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Training and operation of an integrated neuromorphic
network based on metal-oxide memristors
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Despite much progress in semiconductor integrated circuit techno-
logy, the extreme complexity of the human cerebral cortex1, with its
approximately 1014 synapses, makes the hardware implementation
of neuromorphic networks with a comparable number of devices
exceptionally challenging. To provide comparable complexity while
operating much faster and with manageable power dissipation,
networks2 based on circuits3,4 combining complementary metal-
oxide-semiconductors (CMOSs) and adjustable two-terminal res-
istive devices (memristors) have been developed. In such circuits,
the usual CMOS stack is augmented with one3 or several4 crossbar
layers, with memristors at each crosspoint. There have recently been
notable improvements in the fabrication of such memristive cross-
bars and their integration with CMOS circuits5–12, including first
demonstrations5,6,12 of their vertical integration. Separately, dis-
crete memristors have been used as artificial synapses in neuro-
morphic networks13–18. Very recently, such experiments have been
extended19 to crossbar arrays of phase-change memristive devices.
The adjustment of such devices, however, requires an additional
transistor at each crosspoint, and hence these devices are much
harder to scale than metal-oxide memristors11,20,21, whose nonlinear
current–voltage curves enable transistor-free operation. Here we
report the experimental implementation of transistor-free metal-
oxide memristor crossbars, with device variability sufficiently low
to allow operation of integrated neural networks, in a simple net-
work: a single-layer perceptron (an algorithm for linear classifica-
tion). The network can be taught in situ using a coarse-grain variety
of the delta rule algorithm22 to perform the perfect classification
of 3 3 3-pixel black/white images into three classes (representing
letters). This demonstration is an important step towards much
larger and more complex memristive neuromorphic networks.

In a hybrid CMOS/memristor circuit, the CMOS subsystem con-
tacts each wire, and hence can address each memristor on the add-on
crossbar(s), using a specific ‘CMOL’ area-distributed interface3,4. The
basic idea of hybrid neuromorphic networks—so-called CrossNets2—
is to use this opportunity to connect CMOS-implemented hardware
models of neuron bodies with the memristive crossbar(s), whose wires
play the parts of axons and dendrites and whose memristors mimic
biological synapses. The simple, two-terminal, transistor-free topology
of metal-oxide memristors may enable CrossNets to achieve extremely
high density—much higher than that of pure-CMOS neuromorphic
networks (including those based on CMOS-modelled memristors23

,

floating-gate24 and ferroelectric25 memory cells), and even higher than
that of their biological prototypes. For example, a CrossNet based on a
hybrid CMOS/memristor circuit with five layers of 30-nm-pitch cross-
bars, two memristors per synapse, and 104 synapses per neural cell
would have an areal density of about 25 million cells per square cen-
timetre, that is, higher than that in the human cerebral cortex, at com-
parable average connectivity1. Estimates show that such CrossNets may
also provide comparable power efficiency, at a much higher operation
speed—for example, an intercell signal transfer delay of about 0.02 ms

(compared to about 10 ms in biological systems) at an easily manage-
able energy dissipation rate of about 1 W cm22.

However, the practical implementation of such networks is still very
challenging, owing to the specific physical mechanism of resistance
change in most prospective metal-oxide-based memristors—a
reversible modulation of the concentration profile of oxygen
vacancies11,20,21. On the positive side, the atomic scale of the vacancy
position modulation implies the possibility of memristor scaling down
to few-nanometre dimensions, which has been confirmed by recent
experiments26,27. On the negative side, such a small scale makes the
device-to-device reproducibility of device parameters, most impor-
tantly the voltage required for memristor electroforming and
switching20,21, difficult to achieve with the currently used fabrication
technologies. Device variability is the main reason why the only
(to our knowledge) demonstrations of memristive neuromorphic
networks were based on disconnecting each memristor from the
crossbar for individual forming, using either a crossbar with external
(off-chip) wires18, or an individual switch transistor at each cross-
point19. Both these approaches are incompatible with the goal of
reaching the extremely high density of neuromorphic networks dis-
cussed above.

The main goal of this work was an experimental demonstration of a
fully operational neural network based on an integrated, transistor-
free crossbar with metal-oxide memristors. To reach this goal, a large
reduction of memristor variability was essential, and to achieve it, we
used binary-oxide Al2O3/TiO2 2 x stacks (see inset to Fig. 1b). Their
fabrication procedure was generally close to that described in ref. 27,
but with the important difference of using low-temperature (,300 uC)
reactive sputtering for film deposition, which enables monolithic
three-dimensional integration. The stack was first optimized by con-
ducting an exhaustive experimental search over a range of titanium
dioxide compositions and layer thicknesses (from 5 nm to 100 nm) to
find the parameter range providing the lowest forming voltages.
Within that range, the device performance—most importantly the
memristor uniformity and the current–voltage curve nonlinearity—
was further optimized by varying the aluminium oxide thickness from
1 nm to 5 nm (Supplementary Information Section 1).

