rank, is considered as a new input tile,
while the set of output gates, which contributes to the rank (e.g., for R3 in step III of
Fig. 4.11, gates O1 and O2) becomes new outputlist , etc. Once these outputs have
been routed (step IV in Fig. 4.11) they are not considered during the ranking of the
rest of output gates, e.g., gate O3 (step V in Fig. 4.11).

Note, that it is possible to have congestion after the first stage, i.e. the number
of routing cells assigned to a tile may be larger than the one physically available.
However the algorithm at the first stage tries to avoid such congestion by keeping
an occupation counter of the total number of routing cells (count) requested by the
algorithm in each tile. At the start of the routing procedure, the counter value is
set to zero. If for a certain iteration there are several tiles with the same rank, the
preference is given to the tiles with the least utilized routing cells. Also, routing nets
in a specific order, i.e. nets having fewer outputs and larger cost last, helps assigning
routing cells more evenly throughout the tile array.

If there are still congestions after the first stage of the algorithm (Fig. 4.12), they
are dealt with at the second stage, using recursive function RouteNetExhaustively
(Fig. 4.10). The idea is to reroute exhaustively the nets whose routing inverters are
located in the congested tiles. To make this stage more powerful, we perform slack
analysis of the congested nets, and (provided that the critical path stays the same)

52

Function RouteNetGreedy (input, outputlist)
1: For each tile (curtile) from input’s connectivity domain {
 curtileoutputcount = 0
 curtileoutputlist = Ø
2: For each output (curoutput) from outputlist {
3: If(SimpleHop(curtile, curoutput) + 1 =
 Hop(input, curoutput, curoutput’s polarity)) {
4: curtileoutputcount ++
5: Add curoutput to curtileoutputlist }
6: Among tiles with largest curtileoutputcount choose the one
 which has the largest count and increment count for this tile
7: For each output (curoutput) from curtileoutputlist
8: If(Hop(curtile, curoutput, curoutput ‘s polarity)=0)
9: Delete curoutput from curtileoutputlist
10: If(curtileoutputlist != Ø)
11: RouteNetGreedy(curtile, curtileoutputlist)
12: outputlist = outputlist - curtileoutputlist
13: If(outputlist != Ø)
14: RouteNetGreedy(input, outputlist) }

Function RouteNetExhaustively (curnet)
1: Calculate slack for curnet
2: For curhops = Hop(curnet’s input, curnet’s output, curnet’s polarity)
 to slack steps of 2 {
3: Find all tiles (tilelist) which might be used to route curnet using curhops
 routing inverters
4: For each tile (curtile) from tilelist
5: For hops = SimpleHop(curnet’s output, curtile) to
 slack - SimpleHop(curnet’s input, curtile)
6: RankTile(curtile, hops, curnet’s output, count)
7: Choose tile (besttile) in curnet’s input tile domain with the largest rank
8: If(rank != 0) {
9: Route curnet by traversing tiles using bestpath starting from besttile
10: Return true
11: }} Return false

Function RankTile(inputtile, hops, outputtile)
1: Let tiledomain be tile domain of inputtile
2: Eliminate all tiles (curtile) from tiledomain such that
 SimpleHop(curtile, outputtile) hops
3: For each tile (curtile) from tiledomain {
4: If(rank (curtile, hops -1) is undefined) {
5: If(hops =1) {
6: rank (curtile, hops -1) = count (curtile)
7: bestpath (curtile, hops -1) = outputtile
8: } Else RankTile(curtile, hops -1, outputtile) }
9: Choose tile (besttile) from tiledomain with largest rank (hops -1)
10: If(rank (besttile, hops -1) = 0 or count (inputtile) = 0) {
11: rank (inputtile, hops) = 0
12: Else {
13: bestpath (inputtile, hops) = besttile
14: rank (inputtile, hops) = rank (besttile, hops -1) + count (inputtile) }
15: Return rank (inputtile, hops)

Function Hop (tile1, tile2, polarity)
1: hops = SimpleHop (tile1, tile2)
2: If((hops is even and polarity is odd) or (hops is odd and polarity is even)) {
3: Return hops + 1
4: } Else Return hops

Function SimpleHop (tile1, tile2)
1: Let x1, y1 and x2, y2 be tile1 and tile2 coordinates, respectively
2: Return floor(2*max(abs(x1-x2),abs(y1-y2)-1)/(A-1))

Figure 4.10: A pseudo code for the global routing subroutines.

53

allow for more flexible rerouting with the number of routing inverters larger than its
minimum.

Finally, after finding the largest K enabling successful global routing, all circuits
are functionally verified. This is done by first converting the mapped circuit into the
BLIF format [95], and then comparing them with the original circuit with the help
of the ABC verification tool [3].

4.2.5 Defect Tolerance: Defective Cell Avoidance

What would happen if CMOS cells whose pins are connected to a broken or shorted
(input and/or output) nanowires are defective? In general, it would be still possible
to use cells with broken nanowires, especially if the break happens close to the natu-
rally made gap. Similarly, cells with shortened nanowires might be used for routing
purposes only. However, it would also mean that the cell connectivity domains would
be different from one cell to the other, complicating the design automation tools.

Moreover, to keep the tools simple we may also assume that any stuck-on-close-
type defect results in a defective cell. Obviously, this is very inefficient way of coping
with such defects. However, such approach might be used if the number of stuck-on-
close defects is very small (i.e. much less than one defect per CMOS cell).

This is why all of the defects in the second group discussed in Section 2.4,
i.e., broken or shorted nanowires, stuck-on-close-type nanodevices, defective nano-to-
CMOS interface, and defective CMOS circuitry (in particular CMOS inverter and
pull down pass transistor), may be considered equivalent to defective cells.

The proposed placement and global routing algorithms can be easily modified to
provide defect tolerant mapping with respect to faulty cells. Indeed, since there is no
clustering step, the only requirement is that the initial (random) placement and also
any gate moves during annealing procedure should be performed with the account
of the actual number of defect-free cells in a tile (which will be different from one
tile to the other). Similarly, during the global routing, instead of having the count
parameters initialized to zero before the first stage of the algorithm it is set to some
positive number reflecting how many basic cells are defective in a particular tile.

4.2.6 Defect Tolerance: Detailed Routing around Defective

Nanodevices

Up to that point in the design flow, the position of the gates inside each tile was not
important. These locations are specified at the final step of the flow - detail routing
(Fig. 4.6). In the first part of this detail routing step the position of the gates is
assigned greedily inside each tile, assuming perfect CMOL fabric without any stuck-
on-open defects. (In the case if there is indeed no such defects this would be the end

54

I.

II.

III.

V.

IV.

VI.O1

O2

O3

2 3 3
2 3 3
I 2 2

+

+

-

O1

O2

O3

0 0 2 3 3
1 1 2 3 3

0 0 R1 2 2
0 0 1 1 2
I 0 1 1 2

+

+

-

1 1 1
1 1 1

O1

2 2
2 2 O2

1 1
1 1

2 2

O3

0 0 0
0 0 R2

R1 0 1

I

+

+

-

1
1
0
0

1 1 1 1
O1

1 1 2 1
0 R3 1 1
0 0 1 1 O2
0 0 1 1

O3

R2

R1

I

+

+

-

0 0 0
0 0 0

O1

R4

0 R3

0 0 O2

0 0
0 0

1 1

O3

0 0 0
0 0 R2

R1 0 1

I

+

+

-

O1

R4

R3

O2

O3

R2

R1 R5

I

+

+

-

Figure 4.11: Example of first stage of single net global routing for the case A = 5.

55

2 2 2 3 3 3 3 2 2 2 1 0 0 0 2 2 2 3 3 3 3 2 2 2 1 0 0 0

3 3 3 3 4 5 4 2 2 2 1 0 0 0 3 3 3 3 4 5 4 2 2 2 1 0 0 0

9 9 10 10 11 10 9 6 5 5 1 1 1 0 9 9 10 10 11 10 9 6 5 5 1 1 1 0

10 10 10 11 11 10 10 9 8 6 4 1 0 0 10 10 10 11 11 10 10 9 8 6 4 1 0 0

11 11 11 11 11 12 11 11 10 7 5 2 1 1 11 11 11 11 11 12 11 11 10 7 5 2 1 1

10 10 12 11 11 12 11 11 10 7 6 5 3 2 10 10 12 12 12 12 12 11 10 7 6 5 3 2

11 11 13 13 12 12 13 12 12 8 6 5 3 3 11 11 12 12 12 12 12 12 12 8 6 5 3 3

12 12 11 11 12 12 12 12 12 10 10 9 3 2 12 12 11 11 12 12 12 12 12 10 10 9 3 2

11 11 11 11 12 12 12 12 11 10 10 10 4 2 11 11 11 11 12 12 12 12 11 10 10 10 4 2

10 10 10 11 12 12 12 12 11 11 10 10 6 3 11 10 11 11 12 12 12 12 11 11 10 10 6 3

10 10 10 10 11 11 12 12 11 10 10 10 6 3 10 10 10 10 11 11 12 12 11 10 10 10 6 3

10 10 10 10 11 10 11 11 11 10 10 9 5 2 10 10 10 10 11 10 11 11 11 10 10 9 5 2

9 9 9 9 10 10 11 11 11 10 9 9 4 2 9 10 10 9 10 10 11 11 11 10 9 9 4 2

9 9 9 9 9 10 10 11 10 9 9 9 4 2 9 9 9 9 9 10 10 11 10 9 9 9 4 2

(a) (b)

Figure 4.12: Example of second stage of the global routing for s298.blif circuit: tile
capacity (a) after stage 1 and (b) after stage 2. On panel (a) the tiles with capacity
numbers shown in red requested more resources than physically available. These
congestion are rerouted on stage 2 using resources from tiles with numbers shown in
blue.

of the design automation flow, i.e. successful mapping of the circuit.) In the second
part of detail routing step, the gates are relocated to produce defect free mapping,
using the algorithm formally presented in Figure 4.13 [108].

The algorithm is based on sequential attempts to move each gate from a basic
cell with bad input or/and output connections to a new basic cell, while keeping its
input and output gates in fixed positions. At the start of the algorithm each gate
except latches are allowed to move to a different position.4 (Note that according to
the CMOL FPGA topology shown in Figs. 4.1, 4.4, in each position the basic cell
uses the different set of nanodevices.)

At such move, the gate may be swapped with another one (whose position was
not fixed previously by the algorithm), provided that all connections of the swapped
gates can be realized with the CMOL fabric. In order to implement this idea, we first
calculate the “repair region” of the gate, where it could be moved if there were no
other cells around; this region is just the overlap of the cell connectivity domains of
all its input and output cells. For example, for the circuit shown in Fig. 4.14a, gate
A can be moved to any cell of the repair region painted pink in Fig. 4.14b, which is
the intersection of the cell connectivity domains of its output and input gates 1 and
4. If some cell of the repair region is already occupied by another gate and this cell

4The tile location of the gate is not important in the detail routing, i.e. any gate can be moved
outside tile boundaries as long as gate’s interconnects are physically possible.

56

INPUT:
A) design_list (list of gates mapped onto a perfect CMOL fabric,
 with entries holding positions of the initial cell and its input and output gates
B) defect_pattern (locations of defective bits; in our work simulated randomly)
C) Width and height of CMOL array, and parameter a

START:
1: Sort gates in design_list by probability (sorted_design_list)
2: Take the next cell (cur_gate) from sorted_design_list
3: If cur_gate is not the end of the list {
4: If some of the connections from cur_gate to its input and output gates
 with fixed position are defective for defect_pattern {
5: Create a list (cur_candidate_list) through the following sequence of steps:

 (i) Based on location of inputs and outputs of the cur_gate, create the list
 of cells (“repair region”) where cur_gate could be moved, if no other
 gates were involved
 (ii) In this list eliminate all the cells occupied by other gates which cannot
 be swapped with cur_cell
 (iii) Sort the cur_candidate_list by the connection length penalty F

6: Take the next cell (candidate_cell) from cur_candidate_list
7: If candidate_cell is not the end of the list {
8: If connections from candidate_cell to cur_gate’s input and output gates
 with fixed position are defect-free for defect_pattern {
9: Move cur_gate into candidate_cell, exchanging it with the gate
 (if any) that occupied the cell
10: } Else { Go to step 8 }
11: } Else { Exit without success }
12: } Else {
13: Fix position for cur_cell
14: Update sorted_design_list
15: Go to step 2 }
16: } Else { Exit with success }

Figure 4.13: Pseudo-code of the detail routing algorithm used for CMOL FPGA
reconfiguration around bad stuck-on-open nanodevices.

has not yet been processed (fixed) by the algorithm, e.g. gate B (Fig. 4.14c), then
a similar region is calculated for that gate as well. (For example, in Fig. 4.14c the
repair region for gate B is the intersection of the cell connectivity domains of gates
2, 3, and 4.) If the original gate lies in that new repair region, then these two gates
can be swapped keeping the circuit functional (provided that all the original gate’s
connections to the fixed gates are good).

If there are several cells in the initial gate’s repair domain (i. e. several positions
this gate may be moved to), higher priority is assigned to positions providing smaller
interconnect length. More exactly, for each position we calculate the penalty function

F =
∑

i

[(∆xi)
2 + (∆yi)

2]f . (4.7)

where x and y are the horizontal and vertical coordinates of each cell, and f is an em-
pirically selected exponent. (We have got the best results for f = 2.) The summation
in Eq. (4.7) is over all potential interconnects (excluding those between original gate

57

(a)

basic
cell2

B

1

4

A

(c)

2

B

4

1
repair
region

(b)

cells

1

4

cell
currently used for gate A

A

3

latch
cell

A 3

Figure 4.14: Example of a circuit fragment reconfiguration: (a) Circuit whose gate A
is to be relocated, because at least one of its connections (with its either input gate
1 or output gate 4) is faulty. (b) The “repair region” of gate A (painted pink) is the
intersect of the cell connectivity domains (shown by dashed lines) of its input and
output gate cells. (c) If a cell of the “repair region” of A already houses another gate
B, the repair domain of the latter cell (painted light blue) is also calculated. Since in
this case A is within the repair domain of B, these gates may be swapped, connection
quality permitting. For clarity, in this figure a = 8; optimal values of a are typically
larger (see below). Also note that since for a latch cell any of the input or output
pins can be used, the linear size of cell connectivity domain is larger by one cell.

and gates with fixed positions); if the move requires a cell swap, interconnections of
both cells are counted. For example, in Fig. 4.14c five connections (from gate A to 1
and 4, and from gate B to 2, 3, and 4) give contributions to this sum, providing that
all of these gates have not been processed by the algorithm.5 (Typically, though not
always, this rule gives higher priority to gate moving into an initially empty cell.)

After the list of all possible moving options has been compiled, they are checked,
in the order of increasing penalty F , for defective interconnects. The first met option
with all good connections is implemented. The case when there are no possible moving
options with good connections is considered a reconfiguration failure.

The order in which the gates are processed is determined by the probability of
finding a good position. Crudely, the reason for such trick is that repair domains get
smaller as the algorithm proceeds due to more gates been fixed. Because of that the
processing of gates with a smaller repair domains earlier in the algorithm will create
more chances for such gates to find defect free location.

5Even though the position of lath cell (gate 3) is fixed by default, the gate B will be moved later
in the algorithm and it is important to include the cost of B to gate 3 connection too.

