Placement and Routing

A Lecture in CE Freshman Seminar Series: Ten Puzzling Problems in Computer Engineering

About This Presentation

This presentation belongs to the lecture series entitled "Ten Puzzling Problems in Computer Engineering," devised for a ten-week, one-unit, freshman seminar course by Behrooz Parhami, Professor of Computer Engineering at University of California, Santa Barbara. The material can be used freely in teaching and other educational settings. Unauthorized uses, including any use for financial gain, are prohibited. © Behrooz Parhami

Edition	Released	Revised	Revised
First	Apr. 2007		

Houses and Utilities: Warm-up Version

There are n houses on one side of a street and 2 utility companies on the other. Connect each utility facility to every house via lines of any desired shape such that the lines do not intersect.

Problem interpretation: Pipes or cables must be laid in separate trenches (at the same depth)

Slide 3

Houses and Utilities: Classic Version

There are 3 houses on one side of a street and 3 utility companies on the other. Connect each utility facility to every house via lines of any desired shape such that the lines do not intersect.

Answer: A solution is impossible (unless you are allowed to cut through a house), but why?

Challenge: Now try this puzzle with 2 houses \& 4 utilities

Simplifying the Representation

Complete bipartite graphs:

$K_{2, n}$

Graphs with white nodes and black nodes in which every white node is connected to every black node, and vice versa

A graph is planar if it can be drawn so that no two edges intersect

Warm-up puzzle: Is $K_{2, n}$ planar for any n ?
Classic puzzle: Is $K_{3,3}$ planar?

Answer: Yes
Answer: No

Slide 5

Variations on the Puzzle

Two houses and n utilities

$$
K_{n, 2}=K_{2, n}
$$

$K_{3,3}$ on a torus

Challenge questions: Is the 3D cube graph planar? What about the 4D cube?

Slide 6

Euler's Formula for Planar Graphs

v Number of vertices or nodes
$e \quad$ Number of edges
f Number of faces
$v-e+f=2$

Note that the area outside of the graph counts as a face
$v=17$
$e=38$
$f=23$
$v-e+f=17-38+23=2$

Euler's Formula Tells Us that $K_{3,3}$ Isn't Planar

v Number of vertices or nodes
$e \quad$ Number of edges
f Number of faces

$$
v-e+f=2
$$

$v=6$
$e=9$
$f=$?
$6-9+f=2$
$f=5$
In a planar bipartite graph, each face has at least 4 sides (edges)

Therefore, to form 5 faces, we need at least $5 \times 4 / 2=10$ edges

Division by 2 is due to each edge being part of two different faces

Nearly Planar Graphs

Units
1
2
2
3
4
5

Can be drawn with a small number of edge crossings Desirable feature
for many diagram
that we draw for many diagrams Desirable fea
for many diag
that we draw

Required courses for CE majors at UCSB

Rectilinear Paths on a Grid

Solve the puzzle with 2 utilities and 4 houses using rectilinear grid paths.

Why rectilinear paths:

Trenches should not be too close to each other

Straight-line trenches with right-angle turns are easier to dig; also easier to locate later

Trenches must be dug along existing streets

Challenge: Solve the puzzle above with paths that have the minimum possible total length. Now try to solve the puzzle with paths from one utility to all four houses having exactly the same length.

Spanning Trees

A spanning tree connects a set of nodes in a way that there are no loops (if you remove any tree edge, then nodes are no longer connected)

Greedy algorithm for building a minimal spanning tree: Begin by connecting the closest pair of nodes. Then, at each step, connect the partial tree to the node closest to it (closest to one of its nodes)

Steiner Trees

Given n grid points, connect them to each other via a rectilinear network such that the total wire length is minimized.

Challenge: Is the Steiner tree shown above the best possible for connecting the five nodes?

Components: A,B,C,D,E,F

Net List:
A1, E2
A3, C6
A5, F1
A6, F6
B1, E6
B3, D3, E4
B4, D1
B5, F5
C1, C3
C4, F3
D6, E3
E1, F4

Placement and Routing

Slide 13

The Importance of Placement

Source: http://www.eecg.toronto.edu/~vaughn/vpr/e64.html

Placement and Routing
Slide 14

Routing after Placement

Routing succeeded with a channel width factor of 7 .

FPGA routing details

Placement and Routing
Slide 15

Wire-Wrapping vs Printed Circuits

In laboratory prototypes, we use wire-wrapping (using ordinary wires) to connect components, as we develop and test our design
Once the design has been finalized, the connections will be printed on a circuit board to make them both less cluttered and more reliable

Backplane Wiring

Backplane wires located behind computer cabinets presents the same problems as wiring on a printed circuit board

Judicious placement of cabinets helps. Also, wires can be made neater and more tractable by using rectilinear paths and grouping cables

Single-Layer Routing on a PC Board

Placement and Routing
Slide 18

Multilayer Routing on PC Boards

Wires can cross each other if they are located at different levels Through holes or "vias" can connect wires that are on different levels

Placement and Routing
Slide 19

Example of 2-Layer Routing on a PC Board

Wires shown in red are mostly vertical

Wires shown in green are mostly horizontal

Example component

Example via
lacement and Routing

Multilayer Wiring in Integrated Circuits

IBM CMOS7 Process

6 layers: copper wiring
1 layer: tungsten local interconnects

Visualizing Multilayer Wiring on a Chip

Photomicrograph of actual connections
The ability to connect many millions of transistors together, in a way that does not hamper signal propagation speed, is a main challenge today

Drawing, with the vertical dimension exaggerated

Related Puzzling Problems to Think About

Resource placement: Place n fire stations in a city to minimize the worst-case response time. Alternatively, given a desired worst-case response time, what is the minimum number of fire stations needed?

View the city as a number of intersections, connected by streets (often a planar graph); numbers indicate travel times for fire trucks

Moving in a room with obstacles: Robot (black dot) must move to the location of the white dot. What is the best rectilinear path?
Also, routing of wires when there are some restrictions (e.g., placed components or existing wires)

