

Constant-Time Addition with Hybrid Redundancy 1 G. Jaberipur and B. Parhami (January 2, 2007)

Constant-Time Addition with Hybrid-Redundant Numbers:
Theory and Implementations

Ghassem Jaberipur
Department of Electrical and Computer Engineering

Shahid Beheshti University, Tehran 19839-63113, Iran, and
School of Computer Science

Institute for Studies in Theoretical Physics and Mathematics (IPM)
E-mail: jaberipur@sbu.ac.ir

Behrooz Parhami

C o r r e s p o n d i n g a u t h o r
Department of Electrical and Computer Engineering

University of California, Santa Barbara, CA 93106-9560, USA
Phone +1 805 893 3211, Fax +1 805 893 3262

E-mail: parhami@ece.ucsb.edu

Abstract: Hybrid-redundant number representation has provided a flexible framework for digit-
parallel addition in a manner that facilitates area-time tradeoffs for VLSI implementations via
arbitrary spacing of redundant digit positions within an otherwise nonredundant representation.
We revisit the hybrid redundancy scheme, pointing out limitations such as representational
asymmetry, lack of representational closure in certain adder implementations, and difficulties in
subtraction and carry acceleration. Given the intuitiveness of the hybrid redundancy concept and
its potential for describing practically useful redundant number systems, we are motivated to
extend it within the framework of weighted bit-set encodings to circumvent the aforementioned
problems. The extension is based mainly on allowing negatively weighted bits (negabits), as well
as standard posibits, to appear in nonredundant positions. Our extended hybrid redundancy
scheme provides for arbitrary spacing of redundant positions in symmetric digit sets, without any
degradation in arithmetic efficiency, while at the same time allowing low-latency subtraction by
means of the same circuitry that is used for addition. Finally, we describe how inverted encoding
of negabits leads to the exclusive use of unmodified standard full/half-adder, counter, and
compressor cells, with no extra inverters, and to the direct applicability of conventional carry
acceleration techniques in constant-time addition.

Keywords: Arithmetic unit, carry-free addition, computer arithmetic, redundant number
representation, signed-digit number system.

1. Introduction

Implementation of arithmetic algorithms has been subject to continual improvement to allow
greater speed and to reduce VLSI area and power. The choice of number system and its encoding
has a major influence on achieving such design goals. For example, the three well-known binary
number systems (i.e., signed magnitude, 1’s and 2’s complement) offer different advantages and
disadvantages, and thus interesting tradeoffs [22]. Redundant number systems [2], [8], and
associated encoding variations, enable us to perform digit-parallel addition with a small constant
latency. Such redundant number systems may be used as the primary mode of number
representation in special application settings or as intermediate or internal forms, with attendant
input conversion and output reconversion, for general use.

Constant-Time Addition with Hybrid Redundancy 2 G. Jaberipur and B. Parhami (January 2, 2007)

A suitable encoding of a redundant digit set can further improve the performance of redundant
arithmetic operations. For example, a special encoding of double-carry digits in [7] leads to
improved latency, area, and power. Other examples of encoding alternatives include representing
a symmetric signed digit in the interval [−α, α] as a signed-magnitude, 1’s- or 2’s-complement
digit [11] or as a stored-transfer digit [9]. Encoding of an asymmetric signed digit in [–2h–1, 2h–1]
in hybrid-redundant format [24] constitutes yet another example. Various encodings may exhibit
different levels of efficiency in implementing the same arithmetic algorithm. Theoretical studies,
such as the generalized signed digit number systems [20], may open new horizons for
explorations of encodings and implementation techniques that enhance the performance of
digital arithmetic operations and systems [1], [12].