58

More specifically, at first all the gates are sorted (with the gate having smallest
probability appearing first in the list) according to the specific probability P gate, which
for a gate i located in basic cell with coordinates (x, y) (denoted as ix,y) can be found
as:

P gate(ix,y) = 1 −
∏

ζ,ξ∈Ω(x,y)

Q(iζ,ξ, x, y). (4.8)

Here Ω is a set of cells (with the horizontal and vertical coordinates denoted by ζ and
ξ, correspondingly) of the “repair region” for gate i calculated exactly as described
above, while Q = 1 − P is probability of failure of moving gate i to the cell at (ζ,ξ).
The latter can be found as

Q(iζ,ξ, x, y) =

{
QMOVE(iζ,ξ), if cell (ζ, ξ) is empty or x = ζ, y = ξ,
QSWAP(iζ,ξ, jx,y), if cell (ζ, ξ) is occuppied by gate j,

(4.9)

where QMOVE(iζ,ξ) reflects the probability probability of finding all (C) connections
to input and output gates free of defects for the original gate i at cell position (ζ, ξ).
Similarly, QSWAP(iζ,ξ, jx,y) is the similar probability of failure of finding defect free
connections for both gate i at cell (ζ, ξ) and the swapped gate j at cell (x, y). More
exactly, these probabilities are calculated as:

QMOVE(iζ,ξ) = 1 − PMOVE(iζ,ξ) = 1 − (1 − q)C ×
Nlatch∏

t=1

(1 − qOverlap(ζ,ξ,t)), (4.10)

QSWAP(iζ,ξ, jx,y) = 1 − PMOVE(iζ,ξ)PMOVE(jx,y). (4.11)

The essence of Eq. 4.10 is that, if gate i is connected to a latch, we assume that at
least one connection (out of four at most) should be defect free. (Nlatch is the total
number of latches the considered gate is connected to.) The Overlap function returns
the integer (from 1 to 4) corresponding to how many inputs or outputs of a particular
latch can be reached (i.e., in a cell connectivity domain) from a given cell.

After the gate is processed and its defect-free location is found, it is marked as
fixed and the specific probability of the affected gates (including those which could
be potentially swapped with the given gate and also it’s input and output gates) is
accordingly adjusted.

Adjusting the probability of (at most M) affected gates and placing them to the
corresponding position in the sorted list would require to perform M log(N) (where N
is the number of gates in the circuit) compare operations in the worst case. This means
that the total complexity of the algorithm is of the order of NM log(N). For example,
for a billion-gate circuit and M ∼ 1600 this means about ∼ 1014 operations or about
30-hour runtime for a 1 GHz processor, which might not be practical. To reduce the
complexity, instead of classical sorting of the list, in which for any two gates i and j

59

(with position in the list Indexi and Indexj, correspondingly), Indexi < Indexj only
if Pgate(i) < Pgate(j), we implement quasi-sorting for which Indexi < Indexj only if
there exists a value of p ∈ Pd such that Pgate(i) < p < Pgate(j), where Pd is a finite
set of real numbers between 0 and 1. (For example, for our simulations we used a set
of Pd = [0, 0.01, 0.02, ..., 0.99, 1].) Using the quasi-sorting with such Pd instead of the
classical one virtually does not affect the quality of the detail routing. On the other
hand, it allows to reduce the complexity of detailed routing algorithm to just NM
substantially, dropping the runtime to about an 1 hour for the example discussed
above. (The runtime for the circuits considered below is not a problem since the
largest simulated circuits had less than 3 × 104 gates.)

An approximate analysis of this reconfiguration algorithm shows that most re-
configuration failures come from the longest initial connections, corresponding to the
very periphery of the cell connectivity domains. This is why from the point of view of
defect tolerance it is beneficial to carry out the initial design for artificially confined
connectivity domains. Such confined placement may be already provided by discrete-
ness of the tile connectivity domain A for a certain parameters of a. For example, for
the cases considered in this work, the linear size of the cell connectivity domain a = 40
results in A = 9, according to the Eq. (4.3). This means that during placement and
global routing the cells connectivity domain with the average effective value of a′ = 36
was used. However, the worst case for this value could be still a = 40, because initial
greedy mapping of cells inside each tile is not optimal and there is some non-trivial
probability that two connected cells can be placed initially in the opposite corners of
corresponding tiles.

4.3 Performance Calculation

4.3.1 Area

We will show below that the typical current through molecular devices in the ON state
is of the order of 1 µA. With a saturation current density of 1 mA/µm, typical for
the long term CMOS projections [1], such current may be provided with a MOSFET
channel as narrow as 1 nm. Hence, we can safely assume that all four transistors of
the basic cell are of the minimum width. (Note, that even the minimum-width CMOS
inverter in the cell can provide a very large (> 20) fan-out without any latency degra-
dation.) Using SCMOS design rules [82], we estimate the smallest basic cell area to
be about Acell = 64(FCMOS)

2, i.e., βmin ≈ 4. The additional area overhead associated
with auxiliary circuitry such as clock buffers, peripheral logic for reconfiguration, etc.
has not been taken into account at this stage, but is probably negligible6.

6For example, using results from CMOL memories (Chapter 3), the overhead associated with
peripheral logic for reconfiguration for 50 × 50 CMOL FPGA array of tiles should be less than 20%,

60

¼Rwire

input
nanowire

¼Rwire

output
nanowire

RON/D
Cin

CMOS
inverter

Rpass

CMOS
pass

transistor

ROFF/D

M closed switches (with leakage
resistance ROFF/D each)

open
switch

Vin¼Rwire¼Rwire

CwireCwire

Figure 4.15: The equivalent circuit of a CMOL logic stage.

4.3.2 Delay

In order to speed up the CMOL FPGA circuit, it is beneficial to reduce the sig-
nal swing of CMOS inverter’s input voltage Vin by decreasing the effective parallel
resistance Rpar defined as (Fig. 4.15)

1

Rpar
≡ 1

Rpass
+

M

ROFF/D
. (4.12)

Just like in the memory circuits (Section 3.4.2) the limit to this reduction is set up
by the requirement for the swing Vin to be larger than the possible total noise swing
at the inverter input. The most important components of the noise are the thermal
fluctuations, shot noise produced by the nanodevices, and digital noise of other gates.

At M � 1, the thermal and shot noises are typically Gaussian, with the r.m.s.
value

VT = [kB(T + Tef)/Cwire]
1/2, (4.13)

where Tef is the effective temperature contributed by the shot noise. Since such Vin

is much less than VDD (see below) the effective temperature can be found as

Tef =
eVin

2kB
coth

eVDD

2kBT
. (4.14)

Also note, that while Cwire corresponds always corresponds to the full nanowire
segment length L = 2β2F 2

CMOS/Fnano, only a part of the fragment (from the crosspoint

while the shift-register reconfiguration circuitry which is discussed in Ref. 109 (see also Fig. 5.2b),
will make this overhead even much smaller.

61

nanodevice to the interface pin) contributes to its resistance Rwire.
7 In order to keep

our estimates on the conservative side, we have assumed the worst configuration case
when the length of this part is largest (L/2).

With the very strict requirement for the bit error rate to be below qgate = 10−28

(corresponding, for example, to a mean time between failures of at least 10,000 hours
[1] for a CMOL FPGA chip with as many as 1010 gates operating with a 0.1-ns
clock cycle), the maximum swing ∆VT of this noise, calculated from the equation Eq.
(3.21), is close to 12VT.

The digital noise is created mostly by coupling of output signals of M other gates
(with swing equal to VDD each) through the M parallel resistances of latching switches
turned OFF (Fig. 4.15). Though for M � 1 the statistics of this noise is usually also
close to Gaussian, one cannot exclude the possibility of strong correlation of signals
processed by neighboring gates. To play it safe, we have assumed the worst case
scenario when all digital noise sources are fully correlated, resulting in the maximum
swing MVDD/(ROFF/D) of the current flowing to the inverter input.

Summing these two noise contributions, we get the following condition on Vin:

Vin > ∆VT + MVDD
Rpass

ROFF/D
, (4.15)

where the simplification is due to the fact that for all considered cases Rpass �
ROFF/(DM), i.e. Rpar ≈ Rpass, and VDD � Vin.

Indeed, with the parameters considered below, this condition allows to reduce
Vin well below 100 mV, i.e. make it much lower than VDD, which is in the range 0.2-0.3
V. This means that the CMOL FPGA circuit speed is limited by the relatively slow
recharging of a few-fF “input” (post-latch) nanowire capacitance Cwire shunted by a
relatively low parallel resistance Rpass given by Eq. (4.12), through a much higher
series resistance Rser ∼ RON/D + 2Rwire. This is why the full equivalent circuit of
one logic stage (Fig. 4.15) yields the elementary formula for the signal delay per logic
stage:8

τ0 ≈ log(2I)RpassCwire, (4.16)

where I is the gate fan-in, while the necessary value of Rpass may be calculated as

Rpass = Vin/DION. (4.17)

7Note, that because the performance of CMOL FPGA circuits is limited by the static power
consumption (see Section 4.3.3 below), it is possible to use gradual sloping for the clock signals;
hence Miller effect [91] can be neglected.

8The output dynamic impedance of the CMOL inverter and its input capacitance Cin give neg-
ligible contribution to τ0. For example, Cin of the 22 nm minimum-width inverter is of the order of
0.02 fF, i.e., much less than Cwire.

62

The ON current of the nanodevice should be generally calculated from the I −V
curve (Fig. 1.1a), with D parallel nanodevices connected in series with the Ohmic
resistance Rwire, driven by voltage VDD. However, since the only lower bound on
the suppressed Coulomb blockade threshold Vt is to be larger than Vin (in order
to prevent current leakage through ON-state nanodevices fed by 0-level output of
CMOS inverters), Vt may be substantially less that VDD. Hence, we may consider the
nanodevice I − V curve linear, and find ION as

DION ≈ VDD

Rser
=

VDD

RON/D + 2Rwire
. (4.18)

4.3.3 Power

The average total power consumption of a CMOL gate may be estimated as a sum of
the static power PON due to currents ION, static power Pleak due to current leakage
through nanodevices in their OFF state, and dynamic power Pdyn due to recharging
of nanowire capacitances.9 The above estimate Vin � VDD allows to calculate these
contributions using simple formulas

PON ≈ NdevV
2

DD

2Rser
, (4.19)

Pleak =
MV 2

DD

2ROFF/D
, (4.20)

Pdyn =
CwireV

2
DD

4τ
, (4.21)

where τ is critical path circuit delay, Ndev is an average number of nanodevices in
the ON state per cell. The factors 1/2 reflect the natural assumption that on average
there is an equal number of CMOS inverters with Boolean 1 and 0; the dynamic power
has an additional factor 1/2 describing the energy loss at capacitance recharging.

4.3.4 Optimization

In general, the best performance results of CMOL FPGA circuits can be achieved via
optimization of pitch ratio FCMOS/Fnano (assuming that either FCMOS or Fnano is fixed)
and supply voltage VDD. Indeed, making CMOS-to-nano pitch ratio larger increases
the nanowire segment capacitance and hence the delay, see, e.g., Eq. (4.16). On
the other hand, making such ratio smaller increases the number of routing inverters

9It is easy to show that the power consumption due to the leakage current through CMOS
inverters is negligible.

63

3 5 10 15 20 25 30
0.4

0.5

1

1.5

2

2.5
3

3.5
4

0.1

1

10

3 5 10 15 20 25 30
3

10

100

500

3 5 10 15 20 25 30
5

10

100

200

0.1

0.15

0.2

0.25

0.3

0.35

0.4

FCMOS(nm)
 22
 32
 45

C
irc

ui
t D

el
ay

 (n
s)

C
w

ire
 (f

F)

Fnano (nm)

FCMOS(nm)
 22
 32
 45A

re
a-

de
la

y
pr

od
uc

t (
m

2 ×
ns

)

64-bit crossbar

32-bit adder

P
ow

er
 D

is
si

pa
tio

n
(W

/c
m

2)

 Static power due to ON current
 Dynamic power
 Static power due to leakage

Optimized VDD

V
D

D
 (V

ol
t)

(a)

(b)

(c)

Figure 4.16: The example CMOL FPGA optimization results for two simple circuits
studied earlier in Ref. 109 (see also Appendix B): (a) three components of the total
power (fixed at 200 W/cm2), and the optimum value of the power supply voltage
VDD, for the 32-bit adder with FCMOS = 45 nm; (b) nanowire segment capacitance
(thin lines) and the total logic delay of the circuit (bold lines); and (c) area-delay
product Aτ of the two CMOL FPGA circuits under analysis, for three ITRS long-
term CMOS technology nodes. The (formal) jump of the Aτ product to infinity at
some (Fnano)max reflects the fact that our procedure of initial circuit mapping may
only be implemented for Fnano below this value - see Fig. 9 from Ref. 109 and its
discussion. The finite sharp jumps of the curves are due to the transfers between
adjacent integer values of a that would satisfy Eq. (2.1) and provide the smallest
β > βmin = 4.

64

required to map circuits successfully. The latter effect results in increase in logic
depth of the circuit and hence the logic delay.

The optimization of supply voltage VDD is more complicated. With the assump-
tion that the total power P = PON + Pleak + Pdyn per unit area fixed at the level
P/A = 200 W/cm2 planned by the ITRS [1] for the next decade, the reduction of
VDD makes possible to choose smaller value of RON and hence reduce the circuit delay.
However, reduction of RON also results in corresponding scaling down of ROFF (Eq.
2.7). The latter cannot be too small, mainly due to increase of the digital noise (Eq.
4.15).

Earlier we have performed an optimization of both pitch ratio and VDD for a
two simple circuits - 32-bit Kogge Stone adder and 64-bit full crossbar (Fig. 4.16)
mapped on one-cell CMOL FPGA fabric [109] (see also Appendix B). In order to
do this, for each pair of FCMOS and Fnano (and hence for parameters, a, a′, L, Cwire,
and Rwire calculated as described above), we had varied VDD, each time adjusting the
ratio RON/D (and hence the product DION calculated from Eq. (4.18)) so that the
total power calculated from Eqs. (4.21, 4.20, 4.19) equaled the specified level. At this
procedure, ROFF was adjusted from elastic co-tunneling effect using Eq. (2.7).

4.3.5 Simplification

The results from Fig. 4.16 show that CMOL parameters FCMOS = 45 nm, Fnano = 4.5
nm, which seems technologically plausible at the initial stage of CMOL technology
development [67], and VDD = 0.3 are in the ballpark of optimization. With these
parameters fixed the performance model of CMOL FPGA ciruits can be greatly sim-
plified.

Indeed, even taking into account the additional diffusive scattering at nanowire
surface (Sec. 2.3.2), the estimated resistance between the center and the end of a
nanowire fragment, of the length (βFCMOS)

2/Fnano = 7.2 µm, is about 20 KΩ. Such
resistance is negligible, because it is connected in series with that of a crosspoint
device (Fig. 4.15), which is an order of magnitude larger, even in the ON state - see
below. 10 With the wire capacitance per unit length to be close to 0.2 fF/µm (Sec.
2.3.2), capacitance Cwire of the full nanowire fragment is about 3 fF.

Moreover, Fig. 4.16 shows that the most important component of the power
consumption is due to the static power through nanodevices in the ON state, i.e.
given by Eq. (4.19). Therefore, the smallest acceptable resistance RON can be found

10The considered resistances of the nanodevices in the CMOL FPGA is much higher as compared
to those of CMOL memory, due to much larger number of nanodevices set to the ON state.

65

from11

RON =
DNdev(VDD)2

2Acellpmax
. (4.22)

Due to relatively large value of RON we can also the digital noise can be also
neglected in Eq. (4.15), so that for the considered parameters Tef ≈ 250K and the
voltage swing on the input of the CMOS inverter is

Vin ≥ ∆VT = 12
√

kB(T + Tef)/Cwire ≈ 20 mV. (4.23)

Finally, in the considered case we could use the following simplified formula for
gate delay:

τ ≈ ln(2I)× (CwireRON/D) × (Vin/VDD). (4.24)

4.4 Results

We have applied our methods to analyze possible CMOL FPGA implementation
of the Toronto 20 benchmark circuit set [2]. Using the completely custom design
automation flow described in Sec. 4.2 we have first mapped the circuits on the two-cell
CMOL FPGA fabric. For example, Fig. 4.17a shows the initial (random) placement
of circuit, while Fig. 4.17a the final placement for dsip.blif circuit mapped on the
(17+2)×(17+2) tile array with no defects. (Here the additional layer of tiles at the
array periphery is used exclusively for I/O functions. The cells from these peripheral
tiles are functionally similar to input and output pads and cannot be configured to
NOR gates.) The global routing step, i.e. allocation of routing inverters for the
gates which are not within cell connectivity domain of each other, is shown on Fig.
4.18. (As a reminder, in CMOL FPGA hardware each of the straight lines shown on
Fig. 4.18b actually consists of two mutually perpendicular nanowires, connected with
nanodevices.)

The largest value of the average nanodevice utilization factors among all circuits
of the set has turned out to be about 1.6 nanodevices turned ON per basic cell
(Table 4.1). Plugging Ndev into Eq. (4.22), we find that RON = 22 MΩ12 and the ON
resistance of a crosspoint nanodevice is RON/D = 280 KΩ (using D ≈ 80 obtained
with Eq. (2.6)). These values justify the simplifications described in the previous
sections.