The main feature of such optimized junctions is their low variability
(Supplementary Figs 3 and 4). In addition, other important character-
istics of the 200 nm 3 200 nm formed devices are also desirable: the
ON/OFF current ratios of above four orders of magnitude (at 60.1 V),
high nonlinearity of the current–voltage curves (with the current at the
switching voltage more than ten times the current at half of the switch-
ing voltage), a switching endurance of at least 5,000 cycles, an esti-
mated memory retention of at least ten years at room temperature,
low forming (,2 V) and switching (,1.5 V) voltages, and relati-
vely low operation currents of between ,100 nA and ,100 mA (see
Supplementary Fig. 1).

The optimized technology was then used to fabricate an integrated
memristive crossbar with 12 3 12 devices (Fig. 1), with a few process
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modifications to increase the metal electrode thickness, so that the line
resistances were reduced to about 800 V for the top layer of the cross-
bar and 600V for its bottom layer. The crossbars retained the excellent
uniformity of virgin (pre-formed) crossbar-integrated devices (see
Supplementary Figs 3, 4 and 5), allowing individual electric forming
and tuning of each memristor. The electroforming was performed by
grounding the corresponding bottom electrode and applying a cur-
rent-controlled ramp-up to the top electrode, while leaving all other
line potentials floating (Supplementary Fig. 4). To minimize current
leakage during the subsequent forming of other devices, each formed
memristor was immediately switched into its low-current (OFF) state.
The measured individual characteristics of the formed memristors
were mostly similar to those of stand-alone devices, except for a some-
what smaller ( 100) ON/OFF current ratio. This difference may be
partly explained by current leakage through other crosspoints at the
measurements, and partly by the somewhat smaller switching voltages
used for the crossbar to lower the risk of device damage. In addition,
some deviations from the optimal device performance could be
caused by the electron-beam evaporation of thicker electrodes, which
required breaking of the vacuum, as opposed to the fully in situ sput-
tering of single device layers, and their subsequent annealing (see
Supplementary Information).

The fabricated memristive crossbar was used to implement a simple
artificial neural network with the top-level (functional) scheme shown
in Fig. 2. This is a single-layer perceptron22 with ten inputs and three
outputs, fully connected with 10 3 3 5 30 synaptic weights (Fig. 2b).

As the scheme shows, the perceptron’s outputs fi (with i 5 1, 2, 3) are
calculated as nonlinear ‘activation’ functions:

fi~ tanh bIið Þ ð1Þ
of the vector-by-matrix product components:

Ii~
X10

j~1

WijVj ð2Þ

Here Vj with j 5 1,…,9 are the input signals, V10 is a constant bias, b
is a parameter controlling the function’s nonlinearity, and Wij are
adjustable (trainable) synaptic weights. Such a network is sufficient
for performing, for example, the classification of 3 3 3-pixel black-
and-white images into three classes, with nine network inputs
(V1,…,V9) corresponding to the pixel values. We tested the network
on a set of N 5 30 patterns, including three stylized letters (‘z’, ‘v’
and ‘n’) and three sets of nine noisy versions of each letter, formed
by flipping one of the pixels of the original image (see Fig. 2c).
Because of the very limited size of the set, it was used for both training
and testing.

Physically, each input signal was represented by a voltage Vj equal to
either 10.1 V or 20.1 V, corresponding, respectively, to the black or
white pixel, while the bias input V10 was equal to 20.1 V. Such coding
makes the benchmark input set balanced, in particular ensuring that
the sum of all input signals across all patterns of a particular class
is close to zero, which speeds up the convergence process28. To
sustain this balance at the network’s output as well, each synapse
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Figure 1 | Memristor crossbar. a, Integrated 12 3 12 crossbar with an Al2O3/
TiO2 2 x memristor at each crosspoint. b, A typical current–voltage curve of a
formed memristor. c, Absolute values of conductance change under the effect of

500-ms voltage pulses of two polarities, as a function of the initial conductance,
for various pulse amplitudes. The inset in b shows the device cross-section
schematically.
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Figure 2 | Pattern classification experiment (top-level description). a, Input
image. b, The single-layer perceptron for classification of 3 3 3 binary images.
c, The used input pattern set. d, The flow chart of one epoch of the used in situ

training algorithm. In d, the grey-shaded boxes show the steps implemented
inside the crossbar, while those with solid black borders denote the only steps
required to perform the classification operation.