The redundancy index ρ of a digit set [−α, β] is defined as the difference between the number of
digit values (i.e., α + β + 1) and the radix r of the number system [20]. The higher the
redundancy index, the greater the number of bits needed to faithfully represent each digit and
often, the longer the potential delays in digit-parallel arithmetic. In many cases, a redundancy
index of ρ = 2 is adequate, and one never needs to go beyond ρ = 3, for carry-free addition in
radices higher than 2 [20]. However, proper choice of the redundancy index ρ, coupled with
suitable encoding of the resulting digit set, may allow for a faster and/or more compact VLSI
realization. Such variations in redundancy indices and associated digit-set encodings are the
main focus of this paper. Much of what we present deals, directly or indirectly, with facilitating
area-time tradeoffs in the VLSI implementation of arithmetic operations on redundant operands.

Stored-transfer representations [9], [14], weighted bit-set encodings for redundant digit sets [12],
and representation paradigms of high-radix signed-digit number systems [11] are all motivated
by area-time tradeoff concerns, improvement in the representation coverage, speed of arithmetic,
and/or regularity in VLSI implementation. Similarly, hybrid-redundant number systems
introduced in [24], extended in [25] and, based on [1], improved with regard to implementation
in [17], provide a framework for the efficient design and implementation of digit-parallel
addition for a class of redundant number systems. Briefly, a hybrid-redundant number is
composed mostly of normal, positively-weighted bits (posibits), with some radix-2 positions
holding redundant digits. The hybrid signed-digit (HSD) number systems, as originally described
in [24], entailed a composition of nonredundant and redundant positions as an alternative to fully
redundant number systems where redundancy appears in every digit position. But later extension
of the concept seems to have focused on fully redundant number systems with a variety of
redundant digit sets [25]. Unfortunately, the design and implementation of a rather general-
purpose redundant arithmetic based on the original notion and subsequent extension of hybrid
redundancy engenders some limitations, such as the following, where the last two apply only to
the extended form in [25]:

• Considerable difference in the range of positive and negative numbers, leading
to inefficiencies in the implementation of subtraction.

• Inapplicability of conventional carry acceleration methods, and the associated
highly optimized circuits, due to the use of nonstandard adder cells.

• Inability to faithfully cover, as a representation paradigm, almost all symmetric
digit sets as well as many other useful digit sets.

• Lack of representational closure of true hybrid-redundant adders in both the
original [25] and subsequently improved [17] efficient adder cells.

• Increasing the likelihood of apparent overflow due to tendency of addition
operation to reduce the resultant digit set in some implementations.

Constant-Time Addition with Hybrid Redundancy 3 G. Jaberipur and B. Parhami (January 2, 2007)

To circumvent these problems, which are more fully explained in Sections 2 and 3 of the paper,
and exploit the strength of hybrid redundancy in facilitating arithmetic system design with
specific area-time tradeoff goals, we reformulate and extend the hybrid redundancy scheme
within the framework of weighted bit-set encodings in Section 4. Our quest for more efficient
and VLSI-friendly carry-free addition schemes for hybrid-redundant numbers leads us to a
scheme for the encoding of negabits (i.e., negatively weighted bits) in Section 5, where we
explore different functionalities for standard full-adders, with no added elements (not even
inverters), in the summation of any collection of three negabits and posibits. This leads, in
Section 6, to new designs for efficient adder cells for both nonredundant and redundant positions
in a hybrid-redundant representation. Section 7 shows the power of extended hybrid redundancy
scheme in deriving symmetric hybrid-redundant number systems with arbitrary spacing of
redundant positions; a property that is vital to exploitation of the main advantage of hybrid
redundancy (i.e., spacing of redundant digits to match the area-time design goals). This is
followed, in Section 8, by implementation details of an efficient, regular, and representationally
closed adder/subtractor for symmetric extended-hybrid-redundant operands and conversion from
2’s-complement representation in Section 9. Section 10 concludes the paper.