11It is easy to check that for the considered parameters, in particular VDD = 0.3V, the ratio
of resistances in the OFF and ON states provided by the second-order quantum effect of elastic
cotunneling given by Eq. (2.7) is always less than the maximum value of this ratio, which is limited
by the classical thermal activation given by Eq. (2.8).

12Such resistances, well above RQ, may be readily implemented in molecular electronics - see, e.g.,
Ref. 121.

66

CMOS FPGA
FCMOS = 45 nm

CMOL FPGA
FCMOS = 45 nm, Fnano = 4.5 nm, max fanin = 7 Comparison

Circuit

Depth LUTs
Linear
size

(tiles)

 Area
(µm2)

Delay
(ns) Depth

Linear
size

(tiles)
K Nano-

devices
 Area
(µm2)

Delay
(ns)

ACMOS
/ACMOL

AnanoPLA
/ACMOL

AFPNI
/ACMOL

alu4 7 1274 19 × 19 137700 5.1 23 19 × 19 7 5468 749 1.7 184 0.37 6.71
apex2 8 1602 21 × 21 166050 6.0 26 20 × 20 7 6241 830 2.1 200 3.41 6.56
apex4 6 1147 34 × 34 414619 5.5 19 16 × 16 7 4203 531 1.5 781 0.73 7.27
bigkey 3 1810 22 × 22 193388 3.1 20 18 × 18 9 6589 672 0.9 288 2.25 -
clma 16 6779 42 × 42 623194 13.1 78 55 × 55 4 33772 6272 4.2 99 1.74 3.56
des 6 1263 19 × 19 148331 4.2 28 22 × 22 7 6955 1004 1.8 148 3.51 -
diffeq 14 987 16 × 16 100238 6.0 73 20 × 20 9 6279 830 3.7 121 3.27 6.56
dsip 3 1362 19 ×19 148331 3.2 26 17 × 17 9 5392 600 1.1 247 2.25 -
elliptic 18 2142 24 × 24 213638 8.6 81 34 × 34 7 16403 2399 4.9 89 3.12 5.20
ex1010 8 4050 33 × 33 391331 9.0 43 29 × 29 6 13540 1745 2.0 224 0.56 6.78
ex5p 7 950 16 × 16 100238 5.1 27 16 × 16 6 3551 531 1.7 189 0.30 5.97
frisc 23 2320 25 × 25 230850 11.3 114 35 × 35 6 16393 2542 6.8 91 4.36 4.91
misex3 7 1178 18 × 18 124538 5.3 24 17 × 17 7 4798 600 1.3 208 0.93 7.06
pdc 9 3901 32 × 32 369056 9.6 54 41 × 41 4 21804 3488 2.7 106 0.22 3.96
s298 15 1682 21 × 21 166050 10.7 45 15 × 15 7 5891 467 3.5 356 2.36 12.61
s38417 11 4773 36 × 36 462713 7.3 52 55 × 55 4 32430 6277 3.0 74 1.84 3.85
s38584 9 4422 35 × 35 438413 4.8 64 45 × 45 5 27360 4202 3.0 104 - 4.53
seq 7 1427 20 × 20 151369 5.4 23 21 × 21 6 6003 915 1.7 165 1.63 5.95
spla 8 3331 30 × 30 326025 7.3 40 38 × 38 4 18562 2996 2.7 109 0.12 4.17
tseng 13 781 14 × 14 78469 6.3 75 20 × 20 8 5610 830 4.4 95 3.57 6.06

Table 4.1: Performance results for Toronto 20 benchmark set mapped on two-cell
CMOL fabric with no defects.

According to Eq. (4.24), the delay of a 1-input NOR gate turns out to be about
40 ps.13 The full delay of the considered circuits was calculated from the critical path,
which had been found after circuit placement and global routing.

Table 4.1 summarizes the performance results for the benchmark circuits mapped
on CMOL FPGA without any defects. Note that in contrast with earlier nanoelec-
tronics work, the results for different circuits are obtained for the CMOL FPGA fabric
with exactly the same operating conditions and physical structure for all the circuits,
thus enabling a fair comparison with CMOS FPGA. For this comparison, the same
benchmark circuits have been synthesized into cluster-based island-type logic block
architecture [10]. This was done with T-VPack and VPR tools using the architecture
designed for the optimal area-delay product, specifically the cluster size of 4, 4-input
LUTs [5], and the VPR’s default architecture file (4x4lut-sanitized.arch) with tech-
nology parameters corresponding to the 0.3 µm CMOS process. We had first found

13Due to correction in the Eq. (3.21) the delay is almost twice smaller than that assumed in Refs.
109,111,114.

67

No defects 10% defective
cells

30% defective
cells

Circuit
 Area
(µm2)

Delay
(ns)

 Area
(µm2)

Delay
(ns)

 Area
(µm2)

Delay
(ns)

alu4 749 1.7 915 1.6 1745 2.0
apex2 830 2.1 1004 2.0 1297 2.1
apex4 531 1.5 600 1.5 915 1.5
bigkey 672 0.9 749 0.9 1098 1.0
des 1004 1.8 1098 1.8 1403 1.8
diffeq 830 3.7 830 3.7 1195 3.7
dsip 600 1.1 672 1.1 915 1.1
elliptic 2399 4.9 3488 5.0 11362 5.8
ex1010 1745 2.0 1994 2.0 2996 2.2
ex5p 531 1.7 600 1.7 749 1.7
frisc 2542 6.8 2841 6.8 5187 7.1
misex3 600 1.3 749 1.4 1004 1.4
pdc 3488 2.7 4982 3.0 9594 3.9
s298 467 3.5 531 3.6 749 3.7
s38417 6277 3.0 6980 3.2 9038 3.3
s38584 4202 3.0 4781 3.0 6050 3.0
seq 915 1.7 1004 1.7 1513 1.8
spla 2996 2.7 4390 3.0 8499 4.0
tseng 830 4.4 830 4.4 1098 4.4

Table 4.2: The performance results of the Toronto 20 benchmark set mapped on two-
cell CMOL fabric (with FCMOS = 45nm, Fnano = 4.5nm, and Imax = 7) in a presence
of defective cells.

the worst case segment width required to route every circuit successfully, which has
turned out to be 70 for pdc.blif circuit. Then, using an architecture with such seg-
ment width we have mapped and routed all circuits, and then extracted their delay
and area (for the optimistic case of buffer sharing). Assuming very optimistic 1/s
scaling for the delay and assuming the area of the minimum-width transistor to be
25(FCMOS)

2, we have obtained the results shown in the left part of Table 4.1. (As
a sanity check, the delays before scaling are close to those obtained in Ref. 10 for
CMOS FPGA with a similar architecture.)

In general, presence of defective cells is logically equivalent (for M ≫ 1) to the
reduction of connectivity domain size, since any cell can now be connected directly
with a smaller number of “good” cells on average. The decrease of connectivity
domain, in turns, results in the increase of the circuit’s area and potentially critical
path delay due to larger number of routing inverters for longer global wires. Our
earlier results for 32-bit Kogge-Stone adder (see Fig. 9 of Ref. 109) indicate that
there is certain value of the connectivity domain size below which the depth of the

68

Defect probability, qCircuit
90% 99%

alu4 0.12 0.07
apex2 0.07 0.05
apex4 0.13 0.1
bigkey 0.15 0.1
clma 0.02 0.01
des 0.06 0.02
diffeq 0.12 0.04
dsip 0.07 0.03
elliptic 0.06 0.05
ex1010 0.06 0.03
ex5p 0.16 0.1
frisc 0.04 0.03
misex3 0.09 0.02
pdc 0.03 0.01
s298 0.16 0.09
s38417 0.02 0.01
s38584 0.14 0.1
seq 0.09 0.05
spla 0.04 0.03
tseng 0.16 0.09

Table 4.3: The maximum allowable defect rate of bad (stuck-on-open) nanodevices
to achieve 90% and 99% final yield.

circuit starts to increase exponentially fast until the mapping becomes impossible.
This means that as long as the connectivity domain size is not approaching this limit
the mapping can be physically implemented. In other words, the reasonable (not very
large) number of bad cells should not prohibit from the successful mapping, albeit
increasing the area and delay.

Table 4.2 shows results of the performance for the considered circuits in the pres-
ence of defective cells, proving our observation. To obtain these results we performed
large number of trials (more than 100) for each circuit, each time with a new map of
defective cells, finding minimum value of K, and hence minimum area and delay. The
defective cells have been generated randomly with a probability qcell. For example,
Fig. 4.19 shows successful mapping for dsip.blif circuit on the CMOL FPGA fabric
with qcell = 0.3.

In particular, Table 4.2 shows that the average swelling of the circuit area is
rather limited: only about 20% and 80% for, respectively, qcell = 0.1 and qcell = 0.3.
This means that faulty interface pins, nanowires and/or CMOS circuitry can be very
effectively tolerated. On the other hand, the tolerance to stuck-on-close crosspoint
defects is rather low (equivalent to about 0.02% of defective nanodevices for qcell =
0.3), so that some other defect tolerance mechanism should be used to reduce the
effects of such faults.

69

Finally, Table 4.3 present our preliminary simulation results for the defect tol-
erance with respect to stuck-on-open kind of defects (in this simulations we assumed
that there is no defective cells). These results were obtain by Monte Carlo simula-
tions of the detail routing algorithm using our group’s supercomputer cluster Njal
(http://njal.physics. sunysb.edu/). For each initially placed and globally routed cir-
cuit, the algorithm has been run 1000 times with a randomly chosen set of defects,
formed with the same probability q.

The results are much worse than that for 32-bit Kogge-Stone adder we simulated
earlier (see Fig. B.6). For example, at realistic parameter a = 40 circuits may have a
fabrication yield above 99% at the average fraction of bad stuck-on-open nanodevices
5%. On the other hand, similar yield (99%) could be achieved with up to 20%
defective nanodevices in CMOL-mapped adder. One reason for such decrease in
defect tolerance is that the simulated circuits have much higher fan-in and fan-out.
However, most important factor is rather our naive mapping of gates inside the tiles in
the first stage of detail routing algorithm. We expect that by moderately limiting fan-
in and fan-out, and smarter mapping in detail routing algorithm the defect tolerance
can be boosted up to the one achieved in our earlier work, i.e. to about 20% defective
nanodevices.

Such high defect tolerance should not be surprising because only a small percent
of nanodevices (about 0.1% of the total on average) is utilized. Such huge redundancy
can be efficiently exploited by the detail routing algorithm, which allows to pick
completely deferent set of nanodevices by moving positions of the gates.

70

latch

primary
input

NOR
gate

routing
inverter

primary
output

idle
cell

(a)

(b)

Figure 4.17: Example of dsip.blif circuit mapped on the (17+2)×(17+2) tile array
with no defects: (a) initial (random) and (b) final placement. Note that not all of
the mapped gates can be connected directly on that stage.

71

latch

primary
input

NOR
gate

routing
inverter

primary
output

idle
cell

(a)

(b)

Figure 4.18: Example of dsip.blif circuit global routing mapped on the
(17+2)×(17+2) tile array with no defects: (a) without and (b) with gate connec-
tions (shown as the straight lines). With no defects any greedy mapping inside the
tile (e.g., shown on this figure) can be physically implemented.

72

latch
primary
input

NOR
gate

routing
inverter

primary
output

defective
cell idle cell

Figure 4.19: Example of CMOL mapping with a presence of defective cells: dsip.blif
circuit of the Toronto 20 set, mapped on the (21+2)×(21+2) tile array with 30%
defective cells.

73

latch

primary
input

NOR
gate

routing
inverter

primary
output

idle
cell

Figure 4.20: Example of CMOL mapping with a presence of defective cells: dsip.blif
circuit of the Toronto 20 set, mapped on the (21+2)×(21+2) tile array with 30%
defective nanodevices.

74

Chapter 5

Discussion

5.1 Conclusions

Simulation results presented in this work clearly show that CMOL-based digital cir-
cuits may continue the performance scaling of microelectronics well beyond the limits
of currently dominating CMOS technology.

5.1.1 CMOL Extension of Resistive Memory

The most natural area of CMOL circuit application is the extension of resistive mem-
ories to the sub-FCMOS region. Fig. 3.9a shows that even at the initial stage of the
CMOL technology development (when the ratio FCMOS/Fnano is of the order of 3),
the defect tolerance and density of CMOL memories may be quite impressive. For
example, if the required latency is not too small (say, 10 ns or higher), CMOL memo-
ries may become denser than CMOS-based memories at the fraction q of bad devices
as high as ∼ 15%, and at the (quite realistic) value q = 5% provide a nearly five-fold
density edge (a ∼= 1.2 instead of 6). For Fnano = 15 nm this would mean useful density
1/a of ∼ 30 Gbits/cm2, i.e. the level which CMOS technology may be able to reach
in the very end of scaling [1], if ever.

Moreover, as the CMOL technology matures, the FCMOS/Fnano ratio may ap-
proach an order of magnitude (say, FCMOS = 32 nm, Fnano = 3 nm [67]), and the
CMOL memory superiority may be quite spectacular. Indeed, as Fig. 3.9b shows, for
the defect fraction q = 2% (which looks quite plausible), the cell area factor a may
become as low as 0.1, implying the dimensional density as high as 1 Tbit/cm2, far
beyond the most optimistic projections for CMOS technology [1].

For the latter design point, the estimated memory throughput is equally im-
pressive (helped by the fact that this pitch ratio optimizes the throughput, since all
CMOS data lines are being utilized). Indeed, even assuming a BCH decoder without
pipelining, the memory bandwidth can be as high as 30 Tb/s for a 1 cm2 chip. (For
reaching this maximum, the BCH decoder has to be replicated for each column of

75

CMOL blocks, but even in this case the corresponding area overhead is less than 20%
- Fig. A.4).

One reservation has been made concerning our defect-tolerance results for CMOL
memories. Indeed, our analysis has been limited to the crosspoint device defects
equivalent to the stuck-at-open faults, while in practice defects of other types are also
possible (see, e.g. Section 2.4). In this context, it is worth mentioning that both
breaks of the lower-layer nanowires and defective pins leading to these nanowires can
be very efficiently excluded by reconfiguration around them, using the same techniques
employed for coping with stuck-on-open-type defects. The exclusion of defects in the
upper layer nanowires requires some modifications of the hardware. For example, by
increasing the size of array it is possible to access nanodevices through several pins
contacting the same nanowire simultaneously. (This would require a somewhat more
complicated address control circuitry, but the area of these circuits would still give a
negligible contribution to the total area.)

In contrast, the worst-case stuck-on-close-type defects (resulting in a very low
crosspoint resistance) can be overcome by exclusion of both nanowires leading to the
defective crosspoint. Preliminary estimates show that such exclusion incurs high area
overhead, so that our current architecture is not very efficient for dealing with these
defects. On the other hand, if a stuck-on-close defect has a resistance comparable
with the nominal value of RON, addressing of several adjacent nanodevices may still be
possible. An analysis of this problem, which is similar to finding acceptable margins
for variations of ROFF, RON, and Rwire, is one of our future goals.

Let us repeat that though our calculations have been carried out for CMOL
memories with their segmented nanowire structure (Fig. 3.2), we have found the
contribution from the nanowire recharging time to the total access time negligible.1

This is why our final results are actually valid also for crosspoint memories with global
blocks and peripheral nano/CMOS interfaces, though they seem much harder for the
practical implementation than the area-distributed CMOL interface.

5.1.2 CMOL Logic Circuits

Even more spectacular performance estimates are obtained for reconfigurable, FPGA-
like CMOL circuits. Table 4.1 shows very clearly that CMOL FPGA circuits may
be much denser than the purely CMOS FPGA ones fabricated with the same CMOS
design rules. The benchmark circuit area for CMOL FPGA also favorably compares
with that implemented using the nanoPLA concept [27], taking into account the fact
that the latter results had been calculated assuming a smaller nanowire half-pitch

1This would not be true for the hypothetical (and hardly plausible) semiconductor-wire or
molecular-wire crossbars in which high nanowire resistance may seriously affect the memory ac-
cess time.