RESEARCH LETTER

G2015 Macmillan Publishers Limited. All rights reserved

6 2 | N A T U R E | V O L 5 2 1 | 7 M A Y 2 0 1 5



was implemented with two memristors, so that the total number of
memristors in the crossbar was 30 3 2 5 60. Using external electronics
to enforce the virtual ground conditions on each column line, and to
subtract currents flowing in the adjacent columns to form a differential
output signal Ii, we ensured that Ohm’s law applied to each column
of the crossbar gave a result identical to equation (2), with differen-
tial weights:

Wij~Gz
ij {G{

ij ð3Þ

where G+
ij is the effective conductance of each memristor, namely the

I/V ratio at voltage 0.1 V. For our devices, these effective conductances
were in the range 10–100 mS, so that currents Ii were of the order of a
few microamperes. Activation functions—see equation (1)—were
also implemented, using external electronics, with the slope b 5 2 3

105 A21 chosen according to the recommendation in ref. 28, con-
firmed by our own computer simulations (Supplementary Fig. 10).

The network was trained in situ, that is, without using its external
computer model, using the Manhattan update rule29, which is essen-
tially a coarse-grain, batch-mode variation of the usual delta rule of
supervised training22. At each iteration (‘epoch’) of this procedure,
sketched in Fig. 2d, patterns from the training set were applied,
one by one, to the network’s input, and its outputs fi(n), where n is

the pattern number, were used to calculate the delta-rule weight
increments:

Dij nð Þ~di nð ÞVj nð Þ
with

di nð Þ~ f (g)
i nð Þ{fi nð Þ
h i df

dI

����I~Ii(n) ð4Þ

Here f gð Þ
i nð Þ is the target value of the ith output for the nth input

pattern. (In our system these values were chosen to be 10.85 for the
output corresponding to the correct pattern class, and 20.85 for the
output corresponding to the wrong class.) Once all N patterns of the
training set had been applied, and all Dij(n) calculated, the synaptic
weights were modified using the following Manhattan update rule:

DWij~g sgn
XN

n~1

Dij nð Þ ð5Þ

where g is a constant that scales the training rate. (The only difference
between the Manhattan update rule from the batch-mode delta rule is
the binary quantization, expressed in equation (5) by the ‘sgn’ func-
tion, which simplifies the hardware implementation of the delta rule.

Differential pair

A A A A

ba

Bias

Pattern (‘z’)

V =

sgn[ΔW] =
+
+
−
−
+
+
–
−
+
−

+
−
−
−
+
−
−
−
−
+

−
−
−
−
−
+
+
+
+
+

0

0 0 0 0

c

0

0

0

V
1

+V
R

–V
W

+/2

–V
W

+/2

0

0

–V
W

+/2

–V
W

+/2

–V
W

+/2

+V
W

+/2

+V
R

+V
R

+V
R

+V
R

–V
R

–V
R

–V
R

–V
R

–V
R

I
1
+ I

1
– I

2
+ I

2
– I

3
+ I3

–

G
1,1

+

G
1,2

+

G
1,10

+

G
3,1

+

G
3,2

+

G
3,10

+

G
3,1

–

G
3,2

–

G
3,10

–

G
1,1

–

G
1,2

–

G
1,10

–

V
2

V
10

Figure 3 | Pattern classification experiment (physical-level description).
a, An implementation of a single-layer perceptron using a 10 3 6 fragment of
the memristive crossbar. b, An example of the classification operation for a
specific input pattern (stylized letter ‘z’), with the crossbar input signals equal to
1VR or 2VR, depending on the pixel colour. (The read and write biases were

always VR 5 0.1 V and VW
6 5 61.3 V, respectively.) c, An example of the

weight adjustment in a specific (first positive) column, for a specific error
matrix. At the step shown, only the synapses whose weights should be increased
(marked by ‘1’ in the table on the left) are adjusted, that is, the memristor
conductances G1,1

1, G1,2
1, G1,5

1, G1,6
1 and G1,9

1 are being increased.

–0.02

0.00

0.02

–0.02

0.00

0.02

0 10 20 30 40 50 60

–0.02

0.00

0.02  z
 v
 n

Neuron v

Neuron z

EpochEpoch

Neuron n

0 5 10 15 20 25 30 35
0

5

10

15

20

25

30

–40 –20 0 20
0

2

4

6

8

 
 

C
o

u
n

t

Weight, W (μS)

InitialInitial
Final

ba

<
 f 

>
<

 f 
>

<
 f 

>

N
u
m

b
e
r 

o
f 

m
is

c
la

s
s
ifi

e
d

 p
a
tt

e
rn

s
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b was continued even after the perfect classification had been achieved on
epoch 21, to verify that the difference between the output signals continued to
increase (unlike the ‘perceptron rule’ training used in ref. 18).
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Physically, in our system the weights were modified in parallel for
each column of the crossbar (corresponding to a certain value of index
i in the above formulas), using two sequential voltage pulses. Namely,
first a ‘set’ pulse with amplitude VW

1 5 1.3 V was applied to increase
the conductances of the synapses whose DG values, calculated from
equation (5), were positive; then a ‘reset’ pulse VW

2 5 21.3 V was
applied to the remaining synapses of that column (see Fig. 3c). This
fixed-amplitude pulse procedure followed the Manhattan update rule
only approximately, because the actual training rate DG depends on
the initial conductance G of the memristor (see Fig. 1c and
Supplementary Fig. 6). (For G 5 20 mS, DG was close to 160 mS for
the set pulse and 25 mS for the reset pulse, while for G 5 65 mS, the
changes were close, respectively, to 124 mS and 255 mS.) Owing to the
specific (though quite representative11) switching dynamics of our
devices, the best classification performance was achieved when the
memristors had been initialized somewhere in the middle of their
conductance range, around 35 mS (Supplementary Fig. 7b). At such
initialization, the perfect classification was reached, on average, after
23 training epochs (see Fig. 4).

