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The search for new computing technologies is driven by the con-
tinuing demand for improved computing performance, but 
to be of use a new technology must be scalable and capable. 

Memristor or memristive nanodevices seem to fulfil these require-
ments — they can be scaled down to less than 10  nm and offer 
fast, non-volatile, low-energy electrical switching. Memristors are 
two-terminal ‘memory resistors’ that retain internal resistance state 
according to the history of applied voltage and current. They are sim-
ple passive circuit elements, but their function cannot be replicated 
by any combination of fundamental resistors, capacitors and induc-
tors1,2. Moreover, their microscopically modified internal state is 
easily measured as an external two-terminal resistance. Memristors 
were originally defined as components that linked charge and mag-
netic flux1, but they can be more usefully described as devices with 
a pinched-hysteresis loop whose size is frequency dependent3. The 
natural computing application for such devices is resistive random 
access memory (ReRAM), but their dynamical nonlinear switching 
also suggests that they could be used to develop alternative computer 
logic architectures.

Memristive switching behaviour can be traced back two centu-
ries4, but its theoretical inception came only 40 years ago1,2 and the 
link between theory and experiment was only established in 20085. In 
the 1960s, advances in thin-film technology allowed very high electric 
fields in ultrathin metal/oxide/metal films to be obtained and mem-
ristive behaviour was pronounced enough to be observed6,7. However, 
after a decade of intensive study7, research efforts into these devices 
faded, which is perhaps not surprising given the rise of silicon inte-
grated circuit technology. Interest remained low until the late 1990s, 
when a gradual reduction in the progress of silicon technologies led 
to renewed interest in alternative switching devices.

The successful commercialization of any application demands a 
robust and predictive understanding of its underlying mechanisms. 
For memristors, understanding their electrical switching has been 
limited by the chemical, stochastic and localized nature of the effects. 
However, in the past decade advances in the growth and characteri-
zation of nanoscale materials has led to significant progress in the 
understanding and optimization of microscopic memristive switch-
ing. These developments have recently been covered by a variety of 
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excellent review articles8–19. Here, we focus on the chemical and phys-
ical mechanisms of memristive devices, and try to identify the key 
issues that impede the commercialization of memristors as computer 
memory and logic.

Memristive materials and nanoscale devices
Memristive devices can be classified based on switching mechanism, 
switching phenomena or switching materials. Here we loosely group 
all ionic switching devices into two categories — anion devices and 
cation devices — to simplify our discussion of their mechanisms.

Anion devices. The switching materials of anion-based devices 
include oxide insulators, such as transition metal oxides, complex 
oxides, large bandgap dielectrics, and some non-oxide insulators, 
such as nitrides and chalcogenides. In most metal oxides, for exam-
ple, the oxygen anion (or equivalently the positive-charged oxygen 
vacancy) is thought to be the mobile species. Anion motion then leads 
to valence changes of the metal (cations), which causes the resistance 
change of the metal oxide material. Therefore, these devices are also 
called valence change memories9. Resistance switching can originate 
from a variety of defects that alter electronic transport rather than a 
specific electronic structure of insulating materials, and consequently 
almost all insulating oxides exhibit resistance switching behaviour. 
In principle, it should also be possible to observe this switching in 
most other insulating compound materials, such as halides, borides, 
carbides and phosphides. The key to obtaining controllable switching 
seems to be engineering structural and/or chemical defects into the 
material either through fabrication processes or electrical operations.

Since the early demonstration of resistance switching phenom-
enon in oxides around 50 years ago6,7, oxides have been extensively 
studied as anion-based switching materials20–26, including MgO, TiOx, 
ZrOx, HfOx, VOx, NbOx, TaOx, CrOx, MoOx, WOx, MnOx, FeOx, CoOx, 
NiOx, CuOx, ZnOx, AlOx, GaOx, SiOx, SiOxNy, GeOx, SnO2, BiOx, 
SbOx, oxides of rare-earth metals including Y, Ce, Sm, Gd, Eu, Pr, Er, 
Dy and Nd, and perovskites (SrTiO3, Ba0.7Sr0.3TiO3, SrZrO3, BiFeO3, 
Pr0.7Ca0.3MnO3, La0.33Sr0.67FeO3, PryLa0.625−yCa0.375MnO3). Among the 
even larger class of non-oxide insulators, a few examples of switch-
ing materials have been demonstrated in nitrides (for example, AlN), 
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tellurides (for example, ZnTe) and selenides (for example, ZnSe). 
References and some detailed information of these switching materi-
als are given in Supplementary Table S1.

The switching mode can be bipolar or unipolar (also called nonpo-
lar when devices can be operated with both voltage polarities). Bipolar 
switching requires opposite voltage polarities to be used for switching 
ON (set) and OFF (reset) respectively, whereas nonpolar and unipo-
lar switching has no such requirement. Most of the above materials 
can switch in both nonpolar and bipolar modes27,28 depending princi-
pally on the structure of the device, and in particular the asymmetry 
obtained through device fabrication or electrical operations.