The extended dot notation used in this paper is described in Table I for ease of reference. Posibit
is an ordinary bit with a value in {0, 1}, and its heavy-dot symbol is the same as in standard dot
notation commonly used in computer arithmetic. Negabit is a negatively weighted bit, with a
value in {–1, 0}. Finally, a “redundant dot” appears in any position containing a value whose
range is wider than a posibit or negabit and is usually realized through multiple posibits and/or
negabits. For example, a redundant position holding a value in [–1, 2] is realizable by one
negabit and two posibits. The latter three bits would appear in a column corresponding to the
radix-2 weight of the redundant dot. When the latter substitution is made in the third example of
Table I, the resulting dot-notation diagram is said to be “3-deep,” meaning that the tallest column
of dots contains 3 posibits and/or negabits. According to this terminology, an ordinary unsigned
or 2’s-complement binary number, appearing in the first two examples of Table I, is 1-deep, and
a carry-save or borrow-save number is 2-deep.

Table I. The extended dot notation used throughout this paper.

 Symbol Name Meaning Example of use (8 radix-2 positions)

1 Posibit Value in {0, 1}
2 Negabit Value in {–1, 0}
3 ® Redundant Value in [–ν, π] ® ®

2. Properties of Ordinary Hybrid Redundancy

Hybrid-redundant (or partially redundant) number systems are weighted radix-2 number systems
with some redundant radix-2 positions (holding a digit value from a redundant digit set), but
mostly nonredundant positions (holding a posibit). Special practical cases, where the redundant
digit sets are limited to those representable by two bits, have been studied in detail [25]. The
redundant digit sets for these cases are shown in Table II, where we have also included the
notation used in [25], for ease of reference and comparison, and added the last two entries that
also meet the restriction for 2-bit representation. Another restriction, as explicated in [25], is that
only posibits are allowed in nonredundant positions.

Constant-Time Addition with Hybrid Redundancy 4 G. Jaberipur and B. Parhami (January 2, 2007)

Table II. Redundant radix-2 digit sets that are representable with 2 bits.

 Type of redundant digit Digit set: [–ν, π] Notation of [25] Redundancy index ρ

1 Binary signed-digit (BSD) [–1, 1] SD 1
2 Stored double borrow (SDB) [–2, 1] SD3{–} 2
3 Stored borrow or carry (SBC) [–1, 2] SD3{+} 2
4 Stored carry (SC) [0, 2] CS2 1
5 Stored double carry (SDC) [0, 3] CS3 2
6 Stored double borrow (SDB) [–2, 0] N/A 1
7 Stored triple borrow (STB) [–3, 0] N/A 2

To investigate the theoretical properties of hybrid redundancy, we relax the first restriction,
namely, that of 2-bit redundant positions. Later, we present our main extension by also relaxing
the second restriction via allowing negabits, as well as posibits, in nonredundant positions.

Definition 1 (Posibit hybrid redundancy): A posibit hybrid-redundant number system has k
radix-2 positions numbered 0 to k – 1, from the least to the most significant position. Each
position may be nonredundant, holding a posibit (i.e., a normal bit in [0, 1]), or redundant with a
digit in [–ν, π], where ν, π ≥ 0 and ν + π > 1. The digit in radix-2 position i (0 ≤ i < k), whether
nonredundant or redundant, has the weight 2i.

We use posibit hybrid redundancy to emphasize that in the original notion of hybrid redundancy,
nonredundant positions ought to hold a single posibit. At one extreme of every position being
redundant and using the same digit set, hybrid redundancy coincides with radix-2 generalized
signed-digit (GSD) representations [20]. At the other extreme of no redundant position, a posibit
hybrid-redundant number system represents unsigned binary integers. Thus, the claim in [25]
that 2’s-complement numbers may be considered as a special case of ordinary hybrid redundancy
is not valid, given that the negatively weighted sign position of a 2’s-complement number
violates the requirement for nonredundant positions.

Definition 2 (Periodic hybrid redundancy): A posibit hybrid-redundant number system is
periodic if the separation or distance between two consecutive redundant positions remains
constant, with the period h being one more than the constant distance.