In summary, here we have experimentally demonstrated an artificial
neural network using memristors integrated into a dense, transistor-
free crossbar circuit. This crossbar performed, on the physical (Ohm’s
law) level, the analogue vector-by-matrix multiplication of equations
(2) and (3), which is by far the most computationally intensive part of
the operation of any neuromorphic network used repeatedly in the
same environment. The other operations, described by equations (1),
(4) and (5), were performed by external electronics, but they are much
less critical for network performance, and in future, larger CrossNets
may be (at least partly) assisted by CMOS subsystems. This is an
important step towards the effective analogue-hardware implementa-
tion of much more complex neuromorphic networks, from multilayer-
perceptron classifiers with deep learning30 to elaborate CrossNet-based
cognitive systems. Recent experiments27 with similar but smaller (dis-
crete) devices imply that such circuits may be scaled down to devices of
30 nm across or less, that is, to networks with a density of approxi-
mately 1010 synapses per square centimetre in each crossbar layer.
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1. Material and device stack optimization 

Lower electroforming voltages reduce the electrical stress as well as current overshoot 
during the forming, which is a known risk factor contributing to device variability1. It had been 
noticed that lower forming voltages may be achieved in devices with higher conductivity, 
obtained by a combination of oxide layer thickness reduction and stoichiometry adjustment2,3. In 
our experiments, the oxygen concentration was continuously reduced by controlling the oxygen 
flow rate during the layer growth to the point at which resistive switching nearly ceased. The 
switching voltages of such devices were close to, or less than the electroforming voltage. 
However, many devices could not be turned off after switching and instead were shunted, or in 
some cases exhibited spontaneous complementary resistive switching. The observed nonlinearity 
of the I-V curves of such devices was also not large enough for crossbar operation. To address 
these issues, an Al2O3 layer was added to the device stack. (Multilayers and bilayers had been 
used previously to improve device performance4,5.) An excessive increase of the Al2O3 barrier 
thickness causes an increase of the forming voltage, so that an optimum thickness had to be 
selected. As a result of material and stack optimization, the most suitable values of thicknesses 
for TiO2-x and Al2O3 layers have turned out to be close to respectively, 30 nm and 4 nm (Fig. 
S1b). 

 

2. Electrical characterization of single devices 

To perform electrical characterization, single 200 nm × 200 nm devices of the dog-bone 
geometry (Fig. S1b) were fabricated first. (The inset in that figure shows the material stack 
parameters; note that they are slightly different from those in the crossbar-integrated devices – 
cf. the inset in Fig. 1b of the main text.) Figure S1a shows typical switching curves of such 
single devices, obtained by applying bipolar voltage sweeps. (To exhibit the I-V curve 
nonlinearity better, Fig. S1a also shows Ohmic currents for several resistance values.)  

Figure S1c shows representative endurance test results for single devices. The data are 
obtained by repeatedly (over 5,000 times total) applying a sequence of set (-2 V, 500 µs), readout 
(0.1 V, 1 ms), reset (2 V, 500 µs), and again readout voltage pulses to a single device. The figure 
does not reflect the fact that approximately 7% of the negative pulses failed to switch off the 
device; however, this behavior may be attributed to an imperfect endurance setup rather than any 
deep device problem. This conclusion is supported by the fact that the device was being switched 
after each failure event. Some aging (in the form of a slight degradation of the ON/OFF dynamic 
range) is also visible, but generally the devices are rather robust.  For example, during our 
experiments with the crossbar circuit, each of its memristors had been subjected, on the average, 
to 200,000 set/reset pulses even prior to the successful classification experiment. 
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As customary in nonvolatile memory technology, the retention test shown in Fig. S1d 
was carried out with a sample heated to 350 K. The device was first switched into a certain 
resistive state, and then its resistance was measured repeatedly by applying a 100 mV bias every 
2 seconds during a 50,000-second time interval. Such retention measurements were carried out 
for ON (highly conductive), OFF (highly resistive), and some intermediate states. Based on the 
measurements, the retention at room temperature is expected to exceed 10 years.  
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Figure S1. Isolated Pt/TiO2-x/Al2O3/Pt memristive devices: (a) typical switching and electroforming behavior of a 
single device, (b) micrograph of a single device and its stack's structure, (c) switching endurance under a stream of  
±2 V, 500-µs pulses, and (d) retention of 3 initial states at 350 K. To highlight the data trends, large markers on 
panels (c) and (d) show the results of every 100th measurement at the endurance test, and of every 1,000th 
measurement at the retention test. Note that panel (d) shows significantly lower OFF state currents (and hence much 
higher ON/OFF current ratio) as compared to those of panels (a) and (c) due to higher voltages applied to reset the 
device.  
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3. Crossbar circuit fabrication and packaging 

