

Sensors & Controls

Initial Design Review

Introduction

- The Hyperloop Competition
 - Pod design competition hosted by SpaceX
 - ~1 mile long low pressure tube test track
 - Pods judged on max speed and successful deceleration
- The Sensors and Controls Team
 - Create a control system to interface with sensors and mechanical parts

Development Team

Yang Ren: Microcontroller, PCB SPI interface, data storage

Asitha Kaduwela: Mag Lev motor sensors and control

Tristan Seroff: Braking sensors and control, slave board SPI interface

Jesus Diera: Web application, Ethernet interface

(EEs: Kevin Kha, Brian Canty, Ricardo Castro)

Initial Specifications

- Read pod sensors
 - o Position, velocity, acceleration
 - Temperature, motor rotation, battery current, brake actuation
- Perform telemetry
 - Send pod status data to web app
- Control pod states
 - Startup, shutdown, emergency braking
- Control navigation and stabilization systems

Block Diagram

Development Plan Overview- Fall '16

- Develop all sensor slave boards (November 8th, 2016)
- Calibrate all sensors (November 15th, 2016)
- Display all sensor data on web app (November 15th, 2016)
- Control all individual mechanical parts (Dependent on MEs)
- Create pod state machine (Dependent on MEs)

A detailed Gantt chart can be found here (requires Gantter for Google Drive).

Technology/IP Reuse: PCB

- 8.1" x 8.1" printed circuit board
 - 2 ARM Cortex-M4 microcontrollers
 - 430 components
- Sensor Data
 - Receive and send data to SD card and Web App
 - Sensors connect through external slave boards
- Ethernet module
 - Communicate data to Web App at least once per second
- Expandable
 - Can integrate newly added sensors

Technology/IP Reuse: Sensors

- Long Distance Ranging
 - Long distance ranging sensor for the pod's sides
 - Gives position relative to sides of the tube
- Short Distance Ranging
 - Short distance ranging sensor positioned on bottom four corners of the pod
 - Roll/pitch/yaw derived for stability/levitation feedback
- Photoelectric sensor
 - Recognize reflective strips mounted on the tube to determine pod travel distance in the test track

Technology/IP Reuse: Web Application

- Monitor real time sensor data at least once per second
- Send control signals for things like Emergency Braking, Powering Up
- Communicate through
 SpaceX NAP connected to
 PCB's ethernet module

New System: Slave Boards

- Arduino "slave boards" collect subsystem sensor data
 - Utilize the ADC peripherals of Atmel microcontrollers
 - Communicate data back to main PCB with SPI connections
 - Cost: \$25/unit
- Specific configuration and calibrations for each subsystem:
 - Mag Lev motors
 - Monitor temperature and rotational speed of motors
 - Power distribution
 - Monitor temperature and current of battery cells which supply motors and electronics
 - Braking
 - Monitor temperature and actuation status (pressure / position) of braking systems

New System: Thermistors

- Temperature Monitoring
 - Motors, batteries, brakes
- NTC Thermistor 10k Bead
 - Range: 55°C to 125°C
 - \circ Resistance: $10k\Omega$ @25°C, 0.5-50k Ω range
 - Cost: \$1.50/unit

New System: Reflective Object Sensors

- Sensors used to validate RPM of Mag Lev motors
 - Reflective strips on motor disk trigger sensor
- QRD1113
 - Response time: 10μs
 - Sensing Distance: 1.27 mm
 - Cost: ~\$1.50/unit

New System: Current Sensor

- Current monitoring
 - Batteries for PCB, brakes, motors
- ACS759
 - Hall effect based current sensor
 - Analog voltage output signal
 - Sensing range: 150A
 - o Cost: \$31.25

New System: SD Card Reader

- Sensor Data Storage & Event Logging
 - Store sensor data as individual files on SD card for easy access
 - Log pod events for testing and debugging
- SMAKN® SD Card Reader Module Chip
 - SPI Interface
 - Cost: \$5.66

Bill of Materials

Existing System	New System
PCB components: \$382.25	Current Sensors: \$250
Photoelectric Sensors: \$60	Thermistors: \$45
Long Ranging Sensors: \$8.74	Arduinos: \$200
Short Ranging Sensors: \$7.48	Reflective Object Sensors: \$6
Ethernet Module: \$28.00	SD Card Reader: \$5.66
	Total: \$983.13

Critical Elements: Potential Points of Failure

- Sensor data will need low latency in order to provide effective control of critical pod systems such as stability
- Sensor calibration accuracy
- Development of feedback control will be "open-loop" for time being due to physical pod construction taking time
 - Algorithms will need refinement in the future once testing is possible

Conclusion

• Any questions?