Thus, each radix-2h digit of a periodic hybrid-redundant number system has h – 1 nonredundant
radix-2 positions and a single redundant radix-2 position. Definition 2 could have been more
general (e.g., by allowing multiple redundant positions with varying digit sets in each period),
but we use this restricted definition to expose the limitations implied in [24] and [25]. Prior
applications of hybrid redundancy (e.g., [19]), mainly in the design of multipliers, have all used
periodic subclasses that correspond to radix-2h digit sets encoded by zero or more posibits
followed or preceded by a redundant digit. Such periodic hybrid-redundant number systems can
be viewed as efficient encodings for special classes of GSD representations. However, there
exist useful GSD number systems, with symmetric digit sets, that cannot be represented via
posibit hybrid redundancy. In such cases, we cannot exploit the main benefits of hybrid
redundancy, that is, area-time tradeoff. For example, the radix-8 GSD representation with digits
in [−5, 5] has no viable representation in posibit hybrid redundancy (see Lemma 1 and Corollary

Constant-Time Addition with Hybrid Redundancy 5 G. Jaberipur and B. Parhami (January 2, 2007)

1 below). We will show later that the subclass of symmetric posibit hybrid-redundant
representations is very limited and that efficient implementations, based on the adder cells in
[25] and [17], exist only for fully redundant binary signed-digit (BSD) and minimally redundant
radix-4 number systems (Corollary 3), both of which had been studied and used prior to, and in
contexts other than, hybrid redundancy. We will focus on periodic hybrid redundancy. However,
much of what we present pertains to the processing of single radix-2h digits. Therefore, our
results may be applied to nonperiodic cases, for the latter can be studied as a weighted collection
of digits with different radices (mixed-radix positional number system).

Definition 3 (Periodic right-, left-, and free-hybrid redundancy): In a hybrid-redundant number
system of period h (based on Definition 2), the position index for the redundant radix-2 digit in
[–ν, π] may be 0, h – 1, or 0 < g < h – 1 (mod h). We refer to these variants as right-, left-, or
free-hybrid redundancy, respectively. Taking each period of the hybrid-redundant representation
as a radix-2h GSD position, the corresponding digit set of a right-hybrid-redundant
representation is [–ν, 2h + π – 2], that of a left-hybrid-redundant representation is [–2h–1ν, 2h–1π +
2h–1 – 1], and for a free-hybrid-redundant representation with the redundant digit located in an
arbitrary position g is [–2gν, 2g(π – 1) + 2h – 1].

Example 1 (Variants of posibit hybrid redundancy): Table III shows examples of left-, right-,
and free-hybrid-redundant numbers with three radix-2h digits in dot notation. The dot notation
used is defined in Table I.

Table III. Variants of posibit hybrid redundancy, with ® in [–ν, π].

Variant Dot notation Position g of ® Radix-16 digit set

Left-hybrid ® ® ® 3 = h – 1 [–8ν, 8π + 7]

Right- ® ® ® 0 [–ν, π + 14]

Free-hybrid ® ® ® 2 (0 < g < h – 1) [–4ν, 4π + 11]

Lemma 1 (Symmetry of digit sets associated with periodic hybrid-redundant representations):
For periodic radix-r (r = 2h > 2) posibit hybrid-redundant representations with redundant digit in
[–ν, π], there is no symmetric digit set for left- or free-hybrid redundancy, while symmetric right-
hybrid redundancy is possible for all h > 1, provided the radix-r redundant digit set is [–α, α],
with α = ν = π + r – 2.

Proof: Consider a radix-r (r = 2h) hybrid-redundant digit set D = [–2gν, 2g (π – 1) + r – 1], with
the redundant digit being in radix-2 position 0 ≤ g ≤ h – 1. For D to be symmetric as D = [–α, α],
we must have 2gν = 2g (π – 1) + 2h – 1 or ν = π – 1 + (2h – 1) / 2g. Obviously, the latter equation
has integer solutions for ν and π only if g = 0 (i.e., right-hybrid), leading to α = ν = π + r – 2.