Switching mechanisms. Caution needs to be taken when identifying 
the exact switching material and mechanism. Many chemical interac-
tions29,30 are possible inside a device under a high electric field and 
Joule heating, and the entire material stack should be taken into con-
sideration. For example, the electrode31 or even the substrate mate-
rial32,33 could be responsible for the observed switching phenomena. 
In most cases, a new material phase is formed in the insulating mate-
rial during the initial electroforming processes11,34–36 or device fab-
rication, and this new phase accounts for the switching. Therefore, 
identifying the actual switching material is a challenging but crucial 
first step towards understanding the switching mechanism. The spe-
cific questions that need to be addressed are: what are the mobile spe-
cies, and where (location), why (driving force) and how (microscopic 
picture) are they moving under electrical excitations?

Insulating oxides can also be viewed as semiconductors with 
native dopants, resulting from oxygen deficiency (n-type, for exam-
ple, TiO2−x; refs 37,38) or oxygen excess (p-type, for example, Co1−xO; 
refs  39,40). The thermally and/or electrically activated motion of 
these native dopants results in chemical changes in the oxides, such 
as valence state change, leading to resistance switching. The mobil-
ity and concentration of oxygen vacancies or cation interstitials are 
sufficiently high in the temperature range in question8,9,41, especially 
in transition metal oxides. Therefore, it is generally believed that 
they are the mobile species responsible for switching, and this seems 
to be supported by experimental evidence22,38,42–44. However, more 
direct evidence would still be needed to clarify the identity of the 
mobile species in the representative switching oxides. Experiments 
using isotope tracers should be particularly useful45. In addition to 
the native dopants, other impurities, such as hydrogen, have been 
suggested to play a role in switching46,47, and this seems likely in 
cation devices48. 

The switching region in a micrometre-size device or larger is typi-
cally a localized conduction channel tens or hundreds of nanome-
tres in diameter38,44. Switches with a laterally (that is, parallel to the 
electrode surface) uniform switching region typically have a shorter 
retention and lower switching speed. The switching channel is usu-
ally created in the electroforming process11,35,36, in which the virgin 
device is preconditioned to a switchable state by applying a higher-
than-usual voltage or current. For a symmetric bipolar device, the 
switching polarity is usually determined by the voltage polarity of this 
electroforming process37,49,50–52. In contrast, for an asymmetric bipo-
lar device, the switching polarity is often governed by the asymmetry 
of the device stack rather than the polarity of electroforming35. Even 
interface switching (as opposed to bulk switching) is localized to a 
small area of the interface37,50,53.

The important role of the interface in the switching is reflected by 
a commonly observed rectifying current–voltage (I–V) relation in 
the high-resistance state (OFF state). In most cases, one interface of 
a bipolar device is essentially ohmic with a large density of dopants 
and the other interface is more resistive with fewer dopants. As a volt-
age divider, most of the applied voltage drops on the resistive inter-
face to force switching. Only a small fraction of the applied voltage is 
dropped on the highly conductive ohmic-like interface, which always 
remains at low resistance. The rectification orientation of the I–V 

curves could be used to identify the interface that blocks the current 
and this interface is usually the switching interface37. However, it is 
not uncommon that two opposite switching polarities coexist in the 
same device54,55, which could be rationalized by considering that both 
interfaces might be switchable under a certain circumstance and they 
switch to the opposite resistance states because they always see the 
opposite electric fields56,57. A family of nanodevices have been dem-
onstrated in simple metal/oxide/metal structures with rich switching 
behaviours by tailoring the switching properties of the two interfaces. 
Nonpolar devices can switch either at the interface region50–52 or in the 
interior of the switching film58. 

An electrical bias generates two main effects in a switching mate-
rial: an electric field and Joule heating. Joule heating is expected 
given the high current densities (of the order of >106 A cm−2) typi-
cally required for switching in anion-based memristors and has been 
confirmed in both bipolar and nonpolar devices49,51,59–63. Electric 
field and Joule heating generally coexist in all memristive switching, 
although their relative importance varies depending on the device 
stack, materials, electrical operation history and more. This leads to 
four main classes of switching commonly observed in oxide-based 
switches: bipolar nonlinear, bipolar linear, nonpolar bistable and 
nonpolar threshold switching. The four classes are shown schemati-
cally in Fig. 1a–d. In all cases there are four main driving forces that 
work independently or together to influence atomic motion or rear-
rangement: electric potential gradient (field), electron kinetic energy, 
species concentration gradient and temperature gradient (Fig. 1e–h). 
The microscopic picture of how exactly these factors drive the mobile 
species to actuate a particular type of switching are still under debate. 
Therefore, experiments that could visualize the switching in real time 
and at nanoscale resolution, and with chemical and/or structural 
information would be extremely valuable, such as those using in situ 
transmission electron microscopy38,64,65 and in situ scanning transmis-
sion X-ray microscopy44.