76

Fnano = 2.5 nm.2 Concerning the speed performance, the delays calculated in this
work for all benchmark circuits are slightly better than those of their CMOS FPGA
counterparts.

It is safe to expect that the improvement in area will be even larger if CMOL
FPGA is used for much larger circuits, because the area of CMOS FPGA is always
determined by the worst-case routing requirement. On the other hand, a distinctive
feature of the CMOL FPGA fabric suggested in this work is that the same resources,
basic cells, are used to perform both logic and interconnect functions.3 Using the
proposed CAD flow, the resources can be allocated flexibly according to the specific
logic-to-routing ratio of the circuit. For example, in order to synthesize the rela-
tively large pdc.blif circuit, only about 30% of the cells have been allocated for logic
operation, while this number is about 75% for the smaller dsip.blif (Table 4.1).

Another evident resource for improvement the results in Table 4.1 is the opti-
mization of Fnano and VDD, just like described in Section 4.3.4. Next, an optimization
of the maximum fan-in for each circuit may also give substantial results. For example,
the area of the s298.blif circuit would be one half its current size, and its pre-mapped
depth by 30% lower, if the maximum fan-in was 16 (rather than the maximum value
of 7 which we used for this work).

The defect tolerance of CMOL FPGA circuits is even more impressive than that
of CMOL memories. First of all, Table 4.2 shows that the performance of CMOL
FPGA is only slightly affected if the number of defective cells is not large. For
example, the presence of 5% defective nanowires and 5% defective interface pins
(corresponding to 10% of defective cells in the worst case) only increases the area of
circuits by 10%, while virtually does not change the delay. Even more importantly, the
defect tolerance with respect to stuck-on-open-type nanodevices is very high. Table
4.3 shows that 99% yield can be achieved with up to 20% of bad nanodevices. On
the other hand, similar to CMOL memories, the situation with stuck-on-close-type
defects is not very optimistic. The current defect tolerance mechanism only practical
for tolerating no more than ∼ 0.02% stuck-on-close nanodevices.4

2Also, the nanoPLA results might be worse if all circuits had been mapped on a hardware fabric of
fixed geometry, as we did for the CMOL architecture. Finally, the fabrication technology assumed in
the nanoPLA architecture is much more demanding than CMOL, requiring (besides programmable
diodes at crosspoints) nanoscale field-effect transistors, which are inherently irreproducible [73] (see
Section 1.2.3 for a more detailed discussion of this point).

3For CMOS technology, similar ideas have been developed in several works. For example, Triptych
FPGA architecture [12] is based on the universal cell which is used both for routing and logic
operations. The authors of Refs. 25, 119 suggested to avoid the worst-case routing limitation in
CMOS FPGA during mapping by deliberately underusing logic resources. However, both in Triptych
FPGA (in which the universal cell has physically different CMOS hardware for routing and logic
operations), and in the latter approach the CMOS circuitry utilization suffers. On the contrary, in
CMOL FPGA, the CMOS subsystem utilization may be close to 100%.

4Trying to avoid stuck-on-close-type defective nanodevices could be one of the major conclusions

77

A

BA+B

A

B

AB

cell cell

(a) (b)

Figure 5.1: Comparison of (a) CMOL FPGA and (b) HP’s FPNI logic architectures
(adapted from Ref. 102).

Our performance results for CMOL FPGA architecture has become an inspi-
ration for HP’s very recent suggestion of the so-called field-programmable nanowire
interconnect (FPNI) circuits [102] - see, e.g., Fig. 5.1 showing logic architecture and
also Sec. 2.2 and Fig. 2.5 for the discussion of the FPNI topology. Since this idea
trades off some performance for simplicity in FPNI circuit fabrication, it is not sur-
prising that the area-delay metric of FPNI circuits is at least about 5 times worse
as compared to that of CMOL FPGA (Table 4.1). This is why FPNI circuits may
be thought about as an intermediate step towards CMOL FPGA circuits which are
superior in performance, but more challenging from the fabrication perspective.

To summarize, we believe that the results presented in this work show a possible
substantial impact of the circuit transfer from CMOS to CMOL technology.

5.2 Main Challenges and Possible Future Work

In the previous section we have mentioned in brief all the immediate work which
should be done to improve and extend the analysis of considered CMOL memories
and CMOL FPGA circuits. Let’s us now address main general challenges on the road
toward CMOL technology, and possible directions of a long-term research work.

It is quite obvious that the hardest challenge on the way to realization of CMOL-
based and any other crossbar hybrids with truly nanoscale dimensions (i.e., with
Fnano < 10 nm) is high fabrication yield of nanodevices, in particular (as this work
has shown) low fraction of stuck-on-close-type defects. If no sufficient progress is

for device engineers. For example, it might be possible to burn such nanodevice by running very
large current and turning it into stuck-on-open-type one.

78

made in that direction in a future, this issue alone may prevent the development of
the hybrid crossbar circuits.

From the author’s point of view, the second most important work towards im-
plementation of considered circuits is the demonstration of high yield CMOS-to-nano
CMOL interfaces. Even though all the necessary components of such interfaces have
been demonstrated separately, a demonstration of a complete functional interface
would help to attract electronic industry attention. Moreover, only semiconductor
pins with nanometer-sharp tips have been demonstrated, while the technology for
fabricating metallic pins, which have superior properties and could potentially sim-
plify the whole CMOL process flow, still has to be developed.

Obviously, CMOL FPGA circuits, considered in this work, is just a small sub-
set of all possible CMOL circuit architectures. The choice of our particular CMOL
FPGA architecture was influenced in part by the conventional CMOS FPGA struc-
tures. (Thus similarly has enabled the use of standard approaches in design automa-
tion.) It may be possible to improve performance of CMOL circuits in a future by
developing more original architectures, as well as using new ideas in circuit mapping.
To this end, at least several directions are worth trying. First of all, all nanowire
segments in the current approach have the same length. On the other hand, simple
analysis shows that by arranging interface pins in a particular order it is possible to
obtain a CMOL structure with different length nanowires. By matching the nanowire
length distribution to the one of the real-world circuits (which always follow Poisson
distribution [24]) routing might be performed much more efficiently. Moreover, it
would be natural to add another level of wiring in CMOS. The latter could be used
for global interconnects as well as some very high fan-out nets. (An analysis of con-
sidered benchmark circuits have shown that there are usually few such nets in each
circuit.)

Next, since the logic-to-latch-gates ratio varies from one circuit to another (e.g.,
about half of the circuits in the Toronto benchmark do not have any latches at all), for
some circuits a lot of CMOS area is wasted because of the fixed dedicated hardware
resources. In principle, signal latching can be implemented even in one-cell fabric by
connecting two basic cells (with inverters) in a loop. The downside of this approach is
that the clock signals must be supplied either through the nano-subsystem or specially
designated cells. The former option is rather impractical since multiple hops through
nano-subsystem will most probably result in high clock jitter and hence asynchronous
operations would be more preferable. The latter may be a more attractive option,
though more investigation is certainly needed.

We believe that the performance of the considered CMOL FPGA architecture
can be greatly improved using more advanced mapping algorithms. For example, in a
current design automation flow we allocate routing resources evenly among the tiles
of the array. The actual demand of routing resources usually varies, with the center

79

tiles typically used more heavily. Finding the best routing resource area profile for a
particular circuit can be done during placement, e.g., by simply tracking the density
of global connections going through the corresponding tile. (Note that a similar trick
is not possible in conventional CMOS FPGA due to the fixed dedicated hardware for
routing and logic operations.)

Additional studies of design issues related to large-scale CMOL FPGA systems
is also very desirable. For instance, it is clear that each CMOL FPGA chip will
have a unique pattern of defects, and therefore unique mapping of circuits, i.e. “per
chip compilation” instead of “per application circuit” for conventional CMOS FPGA.
This means that CMOL FPGA chips should also include a small memory to keep
the locations of the defects and most probably a simple CMOS microprocessor per-
forming configuration around such defects. An evaluation of the required area and
corresponding delays of such additional circuitry, as well as related issues like test
strategies etc., might be a very useful exercise [108].

Concerning the compilation time challenge, note that the detail routing around
stuck-on-open-type defects in the considered design automation flow is an incremental
step, and therefore can be performed very fast after more time-consuming generic
(common to all CMOL FPGA chips) placement and global routing. (In particular,
this is the reason for the inferior defect tolerance in comparison to that of FPNI
circuits [102]). On the other hand, the avoidance of defective cells is performed
during placement and global routing algorithm. Hence one possible work direction
would be to make defective cells avoidance also incrementally, integrating it into the
detailed routing algorithm.

In addition, large-scale CMOL FPGA circuits would certainly require the de-
velopment of the system level architecture, e.g., interconnect hierarchies using small
CMOL FPGA arrays. For example, Fig. 5.2 shows a possible hierarchical computing
structures functionally similar to Teramac’s PLASMA chip [7, 43]. For more details
on such effort, see Ref. 109.

Finally, there are at least two very interesting original future directions. The first
one is developing CMOL FPGA-like circuit architectures for digital signal processing
(DSP). In fact, most of the image processing tasks exhibits high degree of parallelism
and their structure is usually regular with relatively short interconnections, hence
making CMOL FPGA circuits a very attractive platform for their implementation.
Indeed, running such tasks on conventional microprocessors would be very slow for
runtime applications (e.g., face recognition). The other option, state-of-the-art CMOS
DSP implementations can deliver potentially very fast and area efficient solutions;
however the ever increasing nonrecurrent engineering costs could make it less practical
for future CMOS technology. On the other hand, as this work demonstrated, CMOL
FPGA circuits are intrinsically reconfigurable and have a much better performance as
compared to purely CMOS FPGA ones. Our preliminary results for three-cell based

80

CMOL
array

R
E
G
S

REGS

CMOL
array

R
E
G
S

REGS

CMOL
array

R
E
G
S

CMOL
array

R
E
G
S

CMOL
array

R
E
G
S

REGS

CMOL
array

R
E
G
S

REGS

R
E
G
S

CMOL
array

R
E
G
S

REGS

R
E
G
S

CMOL
array

R
E
G
S

REGS REGSREGS

R
E
G
S

CMOL
array

R
E
G
S

REGS

REGS REGSREGS
(b)

CMOL
logic

CMOL
routing

(a)

Figure 5.2: (a) A macro-array of one-cell CMOL FPGA arrays interleaved with CMOS
registers, and (b) its use for implementation of the PLASMA chip architecture [7].
Note that a particular partition of resources shown on panel (a) is not fixed and can
be changed adjusted according to specific application.

field-programmable CMOL DSP architecture have shown that image convolution, one
of the most important operations in that image processing, can be implemented very
efficiently, while allowing high defect tolerance [115]. For example, a 12-bit image
convolution using a 32 × 32 window size is estimated to take about 100 µs on a ∼
3.5 cm2 CMOL DSP chip (with Fnano = 3.2 nm and FCMOS = 32 nm) consuming
about 200 W/cm2. On the other hand, the similar task would take about 100 ms
for a CMOS microprocessor implemented with the same CMOS design rules and
consuming similar power.

Perhaps, even more interesting is exploring CMOL FPGA-like circuit architec-
tures based on nanodevices with negative differential resistance (NDR). For example,
Figure 5.3 shows a concept of such circuits (proposed by K. Likharev) with the basic
logic gates implemented similar to Goto pairs [105]. (Note that, in contrast to some
previous proposals [59, 100], nanodevices in Fig. 5.3 are not changing states during
circuit operation.) Clearly, the fabrication of NDR-type nanodevices is even more
challenging than that considered in this work. However, it is also obvious that the
use of such nanodevices can even further scale up the performance of CMOL FPGA
circuits.

81

A

B
C E

F

G

clock

t
0

t0

t0

t0

phase 1

phase 2

phase 3

phase 4

A B C D +1 -1 …

biases gates IN

clock
phases

ground
1
2
3
4

+1
-1
A
B
C
D
E
F
G

OUT

biases

IN

inter

interface logic

V

I

0 VDDVt

“Goto pair”

+VDD

-VDD

(a)

(b)

(c)

(d)

Figure 5.3: Boolean logic based on nanodevices with NDR characteristics (courtesy K.
Likharev): (a) the basic idea of a crossbar Goto pair logic (for the detail explanation
on how such gate operates, see, e.g., Ref. 105) and an example of simple circuit
including (b) circuit schematic, (c) clocking scheme, and (d) mapping on a crossbar
structure.

82

Appendix A

BCH Decoder

A.1 Introduction

The error-correcting codes are being used extensively in virtually all commercial mem-
ory and storage devices to tolerate both transient faults and static errors. Typi-
cally, light ECCs (e.g., Hamming codes) are used for fast memories, like SRAMs and
DRAMs, and more powerful ECCs (e.g., Reed Solomon codes) are used in flash mem-
ories and magnetic/optical storages devices. Since the latter have intrinsically slow
access time much of the research was done for optimizing the throughput of the ECC
decoders rather than their latency [62,94]. On the contrary, the access time of hybrid
nanoelectronic memories, e.g. based on CMOL technology (Section 3.4) can be very
small, i.e. in the nanosecond range, the fact that makes them suitable for random-
access operations. Hence, it is advantageous to use both high-speed and powerful
ECCs which can cope with high defect rates presented by this new technology.

Low-latency decoding can be achieved by parallelizing the decoding algorithm.
One obvious limitation for parallelization is the increase of the ECC decoder area.
For example, standard array decoding [11], i.e. keeping the memory with leader
cosets, would be the fastest technique for decoding linear block codes, however the
area of such decoder grows exponentially with the number of errors the code can fix.
Therefore, to avoid unpractical solutions, we are interested both in latency and area
dependence on error-correcting capability of the code. Similar tradeoffs analysis was
carried out for various high throughput ECC decoders [81, 84].

A fast bit-parallel finite field arithmetic (finite field arithmetic is required in
many decoding algorithms) was already heavily studied in the context of cryptography
[85, 86]. In this paper we use some of these results to study the area and latency
tradeoffs of the fast decoders for binary BCH codes [11].1 (The binary codes are

1Though BCH codes are perhaps not the absolutely best option for nanoelectronic memories,
they are the most efficient ones among short (less than 1024 bits long) codes. Currently, we are
investigating a more natural codes, e.g., Euclidean geometry and LDPC ones [11,62], and also codes

83

better suited for our defect model with errors uniformly distributed throughout the
memory matrix. Such model is adequate for molecular-scale memories and was widely
used in other research papers [29, 32, 101].)

A.2 Model

A.2.1 General Structure

For simplicity, let us consider primitive BCH codes, with the code length on the finite
Galois field GF(2m) is n = 2m − 1. A plausible implementation of the fast decoding
for binary BCH codes requires three major steps [11, 62]:

• Step 1: Syndrome evaluation;

• Step 2: Finding the error-location polynomial using the Berlekamp-Massey it-
erative algorithm; and

• Step 3: Finding error-location numbers with subsequent error-correction.

Let us estimate the area and delay contributions of the circuits of each step.

A.2.2 Syndrome Calculation

In a completely bit-parallel implementation each bit of a syndrome S can be obtained
by a separate XOR tree with inputs taken from the received code vector [62]:

S =(S1, S2, ..., S2t) = rHT = r

⎛
⎜⎜⎝

1 1 . 1
(α) (α2) . (α2t)
. . . .

(α)n−1 (α2)n−1 . (α2t)n−1

⎞
⎟⎟⎠ . (A.1)

Here r is a received code word of length n, H is a parity matrix, t is the maximum
number of errors the code can fix, and α is a primitive element in GF(2m), i.e. each
column in the matrix in the Eq. (A.1) can be rewritten as an m binary columns. On
the average, binary columns of H are half filled with ones while in the worst case
there is a column with almost all ones. Hence the syndrome calculation circuit will
be comprised of total 2tm XOR trees with the average depth log2(n/2) and the worst
depth of log2n (Fig. A.1), i.e.

τ1 = τadd(n) = �log2(n)� × τXOR, (A.2)

which take advantage of the asymmetry of the error model.

84

vector S (2tm-bits wide)

X
O
R

T
R
E
E

X
O
R

T
R
E
E

X
O
R

T
R
E
E

X
O
R

T
R
E
E

n/2 inputs (worst case)

log2(n)
depth
(worst
case)

vector r (n-bits wide)

1 2 2tm-1 2tm

Figure A.1: Syndrome calculation.