Note that for h = 1 and ν = π, where the left-, right-, and free-hybrid categorization does not
apply, the number system is fully redundant and symmetric (e.g., BSD).

Corollary 1: There is no symmetric radix-r (r = 2h) posibit hybrid-redundant number system
with the digit set [–α, α] for α < r – 2.

Constant-Time Addition with Hybrid Redundancy 6 G. Jaberipur and B. Parhami (January 2, 2007)

Corollary 2: A symmetric radix-r (r = 2h) right-hybrid-redundant number system with redundant
digits in [–ν, π] and π ≥ 2, is over-redundant (i.e., the redundancy index ρ of its radix-r digit set
satisfies ρ ≥ r). Furthermore the minimum redundancy index for such a radix-r symmetric digit
set is ρ = r – 3 and it occurs when π = 0.

Corollary 2 shows that symmetric posibit hybrid redundancy is possible only for highly
redundant digit sets satisfying ρ ≥ r – 3, while, according to the results in [20], ρ ≥ 3 (2) is
always (in most cases) sufficient for carry-free addition, and even ρ = 1 allows limited-carry
addition, that is, carry-free addition with some look-back (see Definition 4).

In a hybrid-redundant adder, the adder cell of a redundant radix-2 position does not propagate
the incoming transfer (e.g., carry or borrow). Transfers generated by redundant or nonredundant
positions may ripple up to the next redundant position, where they sink. This process is depicted
in Fig. 1, where the larger boxes representing adder cells in redundant positions are intended to
reflect the greater complexity of those cells relative to adder cells in nonredundant positions.

. . .th–1 t2 t1 t0th th+2

Sink Sink

Redundant
adder cell

Redundant
adder cell

Nonredundant
adder cell

Nonredundant
adder cell

Nonredundant
adder cell

th+1

One period

Fig. 1. Schematic representation of an adder for right-hybrid-redundant numbers.

To keep the complexity of adder cells in check, it is desirable to restrict the cardinality of
redundant digits to 4, thus making them representable with 2 bits (i.e., the minimum possible for
a redundant digit). This constraint leads to 1 bit of redundancy per radix-2h digit. Unfortunately,
such encoding efficiency is gained at the cost of narrowing the spectrum of symmetric hybrid
redundancy to only one case besides the fully redundant BSD number system, as is stated below.

Corollary 3 (Restricted symmetry with single redundancy bit): In the case of single redundancy
bit per radix-2h digit, there are only two possible symmetric digit sets in right-hybrid-redundant
number system: fully redundant BSD and minimally redundant radix-4.

Proof: Applying the constraint ν + π ≤ 3 (i.e., 2-bit encoding of redundant digits) to the result of
Lemma 1 (i.e., ν = π + 2h – 2) leads to π ≤ 5/2 – 2h–1. Given that π ≥ 0, the latter inequality holds
only for h ≤ 2. The case h = 1 leads to ν = π = 1 (i.e., fully redundant BSD). The case h = 2
results in π = 0 and ν = 2 (i.e., minimally redundant radix-4).

In constant-time addition of radix-r redundant numbers, the sum digit in radix-r position i, is a
function of the operand digits in the same position i and at least those of position i – 1 [20].

Definition 4 (Look-back): The number of consecutive radix-2h operand digits in the right
context of a radix-2h position i, which contribute to the value of the sum digit in position i,
constitutes the look-back of position i.

Constant-Time Addition with Hybrid Redundancy 7 G. Jaberipur and B. Parhami (January 2, 2007)

For digit sets with ρ ≥ 3 and most cases of ρ = 2 (a few cases of ρ = 2 and all cases of ρ = 1), it
has been shown that the required look-back is 1 (2). In other words, the sum digit in radix-2h
position i is a function of four (six) operand digits; the two operand digits in radix-2h position i
and the two in radix-2h position i – 1 (and the two in radix-2h position i – 2) [20]. It is interesting
to note that for the minimally redundant case of ρ = 1, the look-back of 2 leads to more complex
addition schemes. Thus, the representational cost reflected in ρ ≥ 3 may be more than
compensated for by the need for smaller look-back. The few cases of ρ = 2 which require a look-
back of 2 are best avoided, because they offer no advantage to compensate for the more complex
addition scheme.