A high electric field gradient can move charged dopants, as illus-
trated in Fig. 1e. High-speed electrons under a high electric field can 
also move atoms by momentum transfer or ‘electron wind’ (Fig. 1f), 
which has been demonstrated to reversibly switch the resistance 
of a Au nanowire66. Both electric field and electron kinetic energy 
are polarity dependent and can cause bipolar switching. The role of 
Joule heating is more complicated and not yet fully understood. High 
temperatures from Joule heating significantly enhance drift (Fig. 1e) 
and diffusion (Fig.  1g). Moreover, the high temperature is local-
ized around the conduction channel, which generates a high tem-
perature gradient laterally. Similar to an electric potential gradient 
or an element concentration gradient, a high temperature gradient 
itself might also induce a net mass transfer of atoms67 (Fig. 1h). Drift 
and electromigration move dopants vertically along the conduction 
channel, while the temperature gradient might contribute to lateral 
motion of dopants. Diffusion can happen in both ways, because 
element concentration gradients exist both vertically (within the 
channel) and laterally (into and out of the channel). Finally, for each 
microscopic device state with a particular arrangement of impurities, 
defects or dopants, the I–V characteristic is determined by the avail-
able electron conduction mechanisms, as summarized in Fig. 1i for 
n-type materials. This I–V behaviour is the key device property for 
applications and also provides crucial information to decipher the 
switching mechanism.

Generally speaking, the switching tends to be bipolar if the elec-
tric field plays a significant role and nonpolar if thermal effects are 
dominant. Figure  1a presents schematically a device driven by an 
electric field. The growth and retraction of the conduction channel 
vertically under the electric field (drift or electromigration) in the 
interface region results in the typical switching loop (inset in Fig. 1a), 
where the rectifying I–V curve in the OFF state and the symmetric 
nonlinear I–V curve in the ON state reflect a Schottky-like barrier 
and a residual tunnel barrier in the OFF and ON states, respectively. 
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Figure 1b shows another type of bipolar switching, which has a linear 
I–V curve in both the ON and OFF states. In this class of switching, 
there is a conduction channel bridging the top and bottom electrodes 
all the time in the entire switching cycle. The resistance change origi-
nates from the change in composition, volume or geometry inside the 
channel, which is a result of the combined effect of the electric-field-
induced vertical drift and the thermally enhanced lateral diffusion68.

An increasing role of the thermal effect leads to nonpolar switching 
(Fig. 1c) where the same voltage polarity can be used to set and reset 
the device. The physics of nonpolar switching is still controversial. On 
the one hand, the temperature gradient shown in Fig. 1h might, for 
example, attract oxygen vacancies to the conduction channel region, 
switching the device ON. On the other hand, the set switching ini-
tially resembles ‘soft breakdown’ of dielectrics under an electric field. 
It is likely, it is a combined two-step process, where a purely electronic 
effect (breakdown) leads to a high current and then heat-assisted 
ionic motion follows67. The reset switching of the nonpolar device 
is normally described as a thermal rupture (fuse) of the conduction 
channel, possibly caused by thermal diffusion driven by concentra-
tion gradient and/or reduction of free surface energy of the filament58 
or even a phase-change process induced by heat and/or electric field69.

In contrast, the switching shown in Fig.  1d is the threshold 
switching, which is essentially a volatile switching with a hyster-
esis loop. With increasing current, the insulating device suddenly 

becomes metallic at a certain current level accompanying a steep 
current increase in the I–V plot. However, after reducing the cur-
rent level, the device becomes insulating again. Threshold switching 
has been observed in NiOx when its electrode is thin, and attributed 
to a spontaneous rupture of filaments at high temperature due to an 
insufficient heat dissipation51,70. Threshold switching has been more 
commonly observed in metal–insulator–transition materials71, such 
as VO2, NbO2 and Ti2O3, where negative differential resistance (NDR) 
phenomenon is frequently seen. A localized high temperature from 
Joule heating converts the heated region of a metal/insulator/transi-
tion material from insulating to metallic via mechanisms still under 
debate, giving rise to the abrupt current increase. Reducing the cur-
rent decreases the local temperature to below the metal/insulator/
transition temperature, recovering the insulating state. Therefore, this 
type of switching (Fig. 1d) is viewed as a purely thermal effect.

Most switching phenomena are thus a result of both thermal and 
electric field effects — indeed, a purely electric-field-induced switch-
ing is yet to be unambiguously demonstrated in anion-based devices. 
As the device resistance changes during switching (and with it the 
voltage and current), even the relative contributions of the coupled 
thermal and electric field effects are dynamically changing.

Material selection criteria. Joule heating is essentially unavoidable in 
these devices, and this has a major impact on material selection72. To 
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(4) tunnelling from cathode to traps; (5) emission from traps to the conduction band (Poole–Frenkel emission); (6) tunnelling from trap to conduction 
band; (7) trap-to-trap hopping or tunnelling, ranging from Mott hopping between localized states to metallic conduction through extended states (see 
Fig. 2b); and (8) tunnelling from traps to anode. EF, Fermi energy level; Ev, valence band; Ec, conduction band; Eb, Schottky barrier height; Et, trap barrier 
height. Panel i reproduced with permission from ref. 16, © 2012 IEEE.
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form a resistance switching system, both conductive and insulating 
phases are required. Reliable switching requires that these two phases 
do not react with each other chemically to form a new phase, even at 
the high temperatures induced by Joule heating. This would require a 
simple material system, such as those with the phase diagram shown 
in Fig. 2a. In this system there are only two thermodynamically stable 
solid-state phases, meaning that they will not react with each other 
to form a new phase even at high temperature. The MeOn phase is 
the insulating phase and the (Me) phase is relatively conductive, serv-
ing as the conduction channel. What distinguishes any (Me) phase 
as an ideal conduction channel material is a large solubility of oxy-
gen, which allows the channel to readily accommodate mobile spe-
cies in and out without losing them after many switching cycles. A 
very large amount of oxygen can be accommodated in the nanoscale 
amorphous material (Me), especially under a fast quenching process 
during switching68. Changes in the volume, geometry or composition 
of the channel phase can cause resistance switching.

