RAM & ROM Based Digital Design

ECE 152A – Winter 2012

Reading Assignment

Brown and Vranesic

10 Digital System Design

- 10.1 Building Block Circuits
 - □ 10.1.3 Static Random Access Memory (SRAM)
 - □ 10.1.4 SRAM Blocks in PLDs

Reading Assignment

Roth

 9 Multiplexers, Decoders, and Programmable Logic Devices

9.5 Read Only Memories

RAM

- Random Access Memory
 - Same access time to all memory locations
 - As opposed to serial access memory
 - About the same time for read and write
- SRAM
 - Static Random Access Memory
 - Built with cross coupled inverters and pass transistors

6T SRAM Cell

- CMOS implementation with pass transistors
- Sense amp at bottom of column

RAM Blocks and Register Files

RAM (cont)

- DRAM
 - Uses capacitance on MOSFET gate
 - Must be "refreshed" periodically
 - Restore charge on gate capacitance
 - Accomplished by reading or writing to memory location

RAM (cont)

Both SRAM and DRAM are "volatile"

- Data lost when power is removed
- DRAM has approximately 4 times the capacity of SRAM

Basic memory cell of DRAM is smaller

□ ~2 transistors vs. 6

SRAM is generally faster

Read Only Memories

ROM, PROM, EPROM, EEPROM, EAROM

- Not in-system writeable
 - Except by special means, i.e. non-standard voltages and timing
- "Non-volatile"
 - Data retained when power removed
- ROM : Read Only Memory
 - Mask programmed by manufacturer
 - Not erasable (programming permanent)
 - High volume applications

Read Only Memories

ROM, PROM, EPROM, EEPROM, EAROM

- PROM : Programmable Read Only Memory
 - Programmed by user
 - Also not erasable
- EPROM : Erasable Programmable Read Only Memory
 - Programmed by user
 - Erased using UV light
 - □ "erase" sets all bits to 0 or 1
 - Development applications

Read Only Memories

ROM, PROM, EPROM, EEPROM, EAROM

- EEPROM : Electrically Erasable Programmable Read Only Memory
 - Programmed by user
 - Erased electrically
 - Possibly in system, but requires non-standard voltages
- EAROM : Electrically Alterable Read Only Memory
 - Similar to EEPROM

Read Mostly Memories

Flash memory

- Writable and non-volatile
 - Reads very fast
 - Writes very slowly
 - Referred to as "programming"
- No special voltages for in system writing
- "Flash" refers to the fact that the entire content of the memory chip can be erased in one step
- Once erased and written, data is retained for 20+ years

Memory Structure

- Array of memory cells
- Organization refers to number of and width of memory words
 - Example 1024 bit memory can organized as:
 - 1024 one-bit word
 - 512 two-bit words
 - 256 four-bit words
 - 128 eight-bit words
 - Internal array is the same for all organizations
 - Decoding and I/O circuitry differs

Memory Structure

Memory Array and Address Decoder

- ROM (and RAM and Flash) is a "physical" truth table
 - □ All addresses equal \equiv all inputs to logic network
 - Each row of truth table corresponds to a single address in the memory
 - Example: 128 x 8 ROM
 - 128, 8-bit words
 - $Log_2 128 = 7$ address bits (A6 A0)
 - 8 data bits D7 D0
 - Can implement 7 input, 8 output function

Binary to BCD converter with 128 x 8-bit ROM

- Addresses 0 99
 - Output equals 2 digit BCD number
- □ Addresses 100 127
 - All one's, indicating invalid input

ROM Contents

Hex addresses 00 through 7F

Decimal Value	

Final Implementation

17 -2 BINARY NUMBER 128 × 8 RUM +D7-D4 J -D3-D0 VALID BCD

March 12, 2012

- For state machine, map state table directly into memory
 - Address lines driven by present state and present input
 - Data outputs consist of next state and present output
 - Both Mealy and Moore machines can be realized
 - Output of Moore machine lags by one clock period (when state table directly mapped)

Hardware Implementation

Recall 101 sequence detector Mealy machine

	NS	
	x=0	x=1
AB	A+B+	A+B+
00	00,0	01,0
01	10,0	01,0
10	00,0	01,1
	AB 00 01 10	NS x=0 AB A+B+ 00 00,0 01 10,0 10 00,0

ROM Contents (8 x 3-bit)

PSxNSz000000001010010100011010100000101011110xxxx111xxxx	Address		Data	
000000001010010100011010100000101011110xxxx111xxxx	PS	X	NS	Z
001010010100011010100000101011110xxxx111xxxx	00	0	00	0
010100011010100000101011110xxxx111xxxx	00	1	01	0
011010100000101011110xxxx111xxxx	01	0	10	0
100000101011110xxxx111xxxx	01	1	01	0
101011110xxxx111xxxx	10	0	00	0
11 0 xx xx 11 1 xx xx	10	1	01	1
11 1 xx xx	11	0	XX	XX
	11	1	XX	XX

TimingDiagram

ECE 152A - Digital Design Principles

101 sequence detector (again) Moore machine

Direct mapping of state table to memory Output lags by one clock period Introduces latency to output timing "Pipelining" effect Implement as "Mealy-like" machine Associate output with next state, not present state All states have only one associated output (like Moore) Eliminates one clock-period latency No longer "true" Moore machine