 Crossbar lines, 200 nm wide and separated by 400 nm gaps, were formed on 4” silicon 
wafers covered by 200 nm of thermal SiO2. After the standard cleaning and rinse, fabrication 
started with an e-beam evaporation of Ta (5 nm)/Pt (60 nm) bilayer over a patterned photoresist 
to form the bottom electrodes (“rows”). After liftoff, the wafer was descum by active oxygen dry 
etching at 200C for 10 minutes. Then, a blanket film consisting of a 4-nm sputtered Al2O3 
barrier and a 30-nm TiO2 switching layer was deposited from a fully oxidized target and a 
partially oxidized target, respectively. This bilayer was then removed by etching in an ICP 
chamber using CHF3 plasma, while preserving it in the future crossbar area by a pre-deposited 
negative photoresist. After stripping the photoresist in the 1165 solvent for 3h at 80C, the wafer 
was cleaned using a mild descum procedure performed in a RIE chamber for 15 seconds with 10 
mTorr oxygen plasma at 300 W. Next, the top electrodes (“columns”) consisting of 15 nm Ti and 
60 nm Pt were deposited and patterned using e-beam evaporation and liftoff. Finally, the wire 
bonding pads were formed by e-beam deposition of Cr (10 nm) / Ni (30 nm) / Au (500 nm). All 
lithographic steps were performed using a DUV stepper using a 248 nm laser. After fabrication 
and dicing, the dies were annealed in a reducing atmosphere (10% H2, 90% N2) for 30 minutes at 
300C.  

A single dye was wire-bonded (with gold wires) to the DIP40 package, using a 
thermosonic bonding process. The process was simplified due to thicker Au metallization of the 
outer contacts, which also helped to reduce overall wire resistance. Figure S2a shows an optical 
image of a dye mounted onto the package. It shows, in particular, 6 gold wires bonded to the 
pads of each chip side, with a total of 12 wires for the columns (top and bottom sides of a 
crossbar) and 12 wires for the rows (left and right sides). Figure S2b shows an SEM image of the 
crossbar area of the chip. 

  

4. Electrical characterization and forming of crossbar circuits 

A detailed electrical characterization was performed on a 10×8 section of the crossbar, 
which was later utilized in the classification experiment. All electrical characterizations were 
performed using the Agilent B1500A parameter analyzer. In addition, the Agilent B5250A 
switching matrix was employed for testing packaged crossbar circuits and carrying out the 
pattern classification experiment. The parameter analyzer and the switching matrix were 
controlled by a personal computer via a GPIB interface using a custom C code. All write and 
read pulses were 500 μs long. For the memristor adjustment, we used the “V/2 scheme”, in which 
the selected rows and columns were voltage-biased at -V/2 and +V/2, respectively. For device 
state readout, we voltage-biased the selected column, connected the selected row to a virtual 
ground, and physically grounded all the other lines. 
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1 mm 10 um
 

Figure S2. Microphotographs of the 12×12 crossbar with integrated Pt/Al2O3/TiO2-x/Pt memristors: (a) the bonded 
chip, and (b) zoom-in on the crossbar area.  Figure 1a in the main text shows the further zoom-in on the crossbar. 

 

Specifically, we first characterized the “virgin” devices (not electroformed yet). Figures 
S3a and S3b show the recorded map of conductances measured at 0.1 V and the corresponding 
histogram, while Fig. S3c shows a representative set of dc I-V curves. After this characterization, 
the electroforming procedure was performed. For the forming, a quasi-DC current ramp was 
applied to the selected column line, while the selected row line was grounded and all the 
remaining (unselected) lines were kept floating. Such fixed-current technique prevents devices 
from an excessive stress during its electroforming, when device’s resistance drops sharply. To 
minimize the current leakage during forming, the already formed devices were switched to their 
low-conductive state. More particularly, the devices of a 2×2 subarray were formed first. Then 
the devices in additional rows and columns were formed, so that the subarray of formed devices 
was gradually increased: first to 3×3 devices, then to 4×4, and so on. Figure S4a shows the map 
of forming voltages for the working section of the crossbar, while Fig. S4b shows the 
corresponding histogram. Additionally, Figure S4c shows the electroforming process dynamics 
(for the diagonal devices, which were formed last to complete forming of the corresponding 
subarray) on the [I, V] plane. 