Figure 2b illustrates a resistance change from metallic to insu-
lating in a disordered oxide that can be attributed to changes in 
conduction-centre concentration and thus hopping transport 
mechanisms73. Multilevel cell or even analogue switching behaviour 
can be readily obtained with such conduction channels. Reliable 
switching up to a trillion cycles has been demonstrated in TaOx-
based devices74 and endurance close to ten billion switching cycles 
has been demonstrated using the similar Hf–O system75. Based on 
the above criteria72 of two stable phases and a large solubility, other 
oxide systems, such as Er–O and Y–O, may be expected to have a 
similar electrical performance.

Cation devices. Cation-based devices are often called electrochemi-
cal metallization memory, conductive bridging RAM, programmable 

metallization cells or atomic switches. They were first reported in the 
1970s76 and have been further developed for memory applications 
since the late 1990s77. In most cases, the mobile species is believed 
to be the metallic cation. The physical device stack is similar to 
that of anion-based devices, being an electrode/insulator/electrode 
trilayer9,12,78,79.

A signature of the cation-based devices is to have an electrode 
made from (or the insulator doped with) an electrochemically active 
material, such as Cu (ref. 79), Ag (ref. 80) or an alloy of these metals 
(CuTe, for example)78. Devices without this signature are discussed 
as anion-based devices in this Review, although their mobile species 
might be cation interstitials, such as with Ni1−xO devices. The coun-
ter electrode is usually an electrochemically inert metallic material, 
such as W, Pt, Au, Mo, Co, Cr, Ru, Ir, doped poly-Si, TiW or TaN 
(ref.  12). The insulating materials have traditionally been electro-
lytes81–84, including sulphides (Ag-doped GexSx, As2S3, Cu2S, ZnxCd1−

xS), iodides (AgI, RbAg4I5), selenides (Ag-doped GexSey), tellurides 
(GexTey), ternary chalcogenides (Ge–Sb–Te) and water. Other mate-
rials have also been studied for this purpose, such as methylsilesqui-
oxane, doped organic semiconductors, amorphous Si, C and even 
vacuum gaps85,86. More and more insulating oxides or nitrides have 
recently been used87–89, including Ta2O5, SiO2, HfO2, WO3, MoOx, 
ZrO2, SrTiO3, TiO2, CuOx, ZnO, Al2O3, GdOx and AlN. References 
and some detailed information of these switching materials are given 
in Supplementary Table S2. Changing from traditional electrolytes 
to oxide materials increases the switching voltages from below 0.3 V 
to above the operating voltage of CMOS (complementary metal–
oxide–semiconductor) devices, making them suitable for some 
special applications, such as non-volatile switches in large-scale 
integrated circuits87. Retention may also be improved using oxides, 
which are usually inexpensive and CMOS compatible.
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Cation switching mechanisms strongly resemble those of anion-
based devices, and can also be roughly described by the schematics 
in Fig.  1. Electroforming in cation-based devices causes structural 
changes to the electrolyte and forms nanoscale channels that persist 
and serve as the template to host the electrochemically active metal 
atoms for subsequent switching78. Most of the cation-based switches 
are bipolar, suggesting that the dominating effect is the electric field 
(Fig. 1a,b). Unipolar switching shown in Fig. 1c has also been dem-
onstrated in cation-based devices90,91, substantiating a possible role of 
Joule heating. The switching mechanism is relatively well understood 
with some electrolytes12,78,92, such as a Ag/H2O/Pt device93 (Fig.  3): 
during electroforming or set switching, a positive high voltage on the 
Ag electrode oxidizes the electrode atoms into Ag+ cations, which are 
dissolved into the electrolyte. These cations drift across the electro-
lyte to the inert counter electrode (Pt, cathode) under a high elec-
tric field; then they are electrochemically reduced to Ag atoms at the 
cathode and deposited on the surface of the cathode electrode, which 
allows the Ag atoms to grow towards the anode (Ag electrode) as a 
filament(s), reaching the Ag electrode and switching the device ON. 
Any of these steps could be the speed-limiting process for the entire 
switching event, depending on the material systems, in particular the 
insulating materials. An opposite voltage (positive) is then applied 
to the electrochemically inert Pt electrode for reset switching, which 
anodically dissolves the Ag filament (the virtual anode now) start-
ing from the interface of the Ag electrode/Ag filament, and switches 
the device OFF. In this picture, the electric field is the only driving 
force and Joule heating is negligible given the small current usually 
involved in these devices.