A1 = 2tm × Aadd(n/2) = tnm× AXOR. (A.3)

Here by τadd(n) and Aadd(n) we denote, correspondingly, the delay and area of
1-bit parallel addition in finite field (XOR tree) of n elements. Similarly, τXOR and
AXOR (and also τOR and AOR which are used later in text) denote the delay and area
of Boolean logic 2-input XOR (OR) gate, respectively.

A.2.3 Finding Error-Location Polynomial with Berlekamp-

Massey Algorithm

Since the algorithm is based on a recursive procedure it cannot be parallelized com-
pletely. However, it is possible to speed up the computation of each iteration. Two
most time-consuming operations in this step are calculating discrepancy d (element
of the field GF(2m)) and adjusting error location polynomial σ(X) if necessary [62],

85

control
unit

d -1

mt
lines

dµ× 1
() dµ× 2

() dµ× l
()

m copies

t-input
OR

t multipliers

m t-bit XOR trees

t-1 multipliers

m t-bit XOR trees

Part 2A

Part 2B

µ

µ+1

dµ+1

Shift ×X2(µ-)

t-input
OR

t-input
OR

Figure A.2: Finding error-location polynomial with Berlekamp-Massey algorithm.

e.g., for the µ + 1 step (0 ≤ µ ≤ t − 1):

σ(µ+1)(X) = σ(µ)(X) + dµd
−1
ρ X2(µ−ρ)σ(ρ)(X), (A.4)

dµ+1 = S2µ+3 + σ
(µ+1)
1 S2µ+2 + σ

(µ+1)
2 S2µ+1 + ... + σ

(µ+1)
lµ+1

S2µ+3−lµ+1. (A.5)

Here ρ ≤ µ and l ≤ µ are indices specific to the implementation of the algorithm
[62]. For the worst case, one needs to update σµ(X) in each iteration µ, while the
degree of σµ(X) exactly equal to µ. Hence the calculation of σµ(X) in early iterations
can be done with smaller circuit area and (slightly) faster time. However, it also
implies different hardware for each iteration. Instead, we will assume the scheme
shown in Fig. A.2 where the hardware is shared among the iterations and the latency
is the same in all iterations, being dictated by the operations on σµ(X) with the
maximum degree t.

Implementation of Eq. (A.4) (see part 2A on Figure A.2) involves one inversion
in GF(2m), 2t multiplications in GF(2m), m additions of t bits and multiplying by
the indeterminate X2(µ−ρ) (i.e. a shift operation). Fast inversion can be done directly
as a hard-wired LUT table for small m, so that the complexity of such operation is
roughly [85]:

τinv = �log2(m− 1)� × τAND + (m− 1) × τOR, (A.6)

86

Ainv = m2n/4 ×AAND + mn/4 ×AOR. (A.7)

For small values of m (less than 10) the Mastrovito multiplier [80] ensures fast efficient
implementation comparable with the other approaches [85]. The complexity of such
multiplier is

τmult = τAND + 2�log2m� × τXOR, (A.8)

Amult = m2 × AXOR + m2 × AAND. (A.9)

Complexity for the fast shift operation (Fig. A.2) is

τshift = τAND + �log2m� × τOR, (A.10)

Ashift = mt2 × AAND + mt2 ×AOR. (A.11)

Thus, the complexity of the part 2A during one iteration is

τ2A =τinv + τmult + τadd = (1 + �log2(m− 1)�) × τAND+

(2�log2m�+ �log2t�)× τXOR + (m − 1) × τOR,
(A.12)

A2A =Ainv + 2t × Amult + m × Aadd =

(2mt2 + 2m2t + m2n/4) × AAND+

(m2t + mt)× AXOR + (m2t + mn/4) × AOR.

(A.13)

Here it is assumed that inversion is slower operation than the first multiplication and
shift, and hence it is included in the critical path delay calculation. Finally, assuming
that part 2B is implemented with (t−1) multiplications and additions, and neglecting
other circuitry (e.g., a control unit), the total complexity of the Step 2 is

τ2 =t(2 + �log2(m − 1)�) × τAND+

t(4�log2m� + 2�log2t�)× τXOR + t(m − 1) × τOR,
(A.14)

A2 =(2mt2 + 3m2t + m2n/4 −m2) × AAND+

(3m2t + 2mt − m2) ×AXOR + (m2t + mn/4) ×AOR.
(A.15)

A.2.4 Finding Error Location Numbers and Correction

The simple substitution which is performed in parallel for all 2m elements is the
fastest (though rather area-expensive) way to find the error location numbers. The
test circuit for checking whether some element from GF(2m) is a root of error location
polynomial σ(X) requires a multiplication by a constant (Fig. A.3) which has a
complexity [80, 85]:

τconst = �log2m� × τXOR, (A.16)

87

(a)

Test for
element

1

Test for
element

Test for
element

n-1

Received
data r

Corrected
data v

n test
circuits
in
parallel

XOR
tree

Multip-
lier

XOR
tree

XOR
tree

2

Multip
lier

Multip-
lier

m t-bit
XOR
trees in
parallel

Error-location polynomial coefficients

t constant
multipliers
in GF(2m)
in parallel

(b)

m-bit
NAND

t1

Figure A.3: (a) Finding error location numbers and (b) error correction.

Aconst = (m2/2 − m) × AXOR. (A.17)

Hence the test circuit can be implemented with

τtest =τconst + τadd + �log2m�) × τAND =

(�log2m� + �log2t�) × τXOR�log2m�)× τAND,
(A.18)

Atest = t× Aconst + m× Aadd + m× AAND = tm2/2 × AXOR + m × AAND, (A.19)

so that the total complexity of the Step 3 is

τ3 = τtest + τXOR = �log2m�) × τAND + (1 + �log2m� + �log2t�) × τXOR, (A.20)

A3 = n ×Atest + m × AXOR = (tm2n/2 + n) × AXOR + nm × AAND. (A.21)

88

Area Critical Path Delay Operation in GF(2m)
OR AND XOR OR AND XOR

 Addition (n elements) 0 0 mn 0 0 log2n
 Multiplication 0 m2 m2 0 1 2 log2m

 Constant Multiplication 0 0 m2/2-m 0 0 log2m

 Inversion mn/4 m2n/4 0 m-1 log2(m-1) 0
 Multiplication by indeterminate
 of polynomial with degree t mt2 mt2 0 log2m 1 0

Table A.1: Complexity of key operations in BCH decoder

Area Critical Path Delay Operation
OR AND XOR OR AND XOR

 Step 1 0 0 tnm 0 0 log2n

 Step 2 mt2 +
mn/4

3m2t + 2mt2 +
m2n/4 - m2 3m2t + 2tm - m2 t(m-1)

2t +
t log2(m-1)

4t log2m +
2t log2t

 Step 3 0 mn m2tn/2 + n 0 log2m 1+ log2m + log2t

 Total mt2 +
mn/4

3m2t + 2mt2 +
m2n/4 + mn - m2

tnm + 3m2t + 2tm +
m2tn/2 + n - m2 t(m-1)

2t + t log2(m-1)

+ log2m

1+ log2n + (4t+1) log2m
+ (2t+1) log2t

Table A.2: Complexity of proposed BCH decoder

A.3 Results and Discussion

Table A.1 outlines the complexity of key operations used in BCH decoder model,
while Table A.2 presents our main results. In particular, the latter shows that for
large values of n the area of the decoder scales approximately as nm2t and mostly
dominated by the circuitry in Step 3. On the other hand, most of the delay, which is
roughly proportional to mt, comes from Step 2.

As expected the full delay is certainly much better than that of bit-serial BCH
decoder [11]. Moreover, Table A.2 shows that it might be possible to reduce the area-
delay product without significant area or delay degradation by balancing performance
among all steps. For example, since the delay of the Step 3 is negligible its area might
be reduced by implementing a slower algorithm.

It is more convenient to express the decoder complexity in technology-independent
units such as CMOS half-pitch FCMOS and fanout-of-4 inverter delay τFO4. To simplify
the analysis let us assume the static CMOS gate implementation. Using SCMOS
rules [91], the areas of the static minimum-size 2-input OR (6-transistor), 2-input
AND (6-transistor) and 2-input XOR (10-transistor) gates are roughly equal to 150,
150 and 250 (FCMOS)

2, while their delays (assuming that each gate drives only one
copy of itself) are about 2/3, 2/3 and 9/5, respectively [117]. Therefore, adding

89

1 2 4 8 16 32 64 128256
10

4

10
6

10
8

1010
10

11

A
re

a,
 F

C
M

O
S

2

10
1

10
2

10
3

10
4

10
5(15, 15-4*t, 2*t+1)

1 2 4 8 16 32 64 128256
10

4

10
6

10
8

1010
10

11

10
1

10
2

10
3

10
4

10
5(31, 31-5*t, 2*t+1)

1 2 4 8 16 32 64 128256
10

4

10
6

10
8

1010
10

11

10
1

10
2

10
3

10
4

10
5

D
el

ay
, F

O
4

(63, 63-6*t, 2*t+1)

1 2 4 8 16 32 64 128256
10

4

10
6

10
8

10
10

10
11

A
re

a,
 F

C
M

O
S

2

10
1

10
2

103

10
4

10
5(127, 127-7*t, 2*t+1)

1 2 4 8 16 32 64 128256
10

4

10
6

10
8

10
10

10
11

10
1

10
2

103

10
4

10
5(255, 255-8*t, 2*t+1)

1 2 4 8 16 32 64 128256
10

4

10
6

10
8

10
10

10
11

10
1

10
2

103

10
4

10
5

D
el

ay
, F

O
4

(511, 511-9*t, 2*t+1)

1 2 4 8 16 32 64 128256
10

4

106

10
8

10
10

10
11

t, bits

A
re

a,
 F

C
M

O
S

2

10
1

10
2

10
3

104

10
5(1023, 1023-10*t, 2*t+1)

1 2 4 8 16 32 64 128256
10

4

106

10
8

10
10

10
11

t, bits

10
1

10
2

10
3

104

10
5(2047, 2047-11*t, 2*t+1)

1 2 4 8 16 32 64 128256
10

4

106

10
8

10
10

10
11

t, bits

10
1

10
2

10
3

104

10
5

D
el

ay
, F

O
4

(4095, 4095-12*t, 2*t+1)

delay = 1 ns

area = 0.1 mm2

area = 0.1 cm2

Figure A.4: The area and delay as a functions of the maximum number of errors t
the BCH code can correct for several values of n. For convenience, horizontal lines
show the delay of 1 ns, and the areas of 0.1 cm2 and 0.1 mm2, for the 22 nm ITRS
technology [1] nodes.

contributions from each step, and droping negligibly small terms, the full area and
latency of the BCH decoder can be described by

ABCH ≈ 125nt(log2n)2 + 40n(log2n)2 + 250ntlog2n

+190nlog2n + 1200t(log2n)2 + 300t2log2n.
(A.22)

τBCH ≈ 0.7tlog2n + 0.7t + 8tlog2log2n + 3.6tlog2t

+2.5log2log2n + 1.8log2t + 1.8.
(A.23)

Figure A.4 shows the dependence of the area and delay versus the code efficiency,
i.e. the maximum number of errors t which can be decoded from the minimum
distance, for several codes of different block length. We assumed here that each code
has mt parity-check bits and the minimum distance of the code is equal to 2t + 1.

90

(For large values of n and t the number of parity bits can be somewhat smaller [11];
however it does not affect the results on Figure A.4.) To appreciate the results for
a FCMOS = 22 nm CMOS technology node (τFO4 = 9 ps) Figure A.4 also shows the
delay of 1 ns, and also the areas of 0.1 cm2 and 0.1 mm2, which may be a reasonable
chip’s real estate for the stand alone and embedded memories.

It is worth mentioning that the results in Eqs. A.23, A.22, and also in Figure
A.4, are rather crude because:

(i) We do not account for wire delay. The contribution of these delays can be
rather significant, especially for deep submicron CMOS nodes [45], i.e. for the cases
we are mostly interested. Moreover, in the first two steps there are few places with
a large fan-out on the critical path, which would require extra stages for an optimal
design.

(ii) Our area estimates are based on the minimum-width gates. The optimiza-
tion of delay will certainly require some gates to be larger than the minimum size and
hence the area will be somewhat larger.

(iii) The circuitry can be optimized to reduce delay and possibly area by us-
ing faster circuit families. For example, static XOR gate is about 30% slower than
the fastest implementation [16]. Moreover, the latency may be further reduced by
balancing the delay of each stage [117] in the circuit.

The first issue is probably the most important and our estimates are likely to
be on the optimistic side. Nevertheless, even such crude analysis might be enough to
estimate performance overheads of ECC decoders in the prospective memory tech-
nologies with high defect rates.

91

Appendix B

Prior Work on CMOL FPGA circuits

B.1 Architecture and Reconfiguration Algorithm

In our first work on CMOL FPGA circuits [109] we have considered one-cell fabric
similar to the one shown on Fig. 4.1 but with additional 45◦ angle (Fig. B.1).
More exactly, the angle α and the dimensionless factor β was chosen to satisfy two
requirements:

cosα =
rFnano

βFCMOS
, sinα =

(r − 1)Fnano

βFCMOS
, (B.1)

where r is a positive integer number, which, similar to parameter a given by Eq 2.1,
defines the range of cell interactions. Due to additional crossbar angle parameters a
and r are roughly related as

r =
√

2a. (B.2)

Also note that the number of cells M in a cell connectivity domain is given by

M = 2r(r − 1) − 1. (B.3)

In our early work, the placement and global routing steps were done manually.
On the other hand we have used almost the same algorithm described in Sec. 4.2.6 for
detail routing to reconfigure the circuits around defective stuck-on-open nanodevices.
In fact, the only difference in the algorithm in Ref. 109 is that we have processed
gates in rather naive order, i.e., starting from those located (after placement) at one
edge of the fabric and finishing with those at the other end.

B.2 32-bit Kogge-Stone Adder

As the first example, we have consider the CMOL FPGA implementation of an in-
teger, parallel-prefix adder which is one of the key digital logic circuits in digital
design - see, e.g., Ref. [91]. Among such adders, the Kogge-Stone adder [53] has the

92

(a) 2 FCMOS 2 FCMOS 2(r - 1)

Figure B.1: One-cell CMOL FPGA fabric with additional 45◦ crossbar tilt. On this
figure, M = 2r(r − 1) − 1 CMOS (basic) cells painted light-gray (in the shown case,
r = 3, M = 11 form the “cell connectivity domain” for the input pin of the cell
painted dark-gray. (The output cell connectivity domain has as many cells.) Note
that per CMOS cell border there are r nanowires of one orientation and (r − 1) of
the perpendicular orientation.

most regular structure (Fig. B.2a,b) and therefore manual mapping was not that
time consuming. To perform such mapping, first, the 32-bit adder circuitry has been
converted into a netlist of fan-in-two NOR gates (Fig. B.2c) and then mapped onto
a rectangular CMOL block (Fig. B.3), with interleaved inputs A[31:0] and B[31:0]
on the top side and outputs S[31:0] and Cout on the bottom side. (For simplicity,
Cin is assumed to be always “0”). The mapping procedure was first performed for
one bit slice and then repeated for the rest of the circuit, for several values of the cell
connectivity domain radius r′ ≤ r. For example, Fig. B.3a shows the map for r′ = 10.
For this case the cell connectivity domain’s diagonal has 2(r′ − 1) = 18 cells; however
in the last (fourth) logic stage the signal vector G (generate) has to span over 32 cells
in the horizontal direction. To implement such connections, two additional inverters
have been added in the design in each bit slice. Also, assuming that the inputs to the
adder are provided by CMOS lines, the broadcast of the input signal vectors A and
B (Fig. B.2b) has been avoided by adding another logic level (Fig. B.2c).