Following the electroforming procedure, we characterized the effective switching 
thresholds for all devices in the working section of the crossbar array (Fig. S5). The threshold set 
/ reset voltages were measured by first programming devices to their high / low resistive states, 
and then applying a sequence of 500-μs pulses of the appropriate polarity with gradually 
increasing amplitude to measure the smallest voltage that caused a resistance change by more 
than 2 kΩ. The evolution of device conductance during the reset and set switching are shown in 
Figs. S5a and S5b, respectively, while Figs. S5c and S5d show maps of the corresponding 
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effective reset and set threshold voltages. Panel (e) of Fig. S5 exhibits the data from its panels (c) 
and (d) in the form of histograms. The devices marked with ‘X’ in the threshold maps could not 
be switched with largest applied voltages.  
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Figure S3. Pre-formed (virgin sample) characterization of a 10×8 section of the crossbar: (a) color-coded 
conductance map of device conductances measured at 0.1 V, (b) the corresponding histogram, and (c)   dc I-V 
curves of four representative devices. The average conductance and the standard deviation of conductances 
represented in panels (b) and (c) are 0.43 S and 0.08 S, correspondingly. 

 

Of these data, the fact most important for applications is that the spread in effective 
switching voltages is narrow enough to avoid the infamous half-select problem.6 For example, 
application of voltage +1.4 V to any device (besides those marked with X) ensures its set 
adjustment, while the half of that voltage (i.e. +0.7 V) is below the smallest observed set 
threshold voltage. This fact prevents disturbance of half-selected devices, connected to just one 
of voltage-biased lines. The switching threshold data were also important to identify a range of 
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reasonable switching voltages, following two main criteria: balancing the set and reset dynamics 
and avoiding permanent damage of the devices and hence prolonging their life.  
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Figure S4. Characterization of memristor electroforming in a 10×8 section of the crossbar. (a) Color-coded map of 
the forming voltages, and (b) their histogram. (c) Typical forming switching curves of the last-formed devices in 
each partial array (of the size indicated in the legend). The average forming voltage and the standard deviation for 
the data shown on panels (b) and (c) are, respectively, 1.91 V and 0.07 V. 

 

The switching behavior of crossbar devices was further characterized in stress conditions 
similar to those imposed by the used neuromorphic network training procedure. In particular, we 
have studied the evolution of device conductance due to a train of rectangular pulses of the same 
voltage magnitude. Figure S6 shows typical results of such an experiment, for a specific device. 
The experiment was repeated three times, with different pulse magnitudes, for both set and reset 
transitions. The plots show clearly a saturation effect: the conductance change under the effect of 
a single voltage pulse is gradually reduced (on the average), so that the conductance reaches a 
certain value for each particular pulse magnitude. (This effect is summarized in Fig. 1c of the 
main text, which shows the final conductance change as the function of the initial conductance.) 
The saturation effect needs to be taken into account when conducting the neural network 
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experiment: as stated in the main text, it is much better, in the beginning of network training, to 
initialize devices in the middle of their dynamical range, to achieve substantial conductance 
changes in the beginning of the training process. 
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Figure S5. Characterization of the set and reset thresholds of formed memristors: (a, b) device conductance 
dynamics under applied voltage ramps of opposite polarities; (c, d) the effective threshold voltage maps for set and 
reset transitions, and (e) their histograms. The histograms on panel (e) do not include the 3 devices that could not be 
switched to the OFF state with voltages above -1.5 V; these devices are marked with crosses on panels (c) and (d). 
The average effective set/reset switching threshold voltages and their standard deviations, for the data shown on 
panel (e) are, respectively 0.9 V/-1.17 V and 0.1 V/0.12 V.  

 



“Training and operation of an integrated neuromorphic network based on metal-oxide memristors” by M. Prezioso et al., Mar 2015, 2nd Revision 

8 
 

0 100 200 300 400 500
0

20

40

60

80

100
 -1.1V 
 -1.2V 
 -1.3V

C
on

du
ct

an
ce

 (
S)

Pulse #

a

0 100 200 300 400 500
0

20

40

60

80

100

C
on

du
ct

an
ce

 (
S)

Pulse #

 1.1V 
 1.2V
 1.3V

b

 
Figure S6. Evolution of memristor's conductance (measured at 0.1 V) under the effect of 500-μs pulse trains of 
several magnitudes, for the (a) reset and (b) set switching. Note that unlike Figures S5a and S5b, this figure shows 
the change in conductance for a fixed-magnitude pulses applied repeatedly to the same device. The dashed lines are 
just guides for the eye.  

 

5. Network training result analysis 

The key metric of neural network classifier training is the difference it creates between 
network outputs induced by input patterns belonging to different classes. Two panels of Figure 
S7a show such difference for our memristor crossbar network.  Namely, these are the histograms 
of  the  differences between currents in the “correct” and “incorrect” outputs for each of  30 input 
patterns.  (Evidently, there are 60 such differences: for each of 30 inputs in 3 classes, there is one 
correct output and two incorrect ones.) In a perfectly trained classifier, all these differences have 
to be positive. The top panel shows that before training, the differences are small, and have 
random signs. During the training the differences increased, so that, as the lower panel shows, 
after a sufficient number (in this particular case, 21) of training epochs, all of them have become 
positive, signaling the 100% classification fidelity. 