However, more research is still needed to clarify the microscopic 
picture of switching in cation devices, especially for those with non-
traditional electrolyte materials, such as some oxides or amorphous 
Si (refs 12,64,65,94). These materials are usually not good ionic con-
ductors and require a higher voltage (thus a high electric field and 
substantial heating) for switching. A temperature-dependent switch-
ing study in a Cu/Ta2O5/Pt system suggests that the reset switch-
ing is likely to be thermal-diffusion assisted (similar to in Fig. 1b). 
Furthermore, some experimental results have shown that the conduc-
tion channel64,65 has an opposite geometry to that in Fig. 3, suggest-
ing a possibility that the switching occurs at the interface between the 
inert electrode and the conduction channel in some cases. The reason 
for the observed discrepancy among different electrolytes remains 
unclear. It is worth noting that the conduction channel(s) might be 
composed of nano-islands rather than a continuous filament, espe-
cially in the OFF state. This possibility is supported by the observation 
of a Coulomb blockade effect at low temperature87 and also by some 
direct imaging of the filament65.

Physical switches. Both the cation- and anion-based devices are 
chemical switches because chemical reactions (redox) are involved 
in the switching mechanisms. There are also various switching phe-
nomena where only physical changes are involved and some of these 
may also belong to generalized memristive devices3. There are, for 
example, electronic, magnetic, ferroelectric and microstructural pro-
cesses, which lead to electronic resistance switches, magnetic tunnel 
junctions95, ferroresistive switches96,97 and phase-change switches98,99, 
respectively. Among them, magnetic tunnel junctions and phase-
change switches have been the most intensively studied.

In electronic switches, resistance change can stem from charge 
trapping (de-trapping) at an electrode/insulator interface to increase 
(decrease) the contact barrier10, or inside a disordered thin film (for 
example, Pt-doped SiO2)100 to increase or decrease the degree of 
Anderson localization. Electronic switches have also been demon-
strated in metal-doped polymers and are attributed to charge trans-
fer between the metal nanoparticles and the organic materials101,102. 
Another type of electronic resistance switch relies purely on an elec-
tronic phase change such as the Mott transition, which applies to 

systems (for example, GaTa4S8)103 that should be metals according 
to band-structure theory but turn out to be insulators due to strong 
electronic Coulomb interactions below a certain critical density of 
electrons, as determined by electric or magnetic fields, pressure, or 
carrier doping104. A ferroelectric tunnel junction, an example of fer-
roresistive switches97, utilizes an ultrathin ferroelectric material (for 
example, BaTiO3)96 as a tunnel barrier in a tunnel junction, where 
electric-field-induced polarization reversal in the ferroelectric mate-
rial changes the interface transmission, thus the tunnelling current 
and the device resistance. These device concepts seem promising, but 
experimental data need to be carefully examined as different switch-
ing mechanisms, such as the chemical switching discussed before, are 
also possible in these devices. 

Other device geometries. In addition to the most commonly used 
two-terminal, vertical-stack and crosspoint devices discussed above, 
other device geometries have also been explored, such as three-termi-
nal and lateral (planar) two-terminal devices. Three-terminal resist-
ance switches, which resemble a transistor, utilize a third electrode 
as a gate to control the formation and annihilation of the conduction 
channel by controlling the drift of dopants. This allows the signal and 
control lines to be separated. Functioning three-terminal devices have 
been demonstrated both in cation-105 and anion-based switches39,106, 
which are related to the 1960 ‘memistor’107. A lateral device has two 
electrodes on the same plane separated by a small gap, which is filled 
with a switching material42. This device configuration is mainly used 
for research because it allows easy access to the switching region for 
material characterization.

Nanowires have also been employed in resistance switches. Single-
walled carbon nanotubes with a breaking gap filled with a GeSbTe 
phase-change material have been used to demonstrate the sub-
10-nm scalability and sub-10-μA switching current in phase-change 
switches108. Oxide nanowires (for example, CoOx shell/MgO core) 
have been used to fabricate lateral devices with multielectrodes39 
to study the field effect and the switching location. Nanowire core–
shell switches have been fabricated by oxidizing the metal nanowire 
(for example, Co, one electrode) surface to form a switchable metal 
oxide shell (for example, CoO), on which another electrode wire 
(for example, Au) is placed perpendicular to the core–shell wire109. 
A single metal nanowire (for example, Au) has displayed memristive 
switching based on electromigration effects66. Self-assembled nanow-
ire devices have proved valuable in fundamental studies at the sub-
lithographic scale, but high-quality dense integration of nanowires is 
still a problem without a known good solution. Furthermore, very 

a b

Ag Ag

Pt Pt
1 μm 1 μm

Figure 3 | Switching of a traditional cation-based device (electrochemical 
metallization memory) with the cell stack of Pt/H2O/Ag. a, Scanning 
electron microscopy (SEM) image showing the high-resistance state of the 
device with shorter and smaller Ag dendrites. b, SEM image of the same 
cell at low-resistance state with longer and larger Ag dendrites, obtained 
by applying a positive voltage on the Ag electrode side. Figure reproduced 
with permission from ref. 93, © 2007 AIP.
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narrow but very thick metal electrodes, such as those synthesized by 
a Cu damascene technique, are needed to reduce the electrode resist-
ance in a crossbar array.

