

What is the Semiconductor Industry?

Manufacturing of electronic devices

- High Quality
- Low Cost

Manufacturing Goals

- Raising quality usually means raising costs
- As the process matures, the goal is to:
 - Minimize cost
 - Meet quality expectations
 - Maximize yield
- Engineers must look for ways to balance these goals

How to Approach the Problem

- The testing process produces vast amounts of data
- By investigating this data we can potentially:
 - Increase product quality
 - Reduce test time
- Engineers are using data analytics
 - We want to provide an infrastructure to perform this data analytics

Test Data

- The data contains:
 - Test values on particular parts (i.e. voltage, current, frequency)
- The data is categorized by:
 - Insertion (temperature)
 - Lot (Production batches)
 - Wafer (Set of dies)
 - Die (Each individual part)

Objective

To create an infrastructure to aid product engineers in analyzing test data

Our Solution

- Software tool that provides flexible functionality for:
 - Data Accumulation
 - Data Selection
 - Data Analysis
 - Data Visualization
 - Model Building

Modules

- Data Download
 - Download Test Data
- Scope Selection
 - Selecting data based on certain criteria
 - Temporal
 - Spatial

Modules

- Analysis
 - Analyze data scope with a set of tools
 - i.e. Correlation, Univariate, Bivariate
 - Caching
- Visualization
 - Visualize results of analysis
 - i.e. KDE, Wafer Plot, Histogram

Modules

- Model Building
 - Evaluating analysis results
 - Using analysis results to create screening rules
 - Screening rules are derived from product failures or customer returns
 - Screening rules are then applied to prevent future failures/returns

Applications

- Test Time Reduction
 - Finding test redundancy
 - Analyzing correlation between tests
- Quality Analysis
 - Analyzing customer returns
 - Identifying tests with outlying behavior

Scenario 1: Test Time Reduction

- Identify tests with similar purposes
- Investigate tests with high correlation

Scenario 1: Conclusion

- Present results to peers/supervisors
- Suggest where tests can be removed with support from data

Scenario 2: Customer Return

- Learn from returned parts
- Identify test(s) in which the part exhibits outlying behavior

Scenario 2: Conclusion

- Further examine each test
 - Analyze implications of each test
 - Determine which tests are likely to indicate failure
- Review results
 - Examine consequences of applying test rule

Logging and Learning

- Logging of user workflow
 - Enables the tracking of program usage
- Enables the demonstration of procedure to peers and superiors
- Enables the engineer to reflect on past workflows if faced with a similar problem
- Analyze program usage to learn the thought process of the product engineer potential for performance improvement and/or automation

Future Additions

- Implement learning features using log data
- Data integrity analysis
- Implement more types of:
 - Data Analysis
 - Data Visualization
 - Screening models