For this particular value of r′, the final “logic depth” (the number of logic levels in
the critical path) is 21, the number to be compared to 13 levels for the conventional

93

a16

p15
0

p8
3

p12
2

p14
1

g15
0

g0
4

g8
3

g12
2

g14
1

b16

p16
0g16

0

g16
4

g16
3

g16
2

g16
1

c15

g16
5

s16

c16

p16
1

p16
2

p16
3

0

ai bi

(gi
0, pi

0)

(gi
l, pi

l) (gj
l, pj

l)

(gi
l+1, pi

l+1)

(gi
l, pi

l) pi
0 ci

si

gi
l

ci=gi
l+1

0 1 0

0 1

i i

l l l l
i i i i j i i i

l l l
i i i i i j

g g g p g s p c

p a b p p p

a b

31 INPUT

OUTPUT

(a) (b)

7 9 5 4

8

11 12

13 15

16 18

19

17

21

22

25

23

27

28 30

31

29

34

38

35

39

24

37

36

20

26

32

14

47

44

43

42

41

40

6

2 4

10

10

a16

p16
0

g15
0

p15
0

p16
1

p16
3

p16
2

c16

c15

c15

s16

a16 × b16

g16
0

g16
0

b16

g14
1

p14
1

g12
2

p12
2

g8
3

p8
3

g16
1

g16
2

g16
3

g16
4 g0

4

(c)

Figure B.2: (a) The 32-bit Kogge-Stone adder and ((b),(c)) its single (16th) bit slice
implemented with: (b) AND, OR, and XOR gates, and (c) NOR gates only.

implementation, and 7 levels for the implementation with [4:1] LUTs. Figure B.4
shows the depth as a function of r′. Smaller values of r′ result in larger depth and
hence the larger total number of CMOS cells, up to the point r′ = rmin, at which
the layout becomes impossible. However, a reduction of r′ is beneficial for defect
tolerance - see Section B.4.

B.3 A Full Crossbar

Routing resources are a very important part of the conventional FPGAs, as well as
more exotic reconfigurable systems such as the Teramac computer [43]. This is why
as our second case we have chosen the fully-connected crossbar (Fig. B.5a). For this
circuit even the initial mapping on a rectangular CMOL array (with gates working as

94

simple inverters) may be readily automated, for example using the simple “greedy”
algorithm. In this procedure, the I/O pairs to be connected are mapped onto the
array one-by-one. Each pair is first assigned a perfect-world Manhattan route, using
the vertical rows of the input and output cells and some horizontal row (Fig. B.5b).
The algorithm checks that the vertical fragments of various routes do not overlap,
while uniformly distributing their horizontal fragments among the array rows.

Then, to create an actual path for each I/O pair, the algorithm tries to allocate
cells which are closest to the perfect route and are within each other’s connectivity
radius. (Of course, the cells used in mapping of the previously routed pairs cannot
be used again.) Just as for the other cases, an artificial reduction of the connectivity
to radius r′ ≤ r (at the initial mapping only) improves the final defect tolerance.

In order to use this (or any other) routing algorithm practically, one needs to
select the vertical size m of the CMOL array first (Fig. B.5a). In general, we are
interested in the smallest value of m, because this leads to the smallest area and logic
depth of the crossbar. Such value can be calculated considering the worst possible
combinations of the I/O pairs, which result in the largest aggregate data flow (n
routes) across the middle cross-section S of the rectangular array (Fig. B.5c). Since
CMOL fabric has (r−1) nanowires passing over each CMOS cell in the least favorable
direction (Fig. B.1a), and only (r′ − 1) of them are used at the constrained-radius
mapping, there are only m(r′−1) nanowires overall to serve the critical cross-section S.
This is why the crossbar height should satisfy the condition m(r′−1) ≥ n. Moreover,
in our simple “greedy” algorithm, nanowires of the same critical cross-section may be
used to provide vertical transport of (in the worst case) n routes, so that a more strict
condition should be satisfied: m(r′−1) ≥ n+m, i.e. m ≥ n/(r′−2). Finally, including
two input and output rows, the minimal crossbar height is mmin = �n/(r′ − 2)� + 2.

From here, the maximum logic depth d (the number of cell-to-cell hops) of the
crossbar may be calculated as �(n + m)/(r′ − 2), because the longest route has the
length of (n + m) cells and each cell-to-cell hop allows to move along this route by
(r′ − 2) cells in the worst (left-to-right) case. The resulting dependence of the logic
depth of a 64-bit crossbar on r′ is shown in Fig. B.4; it is substantially smaller than
the depth of the 32-bit adder which has the same total input vector width (32 + 32
= 64).

B.4 Results

We have performed defect tolerance analysis using Monte Carlo simulation technique.
As in our latest work the defects were randomly generated with the same probability
q. For some (randomly chosen) successful reconfiguration runs the final layout has
been functionally simulated to verify the correctness of the design. This was achieved
by first saving the layout in the BLIF format and then converting it into the structural

95

VHDL code with the help of the SIS package [95]. The verification has been fully
successful.

Figure B.3b shows the final connection map of the same adder as in Fig. B.3a
(r′ = 10), after a typical successful reconfiguration with r = 12 and q = 0.5, while Fig.
B.7 shows the layout of a small fragment of this circuit, with defective nanodevices
marked black. We were very much impressed how resilient the circuit was, retaining
full functionality after the reconfiguration around as much as 50% of bad devices.
Actually, the defect tolerance could be even higher if we allowed the input and output
cells of the adder to be moved (as can be done at a joint reconfiguration of several
functional units) or processing gates in a specific order (Sec. 4.2.6).

Figure B.6 shows the fault tolerance of the adder and full crossbar as a function
of r and r′. If we choose not to confine the initial mapping additionally (i.e., take
r′ = r), the circuit becomes more defect tolerant as r is increased. (With a fixed
CMOS technology, FCMOS, this requires scaling down the nanowire and nanodevice
half-pitch Fnano.) If r, i.e. fabrication technology, is fixed, the defect tolerance still
may be improved remarkably by taking just a slightly lower r′. The practical limit for
this reduction is imposed by the explosive growth of the logic depth at r′ → rmin (Fig.
B.4), as the corresponding performance degradation. The results show, for example,
that at realistic parameters (r = 12, r′ = 10) circuits may have a fabrication yield
above 99% at the fraction of bad nanodevices as high as ∼25% (Fig. B.6).

The performance model considered for that work was exactly the the as described
in Sec. 4.3. The optimization results for the two considered circuits are shown in Fig.
4.16. For example, for the apparently realistic values FCMOS = 32 nm and Fnano = 8
nm, the 32-bit CMOL FPGA adder could have an area about 110 µm2 and the total
logic delay 1.3 ns, at acceptable power dissipation. (Note that the corrected delay
would be almost twice smaller due to erroneous factor in noise swing calculations in
Ref. 109.)

In order to compare these numbers with purely CMOS FPGAs, we have used
the Xilinx ISE WebPack package (see http://www.xilinx.com) to simulate the similar
32-bit Kogge-Stone adder for the commercially available 90nm Xilinx Spartan-3 tech-
nology. (The basic unit of such FPGA is a slice consisting of two 4-input LUTs.) The
total delay of the adder, excluding the pin-to-slice propagation delay, has turned out
to be about 5.1 ns. Assuming the 1/s delay scaling [91], this corresponds to 1.7 ns
for the 32-nm technology. The circuit area of the CMOS circuit could be calculated
from the known number of its cells (”tiles”), equal to 139, and the tile area estimate
of approximately 2,100 µm2, which follows from the data cited in Ref. 87. With the
usual 1/s2 area scaling, for FCMOS = 32 nm this gives the 280 µm2 tile area, i.e. a
total adder area of about 39,000 µm2. Thus the delay-area product would be about
70,000 ns-µm2, i.e. about 500 times larger than in CMOL FPGA with the same
FCMOS.

96

(a)

(b)

a0
b0a1

b1a30
b30a31

b31

s0s1s30s31

01
23
45
67
89

1011
1213
1415
1617
1819
2021
22 23

2425
2627
28 29

3031
32
34 35

3637
3839
4041

4243
44

47
0123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

0123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

01
23

4
56

7
89

10

11

12

131415
16

17

1819

20

2122

2324

2526
2728

29
30

31

32

34

35
36

37
38

39

4041

42

43

4447
0123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263

0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

0123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263
0
1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23

Figure B.3: Mapping of the 32-bit Kogge-Stone adder on CMOL FPGA fabric with
r′ = 10: (a) the corresponding initial map of cell connections, and (b) the connection
map after the successful reconfiguration on the circuit around as many as 50% of
bad stuck-on-open-type nanodevices (for r = 12). Gates of the 16th bit sllice (see
the dashed line in Figure ??a are painted yellow and numbered in accordance with
Figure ??c.

97

5 10 15 20 25 30
1

10

100

32-bit Kogge-Stone adder

64-bit crossbar

Lo
gi

c
D

ep
th

 d

 (s
ta

ge
s)

Effective Connectivity Domain Radus r'

(r')min

Figure B.4: Logic depth (critical path length in this case) of the two studied circuits
as a function of the effective cell connectivity radius r′.

n

m

inputs

outputs [(n/2)!]2
worst-case I/O
combinations
of [n!]2 total

S

(c)(a)

1

1

2

2

3

3

(b)

Figure B.5: Full crossbar: (a) general configuration of the CMOL fabric, (b) perfect
Manhattan routes used by the “greedy” algorithm, and (c) the family of worst-case
I/O pairs.

98

(a)

(b)

0.01 0.1 1
0

20

40

60

80

100

1E-5 1E-4 1E-3 0.01 0.1 1
90

99

1E-3

99.99

0.01 0.1 1
0

20

40

60

80

100

Bad Nanodevice Fraction q

r'=17, r =
 17

r'=10, r =
 10
 11
 12
 13

C
irc

ui
t Y

ie
ld

 Y
 (%

)

Bad Nanodevice Fraction q

r'=10
r=12

r'=10, r=10

crossbar
 adder

99.9

C
irc

ui
t Y

ie
ld

 Y
 (%

)

r'=17, r=
 17
 18
 19

r'=10, r=
 10
 11
 12

C
irc

ui
t Y

ie
ld

 Y
 (%

)

Bad Nanodevice Fraction q (c)

Figure B.6: The final (post-reconfiguration) defect tolerance of (a, c) the 32-bit
Kogge-Stone adder and (b, c) the 64-bit full crossbar for several values of r and
r′. Panel (c) shows the defect tolerance of the circuits on the log scale which makes
visible the results for the most interesting (high) values of yield. This panel is for the
same values of r and r′ which have been used for Fig. B.3.

99

Figure B.7: A small fragment of the adder after the same reconfiguration as in Fig.
B.3b. Bad nanodevices (50% of the total number) are shown black, good used devices
green, unused devices are not shown, for clarity. Colored circles are only a help for the
eye, showing the location of interface pins (red and blue points) and used nanodevices.
Thin vertical and horizontal lines show CMOS cell borders.

100

Appendix C

CMOL FPGA CAD

C.1 Structure

CMOL FPGA CAD software [4] is an interactive tool for mapping sequential circuits
on two-cell CMOL FPGA fabric (for the detail architecture of such circuits, see, e.g.,
Chapter 4 and also Refs. 111, 114). This tool combines the simulated annealing
placement, linear-time (with respect to number of gates in the circuit) global and
detail routing. CMOL FPGA CAD is meant to provide a quick performance and
defect tolerance assessment for CMOL FPGA circuits and should be easily expandable
to include other CMOL-like circuit architectures.

Given a circuit in flat BLIF format [95] the full run of the program first performs
a quasi-optimal placement and then routing with or without defects (Fig. C.1) using
algorithms described in Section 4.2 of this Dissertation. The input BLIF file should
contain only NOR gates, latches, and buffers; though, the latter are always removed
in the preprocessing step. (Such technology mapping can be, e.g. accomplished
with SIS [95] or ABC [3] tools.) The maximum allowed gate fanin and fanout in
BLIF circuits should be less than the number of cells in a connectivity domain M =
(FCMOS/Fnano)

2 − 1.
The other acceptable inputs to the tool include the map of cell and nanodevice

defects, as well as placement, global routing, and detail routing files. Moreover,
specifying one of the latter three files changes the point of entry to the flow, as shown
in Fig. C.1. This can be used, e.g. to run Monte Carlo simulations enabling the
defect tolerance simulations with respect to stuck-on-open-type defective nanodevices.
Instead of performing placement and global routing for each trial in the simulation,
one can use the same preexisting global routing file. The program flow in this example
would be limited to just generation of map of bad nanodevices and then running detail
routing algorithm.

The easiest way to create these additional files is to use the tool to generate
them (Fig. C.1). If the step is successful, the CMOL FPGA CAD will generate the

101

Placement

Initial
(random)

placement

Start-dr_file

Global
routing

Detail
routing

GUI

GUI

GUI

GUI

Exit

-gui

-gui

-gui

-gui

Detailed routing
(w. cell & nano
defects, circuit)

Global routing (w.
cell defects, output

BLIF circuit)

-gr_file

-pl_file

-cell_file

Placement
 (w. cell defects)

Output BLIF
circuit

-nano_file

Generate
defects with
probability

–cell_p
 (default is 0)

Generate
defects with
probability
–nano_p

 (default is 0)

Nano defects

Cell defects

yes

yes

yes

yes

yes

yes

yes

yes

yes

no

no

no

no

no

no

no

no

no

Circuit
processing

Input BLIF
circuit

OPTIONS
General:
-dir
-seed
-ratio
-A
-size
-K
-pins
-argc

Placement
options:
-init_t
-exit_t
-lambda
-moves
-update
-exp

Detail routing:
-step

Figure C.1: General structure of CMOL FPGA CAD. All possible input and output
files are shown with the cylinder-shaped boxes.

102

command
line
options

ar
gc

bl

if
gu

i
di

r
se

ed

ra
tio A

si
ze

 K
pi

ns
in

it_
t

ex
it_

t
la

m
bd

a
m

ov
es

up

da
te

ex
p

st
ep

ce
ll_

p
na

no
_p

ce

ll_
fil

e
na

no
_f

ile

pl
_f

ile
gr

_f
ile

dr
_f

ile

argc - O
blif O - O X X
gui O O - O
dir O O O - O
seed O O O O - O O O O O O O O O O O O O O O O O O X
ratio O O O O O - O O O O O O O O O O O O O O O O O X
A O O O O O O - O O O O O O O O O O O O O O X X X
size O O O O O O O - X O O O O O O O O O O O O X X X
K O O O O O O O X - O O O O O O O O O O O O X X X
pins O O O O O O O O O - O O O O O O O O O O O X X X
init_t O O O O O O O O O O - O O O O O O O O O O X X X
exit_t O O O O O O O O O O O - O O O O O O O O O X X X
lambda O O O O O O O O O O O O - O O O O O O O O X X X
moves O O O O O O O O O O O O O - O O O O O O O X X X
update O O O O O O O O O O O O O O - O O O O O O X X X
exp O O O O O O O O O O O O O O O - O O O O O X X X
step O O O O O O O O O O O O O O O O - O O O O O O X
cell_p O O O O O O O O O O O O O O O O O - O X O X X X
nano_p O O O O O O O O O O O O O O O O O O - O X O O X
cell_file O O O O O O O O O O O O O O O O O X O - O X X X
nano_file O O O O O O O O O O O O O O O O O O X O - O O X
pl_file O O O O O O X X X X X X X X X X O X O X O - X X
gr_file O X O O O O X X X X X X X X X X O X O X O X - X
dr_file O X O O X X X X X X X X X X X X X X X X X X X -

Figure C.2: Options compatibility. “O” means that two corresponding options can
appear together, while “X” prohibits their simultaneous usage.

corresponding file automatically. To simplify usage, placement, global routing, and
detail routing files contain the data from all previous steps.

The successfully mapped circuit can be functionally compared with initial one,
e.g., using ABC tool [3]. To make it possible, tool generates automatically post-
mapping BLIF circuit. Note that even though all the unconnected (floating) primary
inputs or outputs are deleted in the preprocessing steps they are added back to the
output BLIF circuit.

C.2 Command Line Options

a) Usage

To map circuit “input.blif ” on CMOL FPGA fabric with default parameters in Linux
or Windows systems simply run

cmolcad -blif input.blif
For other specific cases use the options below. Options may appear in any order,

however not all options can be used simultaneously (Fig. C.2).

103

b) General Options

-A <int>: Linear size of a tile connectivity domain. Default is 9. Only odd numbers
are allowed. Note that A could be made deliberately smaller (for better defect
tolerance with respect to stuck-on-open-type nanodevices) than the maximum
linear size of tile connectivity domain obtained from CMOL parameters FCMOS

and Fnano (see Eq. 4.3).