Nonlinear switching dynamics. Switching dynamics reveal much 
about the nature of the resistance switching and hence deserve 
detailed attention. For example, Fig. 4a shows typical experimental 
data for switching dynamics in TiO2−x devices110. In particular, no 
change to the memristor state occurs for small biases applied, even 
over long time scales. On the other hand, the state changes abruptly 
(potentially super-exponential) on further increase of the voltage 
bias. Note that there is no well defined or ‘sharp’ switching threshold 
voltage for memristive devices.

For TiO2−x memristive devices that rely on modulation of the 
oxygen vacancy concentration profile, such switching dynamics are 
explained by nonlinear ionic transport80,111–113 (Fig. 4b). The vacancy 
motion in solids is via thermally activated hopping of oxygen ions 
and can be crudely approximated with hopping in the net potential of 
the constituent ions114 (Fig. 4c). (Such a model is best suited for ionic 
solids but can also be applied to mixed ionic–covalent and purely 
covalent solids with some corrections, for example, to electron–elec-
tron interactions.) The hopping rate, and hence the ionic drift velocity 
and current, depends exponentially on both the applied electric field 
and local temperature, T. Under normal conditions, deformation of 
the lattice potential energy by an external electric field E < 106 V cm−1 
is typically much less than the activation energy for ion hopping UA 
(with UA > 1 eV for practical cases), so that a familiar linear approxi-
mation for ion velocity v = μE (where μ is ion mobility) is used to 
describe ion drift. Memristive devices operate in a different regime: 

much larger electric fields E  ≈  V/d  >>  106  V  cm−1 consistent with 
nanoscale film thicknesses d and few-volts applied biases V produce 
exponential ion transport v = μE0 exp[E/E0], where E0 is a character-
istic field for a particular mobile atom111. Joule heating also expo-
nentially enhances ionic drift and diffusion, and super-exponential 
dependence of the switching dynamics on the applied voltage might 
take place due to super-linear (exponential) dependence of the cur-
rent (and hence dissipated power and temperature) on the applied 
voltage itself 63,115,116, for example, v(V) ∝ exp[T] ∝ exp[exp[V]].

Similar nonlinear switching dynamics are observed in cation-
based memristive devices, although the underlying detailed mech-
anisms may be different9. In addition to hopping of the ions, the 
motion of the active electrode ion involves two redox reactions, that 
is, electron transfers, at the two interfaces (Fig. 4b). The reduction 
is often the rate-limiting process with traditional electrolytes, with 
an inherent exponential dependence on the electric field (Fig. 4c) 
as described by the Butler–Volmer equation. Recent experiments 
in cation devices based on poor ion conductors, such as a-Si, sug-
gest that bulk transport might also be the rate-limiting process64,65 
in some cases.

Nonlinearity in ionic transport is crucial for simultaneously realiz-
ing faster switching speeds and longer retention times in memristive 
devices111,113,117. For example, for a system with UA = 1 eV, ionic diffu-
sion is enhanced 12 orders of magnitude from D300K ≈ 4 × 10–24 cm2 s−1 
(at room temperature) to D800K ≈ 5 × 10–12 cm2 s−1 on Joule heating 
by 500  K. Assuming that ions need to move only a few nanome-
tres, say d  =  5  nm, to cause significant change in resistance state, 
E = 5 × 107 V cm−1 would correspond to a switching speed of about 
t ≈ 70 ns (ref. 111). The retention time is determined by the rate of ion 
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(a, top) with variable pulse duration and amplitude110,115. In particular, panel a (bottom) shows 16 curves, that is, 8 each for set (green) and reset (blue), 
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diffusion back towards a thermodynamic equilibrium ionic profile 
and, in this example, can be approximated as t ≈ d2/D300K = 75 days, 
where the diffusion (retention) is assumed at room temperature. 
Retention times might be shorter when taking into account built-in 
internal electric fields and elevated temperatures due to Joule heat-
ing or thermal crosstalk in memristive circuits111. Additionally, the 
activation energy might need a correction when the ion movement 
is followed by chemical reaction or phase transition, for example, to a 
Magnéli phase in TiO2−x (Fig. 4c)38,44, which might even improve the 
retention. One important observation from this analysis is that speed 
and retention are related properties that are usually traded off against 
each other. Engineering the devices with a smaller activation energy 
for ion hopping or redox reaction will improve the switching speed 
but it will also reduce the retention time.

High stress conditions (electric fields and/or elevated tempera-
tures) seem crucial for nonlinear ionic transport, but they can be det-
rimental to other performance characteristics of memristive devices. 
For example, electrode melting, penetration into the insulating 
matrix, and permanent shorting of the device have been identified as 
some of the principal failure mechanisms limiting switching endur-
ance of the memristors. Clearly, these failure mechanisms and others, 
for example, electromigration in electrodes and electron trapping-
based oxide degradation, are enhanced (exponentially) by high stress 
conditions. Furthermore, strong nonlinearity in ion transport may 
also lead to larger dispersion in switching dynamics. Identifying and 
engineering nonlinear ion transport mechanisms that do not impact 
endurance and variations in the memristive devices is therefore an 
important goal118.