Definition 5 (Partial look-back): When, depending on the encoding and implementation (e.g.,
HSD in [24]), some bit positions of a look-back digit do not contribute to the derivation of a
position sum, the look-back is said to be partial.

The abstract view of a hybrid-redundant adder in Fig. 1 is based on a primary perception of
complete separation of adder cells for redundant and nonredundant positions. The only
connection between the two kinds of cells would be through carry and/or borrow propagation.
But Phatak et al. have used a technique called equal-weight grouping (EWG), which entrusts the
higher bits of a digit in radix-2 position i – 1, together with lower bits of a radix-2 digit in
position i to a single adder cell in position i. This adder cell has been shown to be less complex
than one designed without EWG. To investigate the consequences of EWG for hybrid-redundant
addition, we consider the 2-bit representation of a redundant digit xi to be 〈xh

i xl
i〉, with xh

i and xl
i

having the weights ±2i+1 and ±2i, respectively. We then define EWG formally as follows.

Definition 6 (Equal-weight grouping, EWG): The higher weighted bit of a redundant digit in
radix-2 position i – 1 has the same weight as the lower-weighted bit (only bit, in the case of a
nonredundant position) of the digit in position i, thus constituting a group of 2 equally weighted
bits, regardless of bit polarities. EWG allows us to intermix the processing of bits from various
radix-2 positions in order to obtain a more efficient hardware realization.

Definition 7 (Representationally closed addition): An addition scheme is representationally
closed when the two operands are from the same number system (i.e., the equally weighted digits
of the two operands belong to the same digit set) and the value of the resultant sum digit, in the
corresponding digit-position, also belongs to the same digit set. Furthermore, representational
closure requires that these identical digit sets all have the same encoding.

Representational closure is vital for general-purpose arithmetic, where the same adder circuit is
reused to process the results of previous additions. But equal-weight grouping, although
simplifying adder cells in fully redundant adders, does not always lead to representational
closure in true hybrid-redundant addition. For example, Figs. 2 and 3 represent, by means of
digit-set conversion [15], a fully SDB-redundant and a true SDB-hybrid-redundant addition.
Composition of two SDB digits results in the interval [–4, 2], whereas that of two posibits
produces [0, 2]. The processes of decomposition (e.g., [–4, 2] = 2 × [–2, 0] + [0, 2]) and
recomposition (e.g., [–2, 0] + [0, 1] = [–2, 1]) are self-explanatory. As is evident from Figs. 2
and 3, the negabits of operands in position i – 1, contribute to the generation of negabits in
position i. This causes a representational shift which, owing to the addition of fully redundant
operand, remains hidden in Fig. 2, but that is clearly visible in Fig. 3. It is easy to see that the
same representationally shifted behavior occurs for true SDC-hybrid-redundant addition with
redundant digits in [0, 3], while a direct adaptation of an addition scheme based on the adder
cells given in [7] for the same number system would be representationally closed. Also
representationally closed addition of true SDB-hybrid operands is certainly possible (e.g., [13]).
The sink functionality of position i may be seen in Fig. 3, where carry propagation starts at
position i + 1.

Constant-Time Addition with Hybrid Redundancy 8 G. Jaberipur and B. Parhami (January 2, 2007)

Position index

Position sum range

Equal-weight

Decomposition

Recomposition

i i – 1 i – 2

[–4, 2] [–4, 2] [–4, 2]

[0, 2] + [–2, 0] [0, 2] + [–2, 0] [0, 2] + [–2, 0]

[–2, 2] [–2, 2] [–2, 2]

[–2, 0] + [0, 1] [–2, 0] + [0, 1] [–2, 0] + [0, 1]

[–2, 1] [–2, 1] [–2, 1]
Fig. 2. Addition of fully redundant SDB operands with equal-weight grouping.