-K <int>: The number of basic cells (K) per tile allocated for logic gates. Default
is 6. This option is ignored if array size option (-size) is specified. In the
latter case, the total number of basic cells allocated for the logic gates in the
whole CMOL FPGA array is exactly equal to the number of gates (excluding
inverters) in the circuit. Moreover, such cells will be evenly distributed among
tiles, but the actual number K maybe different (at most by one) from one tile
to the other.

-pins <int>: Maximum number of input/output cells (pinmax) which are available
during mapping in each peripheral tile. Default is 4. The maximum number
for this value is 16.

-ratio <int>: The ratio of CMOS and nano pitches (i.e. FCMOS/Fnano). Default
is 10. This ratio determines the linear size of the cell connectivity domain
a = βFCMOS/Fnano which is used for the detail routing step.

-seed <int>: The random number generator seed (must be a negative integer num-
ber). This value can be used to change behavior of heuristic algorithm and
defect generator routines.

-gui: Run program with GUI. Note that currently GUI is supported only under Linux
system.

-argc <int>: The number of arguments passed to cmolcad. This option can be
used when cmolcad with its arguments happens to be an argument itself for
some execution script, e.g., parallel job launcher mpiexec.

-cell p <float>: The probability of cells (including cells which comprise latch cells
and input/output cells) being defective. Default is 0. The cells are distributed
uniformly throughout the array. Note that the latch cell is considered opera-
tional as long as it has at least one not defective pair of input-output pins (or
equivalently at least one cell out of four total).

-nano p <float>: The probability of nanodevice being (stuck-on-open) defective.
The nanodevices are distributed uniformly throughout the array. Default is 0.

104

-size <int>: The linear size of array (Size) measured in tiles, not including the
peripheral tiles (which are used solely for input/output purposes). In case if this
option is not specified, the array size is determined automatically from options
-K, -pins, -cell p and the circuit statistics. More specifically, if -cell p is set
to 0 it is equal to

Size = �max[(Nin + Nout)/(4.0pinmax), (NNOR/K))1/2, (Nlatch)
1/2]�, (C.1)

where Nin, Nout, NNOR, and Nlatch are the number of primary inputs, primary
outputs, NOR gates, and latches in the considered circuit, correspondingly.
Otherwise, when -cell p is not equal to 0, the array size will be the smallest
possible one fitting the circuitry while having 12 − K routing cells in each tile
on average.

-dir <char>: Target folder for all generated output files.

-cell file <char>: The name of the file with cell defect map. If this option is spec-
ified then option -cell p will be ignored. Note that the file is allowed to have
defect map for a larger CMOL FPGA array size than the current one in the
program. However, defect map for smaller than the current array size will result
in error.

-nano file <char>: The name of the file with nanodevice defect map. If this option
is specified then option -nano p will be ignored.

-pl file <char>: The name of the file with placement. The placement file also con-
tains cell defect map, so that option -cell file will be ignored.

-gr file <char>: The name of the file with global routing. The global routing file
also contains the final circuit netlist in BLIF format and cell defect map, so
that option -cell file and -blif options will be ignored.

-dr file <char>: The name of the file with detail routing. The detail routing file also
contains the final circuit netlist in BLIF format, cell defect map, and nanodefect
map, so that options -cell file, -nano file, -blif will be ignored.

c) Placement Options

-init t <float>: The initial temperature for the simulated annealing placement.
Currently, the default value, calculated similarly to Ref. 10, is hardly optimal
so that choosing a proper initial temperature may improve placement rather
dramatically.

105

-exit t <float>: The final temperature for the simulated annealing placement. The
default value, calculated similarly to Ref. 10, is so far not optimal.

-lambda <float>: Tradeoff variable distributing weight between timing and wiring
cost. Default is 0.5. For more details, see Ref. 78.

-moves <int>: The exponent (moves) defining the number of moves to be at-
tempted before temperature update during annealing. The actual number of
moves is calculated as (NNOR + Nlatch + Nin + Nout)

moves. Default is 10.

-update <int>: The interval (in terms of the number of accepted moves or swaps)
for the time analysis, i.e. updating the slack for each gate. Default is 10000.
For more details, see Ref. 78.

-exp <int>: Criticality exponent used in timing cost calculation. Default is 3. For
more details, see Ref. 78.

e) Detail Routing Options

-step <int>: The reciprocal of this parameter defines the bucket size for quasi-
sorting algorithm in detail routing step. Default is 100. For example, for the
default value the size of the bucket is 0.01 and the total number of buckets is
99, since the probability of finding defect free location ranges from 0 to 1. (For
more details, see, e.g., Section 4.2.6.)

106

Bibliography

[1] International Technology Roadmap for Semiconductors. 2005 Edition. available
online at http://public.itrs.net/.

[2] FPGA place-and-route challenge. 1999. Available online at
http://www.eecg.toronto.edu/∼vaughn/challenge/ challenge.html/.

[3] ABC: A System for Sequential Synthesis and Verification. 2005. available online
at http://www.eecs.berkeley.edu/∼alanmi/abc/.

[4] CMOL FPGA CAD: An interactive tool for mapping sequen-
tial circuits on CMOL FPGA. 2006. available online at
http://rsfq1.physics.sunysb.edu/∼likharev/cmolfpgacad/.

[5] E. Ahmed and J. Rose. The effect of LUT and cluster size on deep-submicron
FPGA performance and density. IEEE Trans. VLSI, 12(3):288–298, 2004.

[6] H. B. Akkerman, P. W. M. Blom, D. M. de Leeuw, and B. de Boer. To-
wards molecular electronics with large-area molecular junctions. Nature,
441(7089):69–72, 2006.

[7] R. Amerson, R. J. Carter, W. B. Culbertson, P. Kuekes, G. Snider, and L. Al-
bertson. Plasma: An FPGA for million gate systems. In FPGA, pages 10–16,
1996.

[8] C. J. Amsinck, N. H. Di Spigna, D. P. Nackashi, and P. D. Franzon. Scal-
ing constraints in nanoelectronic random-access memories. Nanotechnology,
16(10):2251–2260, 2005.

[9] I. G. Baek, D. C. Kim, M. J. Lee, H.-J. Kim, E. K. Yim, M. S. Lee, J. E. Lee,
S. E. Ahn, S. Seo, J. H. Lee, J. C. Park, Y. K. Cha, S. O. Park, H. S. Kim, I. K.
Yoo, U.-I. Chung, J. T. Moon, and B. I. Ryu. Multi-layer cross-point binary-
oxide resistive memory (oxram) for post-nand storage applications. IEDM Tech.
Digest, page 31.4, 2005.

107

[10] V. Betz, J. Rose, and A. Marquardt. Architecture and CAD for deep-submicron
FPGAs. Kluwer Int. Series in Eng. and Comp. Science 497. Kluwer Academic,
Boston; London, 1999.

[11] R. E. Blahut. Algebraic Codes for Data Transmission. Cambridge University
Press, Cambridge, 2003.

[12] G. Borriello, C. Ebeling, S. A. Hauck, and S. Burns. The Triptych FPGA
architecture. IEEE Trans. VLSI, 3(4):491–501, 1995.

[13] L. D. Bozano, B. W. Kean, V. R. Deline, J. R. Salem, and J. C. Scott. Mecha-
nism for bistability in organic memory elements. Appl. Phys. Lett., 84(4):607–
609, 2004.

[14] W. D. Brown and J. Brewer. Nonvolatile semiconductor memory technology : a
comprehensive guide to understanding and to using NVSM devices. IEEE Press
series on microelectronic systems. IEEE Press, New York, 1998.

[15] S. R. J. Brueck. There are no fundamental limits to optical lithography. In
International Trends in Applied Optics, pages 85–109. SPIE Press, Bellingham,
WA, 2002.

[16] H. T. Bui, A. K. Al-Sheraidah, A., and Y. Wang. New 4-transistor XOR and
XNOR designs. In Proc. AP-ASIC-2000, pages 25–28, 2000.

[17] G. F. Cerofolini. Search for realistic limits to computation. ii. the technological
side. Appl. Phys. A-Mater. Sci. Process., 2006. in press.

[18] K. Chakraborty and P. Mazumder. Fault-Tolerance and Reliability Techniques
for High-Density Random-Access Memories. Prentice Hall, Upper Saddle River,
NJ, 2002.

[19] A. Chen, S. Haddad, Y.-C. Wu, T.-N. Fang, Z. Lan, S. Avanzino, S. Pangrle,
M. Buynoski, M. Rathor, W. Cai, N. Tripsas, C. Bill, M. VanBuskirk, and
M. Taguchi. Non-volatile resistive switching for advanced memory applications.
IEDM Tech. Digest, page 31.3, 2005.

[20] Y. Chen, G. Y. Jung, D. A. A. Ohlberg, X. M. Li, D. R. Stewart, J. O. Jeppesen,
K. A. Nielsen, J. F. Stoddart, and R. S. Williams. Nanoscale molecular-switch
crossbar circuits. Nanotechnology, 14(4):462–468, 2003.

[21] Y.-C. Chen, C. F. Chen, C. T. Chen, J. Y. Yu, S. Wu, S. L. Lung, R. Liu, and C.-
Y. Lu. An access-transistor-free (0T/1R) non-volatile resistance random access
memory (RRAM) using a novel threshold switching, self-rectifying chalcogenide
device. IEDM Tech. Digest, page 37.4.1, 2003.

108

[22] C. P. Collier, E. W. Wong, M. Belohradsky, F. M. Raymo, J. F. Stoddart, P. J.
Kuekes, R. S. Williams, and J. R. Heath. Electronically configurable molecular-
based logic gates. Science, 285(5426):391–394, 1999.

[23] S. Das, G. Rose, M. M. Ziegler, C. A. Picconatto, and J. E. Ellenbogen. Archi-
tecture and simulations for nanoprocessor systems integrated on the molecular
scale. In G. Cuniberti, G. Fagas, and K. Richter, editors, Introducing Molecular
Electronics, pages 479–515. Springer, Berlin, 2005.

[24] J. A. Davis, V. K. De, and J. D. Meindl. A stochastic wire-length distribution
for gigascale integration (gsi) - part i: Derivation and validation. IEEE Trans.
Electron Devices, 45(3):580–589, 1998.

[25] A. DeHon. Balancing interconnect and computation in a reconfigurable com-
puting array (or, why you don’t really want 100% LUT utilization). In Proc. of
FPGA, pages 69–78, Monterey, CA, Febrary 1999.

[26] A. DeHon. Array-based architecture for fet-based, nanoscale electronics. IEEE
Trans. Nanotechnol., 2(1):23–32, 2003.

[27] A. DeHon. Design of programmable interconnect for sublithographic pro-
grammable logic arrays. In Proc. of FPGA, pages 127–137, Monterey, CA,
Febrary 2005.

[28] A. DeHon. Nanowire-based programmable architectures. ACM J. Emerg. Tech-
nol. Comput. Syst., 1(2):109–162, 2005.

[29] A. DeHon, S. C. Goldstein, P. J. Kuekes, and P. Lincoln. Nonphotolithographic
nanoscale memory density prospects. IEEE Trans. Nanotechnol., 4(2):215–228,
2005.

[30] A. DeHon and K. Likharev. Hybrid CMOS/nanoelectronic digital circuits: De-
vices, architectures, and design automation. In Proc. of ICCAD, pages 375–382,
2005.

[31] A. DeHon, P. Lincoln, and J. E. Savage. Stochastic assembly of sublithographic
nanoscale interfaces. IEEE Trans. Nanotechnol., 2(3):165–174, 2003.

[32] A. DeHon and H. Naeimi. Seven strategies for tolerating highly defective fab-
rication. IEEE Des. Test Comput., 22(4):306–315, 2005.

[33] N. H. Di Spigna, D. P. Nackashi, C. J. Amsinck, S. R. Sonkusale, and P. Franzon.
Deterministic nanowire fanout and interconnect without any critical translation
alignment. IEEE Trans. Nanotechnol., 5(4):356–361, 2006.

109

[34] P. D. Dresselhaus, L. Ji, S. Y. Han, J. E. Lukens, and K. K. Likharev. Mea-
surement of single-electron lifetimes in a multijunction trap. Phys. Rev. Lett.,
72(20):3226–3229, 1994.

[35] S. Fölling, Ö. Türel, and K. K. Likharev. Single-electron latching switches as
nanoscale synapses. In Proc. of IJCNN’01, pages 216–221, Mount Royal, NY,
2001. Int. Neural Network Soc.

[36] D. J. Frank, R. H. Dennard, E. Nowak, P. M. Solomon, Y. Taur, and H. S. P.
Wong. Device scaling limits of Si MOSFETs and their application dependencies.
Proc. IEEE, 89(3):259–288, 2001.

[37] A. A. Gayasen, N. Vijaykrishnan, and M. J. Irwin. Exploring technology alter-
natives for nano-scale FPGA interconnects. In Proc. of DAC, pages 921–926,
June 2005.

[38] L. I. Glazman and K. A. Matveev. Residual quantum conductivity under
coulomb-blockade conditions. Jetp Letters, 51(8):484–487, 1990.

[39] B. Gojman, E. Rachlin, and J. E. Savage. Evaluation of design strategies for
stochastically assembled nanoarrays. ACM J. Emerg. Technol. Comput. Syst.,
1(2):73–108, 2005.

[40] S. C. Goldstein and M. Budiu. NanoFabrics: Spatial computing using molecular
electronics. In Proc. of Int. Symp. on Computer Architectures, pages 178–189,
Göteborg, Sweden, June 2001.

[41] S. C. Goldstein and D. Rosewater. Digital logic using molecular electronics. In
Proc. of IEEE Int. Solid-State Circuits Conf., page 12.5, San Francisco, CA,
February 2002.

[42] L. J. Guo. Recent progress in nanoimprint technology and its applications. J.
Phys. D-Appl. Phys., 37(11):R123–R141, 2004.

[43] J. R. Heath, P. J. Kuekes, G. S. Snider, and R. S. Williams. A defect-
tolerant computer architecture: Opportunities for nanotechnology. Science,
280(5370):1716–1721, 1998.

[44] S. Heo, R. Krashinsky, and K. Asanović. Activity-sensitive flip-flop and latch
selection for reduced energy. In Proc. of Conf. on Advanced Research in VLSI,
Salt Lake City, UT, March 2001.

[45] R. Ho, K. W. Mai, and M. A. Horowitz. The future of wires. Proc. IEEE,
89(4):490–504, 2001.

110

[46] C. T. Huang, C. F. Wu, J. F. Li, and C. W. Wu. Built-in redundancy analysis
for memory yield improvement. IEEE Trans. Reliab., 52(4):386–399, 2003.

[47] F. K. Hwang, D. S. Richards, and P. Winter. The Steiner tree problem. Annals
of discrete mathematics; 53. North-Holland, Amsterdam; London, 1992.

[48] G.-L. Ingold and Y. V. Nazarov. Charge tunneling rates in ultrasmall junctions.
In H. Grabert and M. H. Devoret, editors, Single Charge Tunneling, volume 294,
pages 21–107. Plenum Press, New York, 1992.

[49] K. L. Jensen. Field emitter arrays for plasma and microwave source applications.
Physics of Plasmas, 6(5):2241–2253, 1999.

[50] L. Ji, P. D. Dresselhaus, S. Y. Han, K. Lin, W. Zheng, and J. E. Lukens.
Fabrication and characterization of single-electron transistors and traps. J.
Vac. Sci. Technol. B, 12(6):3619–3622, 1994.

[51] G.-Y. Jung, E. Johnston-Halperin, W. Wu, Z. Yu, S.-Y. Wang, W. Tong, Z. Li,
J. E. Green, B. A. Sheriff, A. Boukai, Y. Bunimovich, J. R. Heath, and R. S.
Williams. Circuit fabrication at 17 nm half-pitch by nanoimprint lithography.
Nano Lett., 2(3):351–354, 2006.

[52] C. Kittel. Introduction to solid state physics. John Wiley & Sons Inc., Hoboken,
N.J., 2005.

[53] P. M. Kogge and H. S. Stone. Parallel algorithm for efficient solution of a
general class of recurrence equations. IEEE Trans. Comput., C-22(8):786–793,
1973.

[54] J. Kouloheris and A. E. Gamal. PLA-based FPA versus cell granularity. In
Proc. of Custom Integrated Circuits Conf., pages 4.3.1–4, Boston, MA, May
1992.