Figure S7b shows another useful way of understanding network dynamics during its 
training, namely the distributions of conductances at three phases of training process. (Note that 
the same information, but for only two phases, is presented in the inset of Fig. 4a of the main 
text.) For convenience, Fig. S7c shows the distributions of the effective weights W, i.e. the 
differences between the conductances of devices that form each differential pair, for the same 
three phases of training. As the data show, the difference of the weight distributions created by 
the training is less dramatic than that of the output signals, shown in panel (a), i.e. the training 
imposes mostly relative weight changes  (which are important for the correct classification), 
rather than their global change.   
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Figure S7.  Additional data from a particular pattern classification experiment (“Run 1”) for which the perfect 
classification has been achieved, for the first time, after 21 training epochs. (a) Histogram of differences between 
currents in the “correct” output (corresponding to input pattern’s class) and other two channels. (b) Histogram of 
device conductances at the initial state, measured after training epoch 21, and after epoch 54 (for which 
classification is also perfect). (c) Histogram of the differential weights W defined by Eq. (3) of main text. In panel 
(b), the average values / standard deviations of the measured conductances are 36.3 μS / 9 μS, 41.9 μS / 13 μS, and 
42.4 μS / 13.4 μS, when measured in the initial state, after epoch 21, and epoch 54, respectively. The corresponding 
averages / deviations of the weights in panel (c) are -0.24 μS / 2.83μS, -5.36 μS / 16.8 μS, and -1.17 μS / 17.1 μS.  

 

Finally, Figures S8 and S9 show the weight maps measured before and after training for 6 
separate training experiments (“runs”). (The convergence graphs for these experiments are 
shown in Fig. 4a of the main text). The comparison of weight maps in Fig. S8 shows that even 
though the initialization procedure was similar in all runs, there were some run-to-run variations 
of the state of same device.  (To quantify the variations, Figs. S8b and S9b show relative 
standard deviations for each of 30 weights.) 
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Figure S8: Initial weight values: (a) the maps of initial weights Wij (in siemens) measured in 6 separate training 
experiments (“runs”), and (b) the corresponding relative variation, i.e. (standard deviation)-to-(average value) ratio 
for each weight. On panel (a), red and blue background colors indicate, respectively, negative and positive values of 
Wij, while on panel (b), the colors are used just to emphasize lower (greenish) and higher (reddish) values. Narrow 
columns with gray / white cells show positive / negative input signals from noiseless images of the classes 
corresponding to the particular synaptic columns - see Fig. 3b in the main text.  
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Figure S9: Final synaptic weight values after the network training process convergence: (a) the maps of weights Wij 
(in siemens) measured after the perfect classification has been reached, for 6 separate runs (after, respectively, 21, 6, 
33, 26, 35, and 18 training epochs for Runs 1, 2, 3, 4, 5, and 6 – see Fig. 4a); (b) the corresponding relative variation 
for each weight. The color coding is the same as in Fig. S8. 
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As Fig. S9 shows, after training the weights become markedly different - not only in their 
magnitude, but in many cases also in their sign, despite the fact that each final distribution 
provides perfect classification fidelity. This is in agreement with the well-known fact that the 
classifier training using the Delta Rule algorithm and its cousins (such as the Manhattan Update 
Rule used in this work) does not result in a unique synaptic weight distribution – unless the 
initial weight values are exactly the same in each training run. 

 

6. Computer simulations 

We have also carried out extensive computer simulations of our neural network, in order 
to understand the impact of various parameters, most importantly of the initial device 
conductances, on classifier’s fidelity and convergence speed. To perform the simulation, an 
approximate device model was derived from the data shown on Fig. 1c of the main text. In this 
model, the conductance increase (ΔGset) by a positive voltage pulse and its decrease (ΔGreset) by 
the negative pulse are calculated as 

  ΔGset(G)   = +10-3(106G  – 106Gmin +  10 vset  / slope ) –slope ,    (S1) 

  ΔGreset(G) = - 10-3(-106G + 106Gmax + 10 vreset / slope ) –slope ,                (S2) 

where constant slope, for our specific pulse amplitude and duration was taken equal to 2, while 
parameters vset and vreset were randomly chosen from the range [1, 5.5] for every memristor 
before each run. Constants Gmin = 10 μS and Gmax = 100 μS are the minimum and maximum 
conductance values; G is always clipped between these values after each update. Such simple 
model captures two main features of the memristors, namely the saturation of the switching 
dynamics (Fig. 1c) and switching threshold variations (Fig. S5).  

Fig. S10 shows the most important results of these simulations. First, they have 
confirmed that the classifier fidelity and convergence speed are the best when the initial 
conductances of the devices are in the middle of their dynamical range. The second important 
simulation result is that the performance is rather insensitive to the choice of parameter β, with 
the optimal value close to β = 2×105. As was stated in the main text, these results had been used 
at network training. 