Position index

Position sum range

Equal-weight

Emitted transfer

Absorbed transfer

i
Nonredundant

i – 1
Redundant

i – 2
Nonredundant

[0, 2] [–4, 2] [0, 2]

[0, 2] + [–2, 0] [0, 2] [0, 2] + [0, 1]

[–2, 2] [0, 3]

[–2, 0] [0, 2] + [0, 1]

[0, 3]

i + 1
Nonredundant

[0, 1]

[–2, 0] + [0, 1] [0, 1] [0, 1] [0, 1]

[0, 1]

[–2, 1]

Fig. 3. Addition of true SDB-hybrid-redundant operands with equal-weight grouping.

The fully redundant SDB-hybrid addition of Fig. 2 is based on digit set conversion of [17],
where the resultant digit may assume any value of the original digit set [–2, 1]. But an adder cell
for the same purpose, offered in [25], does not preserve the operand’s digit set and produces digit
values in [–1, 1]. A brief assessment of the consequences of this reduction in digit sets is offered
below.

Definition 8 (Digit set preservation): The digit set of a number representation is preserved under
an arithmetic operation if the result digit may assume all the values in the digit set.

Example 2 (Impact of digit set nonpreservation): The digit set conversions of Figs. 2 and 3
preserve the digit set [–2, 1]. But the addition scheme of [25] for SDB-hybrid digits reduces the
digit set [–2, 1] to [–1, 1], as noted in [17]. Briefly, with the scheme in Figs. 2 and 3, two –1
redundant digits in position i are converted to –1 1 (in positions i + 1 and i) via equal-weight
grouping, leading to a digit –2 in position i + 1. On the other hand, the addition scheme of [25]
decomposes the resulting –2 digit into –1 0, thereby affecting position i + 2.

A drawback of the digit-set nonpreserving addition scheme, mentioned in Example 2, is that
addition of most significant digits may signal a false overflow. The digit-set preserving scheme
may also signal an apparent overflow [21], but this is less likely.

Constant-Time Addition with Hybrid Redundancy 9 G. Jaberipur and B. Parhami (January 2, 2007)

3. Realization of Hybrid-Redundant Adders

he adder presented by Phatak and Koren for BSD-hybrid-redundant operands (first entry in our

oki et al. [1] have shown that an augmented (4; 2)-compressor, with some input/output

 Section 6, we will show that by inverted encoding of negabits, to be introduced in Section 5,

4. WBS Encodings and Hybrid Redundancy

eighted bit-set (WBS) encoding of a redundant number system [12] has a fixed number of

represented by canonical WBS encoding (see Table IV).

T
Table II, Fig. 1 of [24]), with its redundant radix-2 positions utilizing the adder cell of [18],
requires 42 (32) transistors for redundant (nonredundant) positions. Phatak and Koren’s
corresponding design for redundant radix-2 positions with SDB or SCB redundant digits
(second and third entries in our Table II, Fig. 3a of [25]) requires seven multiplexers, a few
gates, and several inverters. An analysis of the latter of these two adders shows that the effect of
equal-weight grouping is to produce a representationally shifted result in which the redundant
position moves from i at the input to i + 1 at the output (see also the explanations following
Definition 7 in Section 2). The foregoing discussion suggests that for designing a true SDB-
hybrid-redundant adder that is representationally closed, specialized adder cells (besides the
multiplexer-based design cited above) are needed for isolated redundant positions and
immediately higher-weighted nonredundant positions. A high-level design for such adders is
offered in [13].