[55] S. Kubatkin, A. Danilov, M. Hjort, J. Cornil, J. L. Bredas, N. Stuhr-Hansen,
P. Hedegard, and T. Bjornholm. Single-electron transistor of a single organic
molecule with access to several redox states. Nature, 425(6959):698–701, 2003.

[56] P. J. Kuekes, W. Robinett, R. M. Roth, G. Seroussi, G. S. Snider, and R. S.
Williams. Resistor-logic demultiplexers for nanoelectronics based on constant-
weight codes. Nanotechnology, 17(4):1052–1061, 2006.

[57] P. J. Kuekes, W. Robinett, G. Seroussi, and R. S. Williams. Defect-tolerant de-
multiplexers for nano-electronics constructed from error-correcting codes. App.
Phys. A-Mater. Sci. Process., 80(6):1161–1164, 2005.

111

[58] P. J. Kuekes, G. S. Snider, and R. S. Williams. Crossbar nanocomputers. Sci.
Am., 293(5):72–80, 2005.

[59] P. J. Kuekes, D. R. Stewart, and R. S. Williams. The crossbar latch: Logic
value storage, restoration, and inversion in crossbar circuits. J. Appl. Phys.,
97(3):034301, 2005.

[60] M. Kund, G. Beitel, C.-U. Pinnow, T. Röhr, J. Schumann, R. Symanczyk, K.-D.
Ufert, and G. Müller. Conductive bridging ram (cbram). IEDM Tech. Digest,
page 31.5, 2005.

[61] Y. S. Lai, C. H. Tu, D. L. Kwong, and J. S. Chen. Bistable resistance switching
of poly(n-vinylcarbazole) films for nonvolatile memory applications. Appl. Phys.
Lett., 87(12):122101, 2005.

[62] H. Lee. High-speed VLSI architecture for parallel Reed-Solomon decoder. IEEE
Trans. VLSI, 11(2):288–294, 2003.

[63] J. H. Lee and K. K. Likharev. CMOL CrossNets as pattern classifiers. In Proc.
of Int. Work-Conf. on Artificial Neural Networks, pages 446–454, Barcelona,
Spain, June 2005.

[64] J. H. Lee and K. K. Likharev. Defect-tolerant nanoelectronic pattern classifiers.
submitted to Int. J. of Circuit Theory and Applications, 2006. available online
at http://rsfq1.physics.sunysb.edu/∼likharev/nanno/IJCTA06.pdf.

[65] J. H. Lee, X. Ma, D. B. Strukov, and K. K. Likharev. CMOL. In Proc. of
NANOARCH, pages 3.9–3.16, Palm Springs, CA, May 2005.

[66] C. Li, D. H. Zhang, X. L. Liu, S. Han, T. Tang, C. W. Zhou, W. Fan, J. Koehne,
J. Han, M. Meyyappan, A. M. Rawlett, D. W. Price, and J. M. Tour. Fabrication
approach for molecular memory arrays. App. Phys. Lett., 82(4):645–647, 2003.

[67] K. K. Likharev. CMOL technology: Possible roadmap. document in prepara-
tion.

[68] K. K. Likharev. Single-electron devices and their applications. Proc. IEEE,
87(4):606–632, 1999.

[69] K. K. Likharev. Riding the crest of a new wave in memory. IEEE Circuits
Devices, 16(4):16–21, 2000.

[70] K. K. Likharev. Electronics below 10 nm. In Nano and Giga Challenges in
Microelectronics, pages 27–68. Elsevier, Amsterdam, 2003.

112

[71] K. K. Likharev. CMOL: A silicon-based bottom-up approach to nanoelectronics.
Interface, 14:43–46, 2005.

[72] K. K. Likharev, A. Mayr, I. Muckra, and Ö. Türel. CrossNets - High-
performance neuromorphic architectures for CMOL circuits. Ann. NY Acad.
Sci., 1006:146–163, 2003.

[73] K. K. Likharev and D. B. Strukov. CMOL: Devices, circuits, and architectures.
In G. Cuniberti, G. Fagas, and K. Richter, editors, Introducing Molecular Elec-
tronics, pages 447–478. Springer, Berlin, 2005.

[74] R. J. Luyken and F. Hofmann. Concepts for hybrid CMOS-molecular non-
volatile memories. Nanotechnology, 14(2):273–276, 2003.

[75] L. P. Ma, J. Liu, and Y. Yang. Organic electrical bistable devices and rewritable
memory cells. Appl. Phys. Lett., 80(16):2997–2999, 2002.

[76] X. Ma, D. B. Strukov, J. H. Lee, and K. K. Likharev. Afterlife for silicon:
CMOL circuit architectures. In Proc. of IEEE Conf. on Nanotechnol., pages
175–178, Nagoya, Japan, July 2005.

[77] J. A. Mandelman, R. H. Dennard, G. B. Bronner, J. K. DeBrosse, R. Di-
vakaruni, Y. Li, and C. J. Radens. Challenges and future directions for the
scaling of dynamic random-access memory (dram). IBM J. Res. Dev., 46(2-
3):187–212, 2002.

[78] A. Marquardt, V. Betz, and J. Rose. Timing-driven placement for FPGAs. In
Proc. of FPGA, pages 203–213, New York, NY, USA, 2000.

[79] M. Masoumi, F. Raissi, M. Ahmadian, and P. Keshavarzi. Design and evaluation
of basic standard encryption algorithm modules using nanosized complemen-
tary metal-oxide-semiconductor-molecular circuits. Nanotechnology, 17(1):89–
99, 2006.

[80] E. D. Mastrovito. VLSI architectures for computation in Galois fields. Linkoping
University, Linkoping, Sweden, 1995. PhD thesis.

[81] T. K. Matsushima, T. Matsushima, and S. Hirasawa. Parallel encoder and de-
coder architecture for cyclic codes. IEICE Trans. Fundam. Electron. Commun.
Comput. Sci., E79A(9):1313–1323, 1996.

[82] C. Mead and L. Conway. Introduction to VLSI systems. Addison-Wesley, Read-
ing, MA; London, 1980.

113

[83] K. Nabors and J. White. Fastcap - a multipole accelerated 3-d capacitance
extraction program. IEEE Trans. Comput-Aided Des. Integr. Circuits Syst.,
10(11):1447–1459, 1991.

[84] M. A. Neifeld and J. D. Hayes. Error-correction schemes for volume optical
memories. Applied Optics, 34(35):8183–8191, 1995.

[85] C. Paar. Efficient VLSI Architectures for Bit-Parallel Computation in Galois
Fields. Univ. of Essen, Essen, Germany, 1995. PhD thesis, Inst. for Experimen-
tal Math.

[86] C. Paar, P. Fleischmann, and P. Soria-Rodriguez. Fast arithmetic for public-key
algorithms in Galois fields with composite exponents. IEEE Trans. Comput.,
48(10):1025–1034, 1999.

[87] K. Padalia, R. Fung, M. Bourgeault, A. Egier, and J. Rose. Automatic transistor
and physical design of FPGA tiles from an architectural specification. In Proc.
of FPGA, pages 164–172, 2003.

[88] J. Park, A. N. Pasupathy, J. I. Goldsmith, C. Chang, Y. Yaish, J. R. Petta,
M. Rinkoski, J. P. Sethna, H. D. Abruna, P. L. McEuen, and D. C. Ralph.
Coulomb blockade and the Kondo effect in single-atom transistors. Nature,
417(6890):722–725, 2002.

[89] D. Porath. DNA-based devices. In G. Cuniberti, G. Fagas, and K. Richter, ed-
itors, Introducing Molecular Electronics, pages 411–446. Springer, Berlin, 2005.

[90] B. Prince. Semiconductor Memories: A Handbook of Design, Manufacture, and
Application. Wiley, Chichester, 2nd edition, 1991.

[91] J. M. Rabaey, A. P. Chandrakasan, and B. Nikolic. Digital Integrated Circuits:
A Design Perspective. Pearson Education, Upper Saddle River, NJ, 2nd edition,
2003.

[92] S. K. Rao, P. Sadayappan, F. K. Hwang, and P. W. Shor. The rectilinear steiner
arborescence problem. Algorithmica, 7(2-3):277–288, 1992.

[93] S. Roy and V. Beiu. Majority multiplexing-economical redundant fault-tolerant
designs for nanoarchitectures. IEEE Trans. Nanotechnol., 4(4):441–451, 2005.

[94] D. V. Sarwate and N. R. Shanbhag. High-speed architectures for Reed-Solomon
decoders. IEEE Trans. VLSI, 9(5):641–655, 2001.

114

[95] E. M. Sentovich, K. J. Singh, L. Lavagno, C. Moon, R. Murgai, A. Saldanha,
H. Savoj, P. R. Stephan, R. K. Brayton, and A. Sangiovanni-Vincentelli. SIS:
A system for sequential circuit synthesis. Technical report, 1992.

[96] R. Sezi, A. Walter, R. Engl, A. Maltenberger, J. Schumann, M. Kund, and
C. Dehm. Organic materials for high-density non-volatile memory applications.
IEDM Tech. Digest, page 10.2.1, 2003.

[97] M. She. Semiconductor Flash Memory Scaling. Univ. of California, Berkeley,
2003. PhD thesis.

[98] J. G. Simmons and Verderbe.Rr. New conduction and reversible memory phe-
nomena in thin insulating films. Proc. of the Royal Society of London Series
a-Mathematical and Physical Sciences, 301(1464):77–&, 1967.

[99] G. Snider. Computing with hysteretic resistor crossbars. App. Phys. A-Mater.
Sci. Process., 80(6):1165–1172, 2005.

[100] G. Snider, P. Kuekes, T. Hogg, and R. S. Williams. Nanoelectronic architec-
tures. App. Phys. A-Mater. Sci. Process., 80(6):1183–1195, 2005.

[101] G. Snider, P. Kuekes, and R. S. Williams. CMOS-like logic in defective,
nanoscale crossbars. Nanotechnology, 15(8):881–891, 2004.

[102] G. Snider and R. S. Williams. Nano/CMOS architectures using field-
programmable nanowire interconnect. preprint.

[103] H. H. Solak, C. David, J. Gobrecht, V. Golovkina, F. Cerrina, S. O. Kim, and
P. F. Nealey. Sub-50 nm period patterns with EUV interference lithography.
Microelectron. Eng., 67-8:56–62, 2003.

[104] P. P. Sotiriadis. Information capacity of nanowire crossbar switching networks.
IEEE Trans. Inf. Theory, 52(7):3019–3032, 2006.

[105] M. R. Stan, P. D. Franzon, S. C. Goldstein, J. C. Lach, and M. M. Ziegler.
Molecular electronics: From devices and interconnect to circuits and architec-
ture. Proc. IEEE, 91(11):1940–1957, 2003.

[106] C. H. Stapper and H. S. Lee. Synergistic fault-tolerance for memory chips.
IEEE Trans. Comput., 41(9):1078–1087, 1992.

[107] D. B. Strukov. The area and latency tradeoffs of binary bit-parallel bch de-
coders for the prospective nanoelectronic memories. In Proc. Asilomar Conf.
on Signals, Systems and Computers, Asilomar, CA, 2006. in print.

115

[108] D. B. Strukov. Defect tolerance in digital CMOL circuits. 2006. in preparation.

[109] D. B. Strukov and K. K. Likharev. CMOL FPGA: A reconfigurable architec-
ture for hybrid digital circuits with two-terminal nanodevices. Nanotechnology,
16(6):888–900, 2005.

[110] D. B. Strukov and K. K. Likharev. Prospects for terabit-scale nanoelectronic
memories. Nanotechnology, 16:137–148, 2005.

[111] D. B. Strukov and K. K. Likharev. CMOL FPGA circuits. In Proc. of Int.
Conf. on Computer Design, CDES’2006, pages 213–219, Las Vegas, NE, June
2006.

[112] D. B. Strukov and K. K. Likharev. Defect tolerant architectures for nanoelec-
tronic crossbar memories. J. Nanosci. Nanotechnol., 2006. in press.

[113] D. B. Strukov and K. K. Likharev. Defect-tolerant CMOL memories. In Proc.
of NANOARCH, pages 1–8, Boston, MA, June 2006.

[114] D. B. Strukov and K. K. Likharev. A reconfigurable architecture for hybrid
CMOS/Nanodevice circuits. In Proc. of FPGA, pages 131–140, New York, NY,
2006. ACM Press.

[115] D. B. Strukov and K. K. Likharev. A reconfigurable CMOL DSP circuit. 2006.
in preparation.

[116] F. Sun and T. Zhang. Two fault tolerant design approaches for hybrid
CMOS/nanodevice digital memories. In Proc. of NANOARCH, pages 9–16,
Boston, MA, June 2006.

[117] I. E. Sutherland, R. F. Sproull, and D. Harris. Logical effort: Designing fast
CMOS circuits. Morgan Kaufmann Publishers, San Francisco, CA; London,
1999.

[118] V. A. Sverdlov, T. J. Walls, and K. K. Likharev. Nanoscale silicon mosfets: A
theoretical study. IEEE Trans. Electron Devices, 50(9):1926–1933, 2003.

[119] M. Tom and G. Lemieux. Logic block clustering of large designs for channel-
width constrained FPGAs. In Proc. of DAC, pages 726–731, San Diego, CA,
June 2005.

[120] C. M. S. Torres, S. Zankovych, J. Seekamp, A. P. Kam, C. C. Cedeno, T. Hoff-
mann, J. Ahopelto, F. Reuther, K. Pfeiffer, G. Bleidiessel, G. Gruetzner, M. V.
Maximov, and B. Heidari. Nanoimprint lithography: An alternative nanofabri-
cation approach. Mater. Sci. Eng. C-Biomimetic Supramol. Syst., 23(1-2):23–
31, 2003.

116

[121] J. M. Tour. Molecular Electronics: Commercial Insights, Chemistry, Devices,
Architecture and Programming. World Scientific, Singapore; River Edge, NJ,
2003.

[122] O. Türel, J. H. Lee, X. L. Ma, and K. K. Likharev. Neuromorphic architectures
for nanoetectronic circuits. Int. J. Circ. Theory App., 32(5):277–302, 2004.

[123] J. von Neumann. Probabilistic logics and the synthesis of reliable organisms
from unreliable components. In G. Cuniberti, G. Fagas, and K. Richter, editors,
Automata Studies, pages 329–378. Princeton Univeristy Press, Princeton, NJ,
1956.

[124] D. J. Wagner and A. H. Jayatissa. Nanoimprint lithography: Review of aspects
and applications. In W. Y. Lai, L. E. Ocola, and S. Pau, editors, Nanofabri-
cation: Technologies, Devices, and Applications II, volume 6002, page 60020R.
SPIE, 2005.

[125] T. Wang, Z. Qi, and C. A. Moritz. Opportunities and challenges in application-
tuned circuits and architectures based on nanodevicess. In Proc. of Conf. on
Computing Frontiers, pages 503 – 511, Italy, April 2004.

[126] W. Wang, T. Lee, and M. Reed. Intrinsic electronic conduction mechanisms in
self-assembled monolayers. In G. Cuniberti, G. Fagas, and K. Richter, editors,
Introducing Molecular Electronics, pages 275–300. Springer, Berlin, 2005.

[127] W. Wu, G. Y. Jung, D. L. Olynick, J. Straznicky, Z. Li, X. Li, D. A. A. Ohlberg,
Y. Chen, S. Y. Wang, J. A. Liddle, W. M. Tong, and R. S. Williams. One-
kilobit cross-bar molecular memory circuits at 30-nm half-pitch fabricated by
nanoimprint lithography. App. Phys. A-Mater. Sci. Process., 80(6):1173–1178,
2005.

[128] N. B. Zhitenev, W. Jiang, A. Evbe, Z. Bao, E. Garfunkel, D. M. Tennant,
and R. Cirelli. Control of topography, stres, and diffusion of molecule-metal
interface. Nanotechnology, 17(5):1272–1277, 2006.

[129] N. B. Zhitenev, H. Meng, and Z. Bao. Conductance of small molecular junctions.
Phys. Rev. Lett., 88(22):226801, 2002.

[130] M. M. Ziegler and M. R. Stan. CMOS/nano co-design for crossbar-based molec-
ular electronic systems. IEEE Trans. Nanotechnol., 2(4):217–230, 2003.

117