 

7. Toward practical applications   

We believe that our work is the first proof-of-concept that passively integrated 
memristive crossbar circuits can be used to perform classification task. However, due to its small 
size, this network is not by itself practical, and several major steps have to be made toward 
larger, useful neuromorphic networks.  

Besides the primary, self-evident task of fabrication much larger crossbars with smaller 
memristors of (at least) similar quality and reproducibility, there is also a challenge of their 
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efficient training. For a large crossbar, the batch training algorithm described in the paper would 
come with a substantial circuit overhead, if it is fully implemented on the same chip as the 
network. In fact, in the batch mode, the training circuit has to hold at least ~M1M2 continuous 
intermediate values, for example numbers ij, participating in Eq. (5), until the next weight 
update. (Here M 1,2 are the linear sizes of the crossbar array.) Such training circuit, implemented 
in the usual CMOS technology, would have a much larger chip footprint than the crossbar itself. 
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Figure S10: Major results of computer simulation of our neural network, using a realistic memristor model. (a) The 
number of training epochs required to achieve the perfect classification, and (b) the fraction of training experiments 
with the perfect convergence, as functions of the initial memristor conductances. Each point is an average over 100 
runs; for each run the weights were randomly initialized within a 5-μS conductance window around the value 
indicated on the horizontal axis.  If an experiment took more than 50 epochs for convergence, for the purposes of 
panel (b), it was considered a failure. These "failed" experiments were excluded when calculating the error bars on 
panel (a).  

 

However, several factors make this task less hopeless than it may look. First of all, for 
most important practical applications, a neural network is used repeatedly for classification of 
patterns of the same type. In these cases it needs to be trained only in the beginning, and then 
may be used with the same set of weights for a long time. (In fact, this is the approach used in 
most advanced recent demonstrations of neural network hardware chips.7,8) Such rare training 
may be assisted by external (digital) computers which, in particular, would store all the 
intermediate values. According to our recent results,9 this approach has substantial advantages 
over a purely ex-situ training in a “precursor” software network, with the subsequent synaptic 
weight import into the crossbar (as discussed, e.g., in Ref. 2 of the main text), because the former 
procedure allows to mitigate detrimental effects of memristor and also neuron circuits variability.  

Another opportunity is to train the network in situ, using a local online (“stochastic”) 
training procedure, for which the requirements to external memory would be substantially 
reduced. In this case, just one circuit per each line and column of the memristive crossbar,  i.e. 
~(M1+M2) circuits per an M1M2 memristors, may be sufficient to implement all training and 
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neuron functions. As the crossbar is scaled up in future for more complex tasks (up to M1.2 ~103-
104 deemed necessary for some cognitive architectures), the relative size of this circuit overhead 
would be much decreased. Figure S11 shows some results of our preliminary attempt at 
implementing online training algorithm using the same memristive crossbar. Perfect 
classification has been achieved for the used small set of input patterns, but unfortunately, in its 
current form the online learning requires too many synaptic updates to achieve the perfect 
network performance. 

Another important question which must be addressed in practical application is the 
generalization performance of the classifier. As Fig. S11 shows, for online training we could 
reach a perfect classification performance on a small separate test set. However, this training was 
too slow for our basic experiments with 30 images in 3 classes. As stated in the main text, these 
experiments were carried out without a separate test set, but using the measured values of 
weights recorded after every training epoch, we could use computer simulations to estimate 
network's generalization ability, i.e. its possible classification performance on a separate test set 
(not used at training).  The set consisted of all possible patterns (36 patterns in each of 3 classes) 
obtained from the ideal images (Fig. 2c of main text) by flipping 2 pixels – see Fig. S12b. 
Though the classification improved during training (Fig. S12a), typically it is not perfect by its 
end. This is not surprising, giving the fact that the minimum Hamming distances between 
patterns of the test and training sets are 2 and 4, accordingly. Indeed, even a human would hardly 
be able to classify all these patterns correctly – please have one more look at Fig. S12b.  
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Figure S11: Preliminary results for pattern classification experiment using online ("stochastic") Manhattan Rule 
training: (a) Classification convergence for the training and test sets, and (b) used sets. On panel (a), "iteration" 
means an application of one pattern from a training set, followed by the corresponding weight update.  (There were 
12 iterations in training epoch.) Note that here perfect classification was achieved on the (admittedly, extremely 
small) test set. (The evaluation on this set was performed only at the end of training.) 
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As a result, we believe that a convincing demonstration of the generalization ability is 
only possible on larger input vectors, which in turn require larger networks (and hence larger 
crossbar arrays). Such a demonstration remains one of our major future goals. 
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Figure S12: Pattern classification experiment (Run 1): (a) Classification convergence for the training and test sets, 
and (b) the used test set. (The training set and the training method were the same as described in main text). The 
bottom figure on panel (a) shows one of the curves (black one) from Fig. 4a, extended to the subsequent training 
epochs.  
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