Prospective applications
Research activity in resistance switching has been primarily driven 
by the search for an ideal memory device. Indeed, hybrid CMOS/
memristor circuits (Fig. 5 and 6a), and in particular those with the 
passive crossbar architecture (Fig.  6), could potentially combine 
all the desired properties of ‘universal memory’ — high speed, 
low energy and high endurance of static random access memories, 
and high density, low cost and non-volatility of flash memories 
(Table 1)119. Although many research efforts remain focused on sin-
gle memristive devices, demonstrations of larger crossbar circuits 
are increasingly common120,121.

Logic applications of memristors are also being explored. Hybrid 
CMOS/memristor circuits (Fig. 5a,b) might eliminate the main ineffi-
ciency of field programmable gate arrays (FPGAs) — namely the large 
overhead associated with storing the circuit configuration informa-
tion in local memory. In traditional FPGAs configuration memory is 
implemented as static random access memory or flash memory and 
typically consumes a large area of the chip — on the order of 50–90% 
(ref. 122). In hybrid FPGA circuits, configuration information could 
be stored in nanoscale memristors to improve density by more than 

10 or 100 times for conservative or aggressive architectures as com-
pared with conventional circuits123–126 (Fig.  6d–f). The conservative 
version of a hybrid FPGA has recently been demonstrated with nano-
imprinted 100-nm-scale TiO2−x memristor devices integrated with 
0.5-μm CMOS technology127. Memristors have also been proposed 
to implement material implication logic128, in which Boolean logic 
states are stored as resistance states of the devices rather than voltage 
levels as in conventional logic. More research on circuits is needed to 
understand and optimize these hybrid circuits for all of these Boolean 
logic applications.

The idea of using resistance switching devices in artificial neu-
ral networks and for mixed signal computing in general (Fig. 6g–i) 
has a long history and can be traced back to at least the 1960s. This 
early work, however, was largely overlooked, principally because of 
the emergence of the first successful digital microprocessor just a few 
years later, which quickly became the dominant platform for com-
puting. Some significant developments in this context were thin-film 
tungsten oxide and a-Si:H memristive devices129, but it seems that the 
results were not encouraging enough to motivate continued investi-
gation. More recently, the topic has been revived by publications on 
titanium dioxide memristors37, and demonstrations of spike-time-
dependent plasticity130–132, short- and long-term potentiation in resis-
tive switching devices133, and hybrid circuits performing analogue 
dot-product computation110. Motivation for the development of arti-
ficial neural networks comes from the fact that mammalian brains 
remain much more efficient than conventional Boolean machines for 
many computational tasks such as pattern recognition and classifi-
cation, despite the exponential progress in CMOS performance. The 
structure of the artificial neural networks map naturally onto hybrid 
CMOS/memristor circuits and crude estimates have suggested that 
circuits with ultimately scaled CMOS technology and sub-10-nm 
scale memristive devices could challenge the complexity and connec-
tivity of the human brain134.

In general, memristive devices combining all the desired proper-
ties would be beneficial for all such applications (Fig. 7). (The excep-
tion is ON-state resistance, which should be large enough to avoid 
voltage drop across crossbar wires, whose typical length depends on 
a particular application.) Because contemporary memristive devices 
are still far from that goal (partially due to immature fabrication tech-
nology), it is useful to analyse which performance metrics are more 
important for the various applications68,74,110,120,124,128,133,135–143 (Fig. 7). In 
this context, targeted memory applications are subdivided into two 
categories. At the initial stage of development memristive memories 
are likely to compete and replace conventional storage technologies 
(which are slow, but very dense, cost effective and non-volatile) and, 
in the long run, reach the speed of fast memory technologies.

Key challenges and outlook
Cation- and anion-based devices have shown encouraging 
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a result, individual voltages applied to memristors can be multiplied by the unique weight (conductance) of the memristor and summed up by a CMOS 
amplifier, thus implementing dot-product computation in analogue fashion. Here x1, x2 and y are input and output voltages for the considered synapses and 
neuron, correspondingly, whereas w1 and w2 are conductances of the corresponding memristive devices.
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properties (Fig. 7). However, challenges remain, among which the 
device variability (or reproducibility) and I–V nonlinearity are the 
main two. Furthermore, retention for cation-based devices and 
yield for anion-based devices remain to be demonstrated with nan-
odevices at the wafer scale. A SPICE (simulation program with inte-
grated circuit emphasis) model and statistics of device parameters 
from a large number of devices and switching events are also needed 
for circuit designers.

Device variability. The variance from switching cycle to cycle and 
from device to device can be very large. For example, it has been 
seen experimentally that active conduction channels (filaments) can 
be inactivated and other inactive or even new ones can be activated 
during switching cycling of a single device. The materials selection 
criteria described above can lead to a stable channel–matrix system 
and thus greatly reduce the variance from cycle to cycle. The variance 
from device to device stems mainly from the random electroform-
ing process that creates a different filament structure in each device. 
A high-voltage electroforming can be obviated by thinning the stoi-
chiometric oxide film and adding a thick sub-oxide layer35. However, 

this does not guarantee a similar channel in each device. Engineering 
control to reduce the randomness of channel creation is the key to 
reduce this variance, which can for instance be realized by fabricat-
ing uniformly distributed small precursors in the device for channel 
formation30. Some experimental evidence144 has suggested that the 
problem is also partially resolved by scaling down the device to a size 
that is comparable to that of the filament and therefore has a limited 
active area.

Current–voltage nonlinearity. Using a transistor as the select device 
at each crosspoint in a crossbar array limits the footprint of each cell 
and its three-dimensional stacking capability, and would therefore 
not realize the potential scalability of memristive devices. A pas-
sive crossbar array utilizing the I–V nonlinearity (different from the 
nonlinearity of switching dynamics mentioned above) of each cell is 
an alternative for ultrahigh density. Providing diode-like functional-
ity (for example, Schottky or p–n junction)145 is useful for unipolar 
devices, but must be approached cautiously for bipolar type devices, 
as this limits heating and the electric field across the active device 
when attempting to write devices in the reverse bias configuration. A 
plausible solution is to use a special diode, such as a soft breakdown 
diode146 or a Zener diode, which should permit enough current den-
sity to switch the memristive device.

Two memristive devices can also be stacked anti-serially (head-to-
head) to form a complementary resistance switch147. Under a switch-
ing voltage pulse, these two devices see opposite voltage polarities and 
switch in opposite directions, thus limiting the current through the 
device pair as there is always one device in the OFF state in the pair. 
This device concept can also be realized in a single memristive device 
with two switchable interfaces56. It is, however, difficult to operate the 
switches as multilevel cells or analogue devices with the scheme. A 
destructive read in complementary resistance switch devices is also 
much more demanding for device endurance.

The other option is to integrate a series metal/insulator/metal 
tunnel barrier121, other S-type bistability141,148–150 or mixed ionic-
electronic conductors151, to suppress current at low voltage biases. 
In this case the select functionality is achieved with a half-biasing 
scheme as shown in Fig. 6b,c. A large I–V nonlinearity can be engi-
neered by integrating an oxide layer, such as one made of TiO2−x with 
a memristive TaOx layer141. A single-layer TaOx-based nanodevice 
normally exhibits a linear I–V relation in the low-resistance state, 
meaning a high current at half of the switching voltage. However, for 
the bilayer oxide device the sneak path current is about two orders 
of magnitude smaller than that of the linear device141. A detailed 
study suggests that a new NDR phase formed inside the bilayer 
oxide may be responsible for the observed I–V nonlinearity141. To 
realize a large OFF/ON resistance window in this case, a reading 
voltage large enough to trigger the threshold switching (volatile) of 
the NDR element itself might be necessary when the memristive 
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Table 1 | Comparison of memory and storage technologies119. Note that circuit-level overheads for the listed performance metrics 
are in general different among different device technologies and could often dominate individual device performance.*

 Memristor PCM STTRAM SRAM DRAM Flash (NAND) HDD
Prototypes Commercialized technologies

Reciprocal density (F2) <4 4–16 20–60 140 6–12 1–4† 2/3
Energy per bit (pJ) 0.1–3 2–25 0.1–2.5 0.0005 0.005 0.00002 1–10 × 109

Read time (ns) <10 10–50 10–35 0.1–0.3 10 100,000 5–8 × 106

Write time (ns) ~10 50–500 10–90 0.1–0.3 10 100,000 5–8 × 106

Retention years years years As long as 
voltage applied

<<second years years

Endurance (cycles) 1012 109 1015 >1016 >1016 104 104

*The energy to operate NAND Flash is typically hundreds of picojoules per bit primarily because accessing the memory cells requires charging word and bit lines to high voltages. †Smaller number represents an 
effective area for multi-level cells. PCM, phase-change memory; STTRAM, spin torque transfer random access memory; SRAM, static RAM; DRAM, dynamic RAM; HDD, hard disk drive.
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switch is ON, meaning that every reading operation switches the 
NDR element once. Therefore, reading endurance may be a poten-
tial concern of this scheme. A threshold switching (Fig.  1d) with 
unlimited switching cycles would be very valuable for obtaining 
high nonlinearity in memristive devices.

In conclusion, the development of memristive devices has 
recently witnessed remarkable progress. Figure  7, for example, 
shows device performance requirements for a range of applications 
and illustrates that most of these requirements have been success-
fully achieved with memristors, at least in devices fabricated in 
specialized laboratories. Nevertheless, it remains to be seen if mem-
ristive devices can combine these characteristics in a single com-
mercially competitive device design. Further research into device 
mechanisms — particularly the microscopic processes of the initial 
and subsequent switchings — is crucial to achieve reliable and pre-
dictable nanodevices at the wafer scale. Furthermore, it is time for 
circuit and system designers to be more actively involved in mak-
ing use of existing device properties and providing guidance on the 
development of future device properties for applications with differ-
ent performance requirements.
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