A
inverters, can be used for redundant positions of a BSD-hybrid-redundant adder. Kornerup has
used such augmented (4; 2)-compressors not only for the redundant position, as above, but also
in place of the multiplexer-based cell of Phatak and Koren (see Sections 4.1 and 4.2 in [17]).
However, none of these modifications leads to representational closure when applied to a true
hybrid-redundant adder. Aoki et al. [1] have also shown that standard full-adders, augmented by
suitable input/output inverters, may receive and produce negabits as well as posibits. This
obviates the need for special cell designs for nonredundant positions of a hybrid-redundant
adder. The inverters in the carry chain will cancel each other out, but the inverters needed for
inputs and sum negabits lead to some overhead when compared with unmodified full-adders.

In
the combining of posibits in a nonredundant position and the incoming borrow or carry can
indeed be delegated to a conventional, unmodified full-adder. The benefits of such a design are
the use of highly optimized standard full-adder cells (e.g., [3], [4], [26]) and the possibility of
carry acceleration within multiple nonredundant positions by means of ordinary binary carry-
lookahead circuits (again, readily available in highly optimized forms); neither of these benefits
is applicable when realizing hybrid-redundant adders with specialized adder cells.

W
radix-2 positions, each holding a collection of zero or more equally weighted posibits and
negabits. WBS encoding allows the representation of any GSD digit set, including those of
hybrid-redundant systems. Furthermore, aperiodic hybrid-redundant number systems, not
covered by the GSD paradigm, can also be represented by WBS encoding. For example a
posibit-hybrid-redundant number, as in Definition 1, can be represented by a WBS encoding,
where nonredundant positions hold a posibit and there is a collection of ν negabits and π posibits
in redundant positions, representing [–ν, π]. Canonical WBS encodings, where each redundant
radix-2 digit set is 3-valued and a proper subset of [–2, 2], are particularly useful for efficient
constant time addition. All the variants of posibit hybrid-redundant numbers of Table II may be

Constant-Time Addition with Hybrid Redundancy 10 G. Jaberipur and B. Parhami (January 2, 2007)

nonical encoding): A WBS encoding Ω
as k radix-2 positions, where each position i (0 ≤ i ≤ k – 1) holds π (≥ 0) posibits and ν (≥ 0)

en
udied in [12], but is irrelevant to hybrid redundancy. Any k-position posibit hybrid-redundant

n posibit-hybrid-redundant
umber system, with three redundant digit sets [–3, 3], [–5, 0], and [–2, 2] from left to right,

ere M is the
ynamic range of the source posibit-hybrid-redundant number system. The conversion to a

verting
e 6-deep, 9-position WBS encoding at the top to an equivalent 2-deep WBS encoding at the

dots in positions
j + 1

Definition 9 (WBS encoding, redundancy pattern, and ca
h i i
negabits representing the digit set [–νi, πi]. The cardinality of Ω equals the value of the (possibly
redundant) radix-2 number M = (mk–1 mk–2 … m1 m0)2, where mi = πi + νi ≥ 0 is the bit multiplicity
of position i. The redundancy pattern of Ω is defined as the possibly redundant radix-2 number R
= (ρk–1 ρk–2 … ρ1 ρ0)2, where ρi = mi – 1. The encoding is canonical if 1 ≤ mi ≤ 2 (or 0 ≤ ρi ≤ 1),
for all i, i.e., the digit set in each radix-2 position is [–2, 0], [–1, 0], [–1, 1], [0, 1], or [0, 2],
which is representable by two equally weighted negabits, one negabit, a pair of one posibit and
one negabit, one posibit, or two posibits, respectively. Given that mi ≤ 2, a canonical encoding is
a 2-deep WBS encoding, unless all mi = 1, where the encoding is 1-deep and nonredundant.

The unusual option of mi = 0, possibly leading to noncontiguous number systems, has be
st
number system (see Definition 1) may be represented by a k-position WBS encoding, where the
latter has a posibit (νi negabits and πi posibits) in position i, corresponding to radix-2 position i of
the former with a nonredundant (redundant) digit set [0, 1] ([–νi, πi]).

Example 3 (WBS encoding): A 6-deep WBS encoding of a 9-positio
n
respectively, is represented at the top of Fig. 5. The overall range of the representable numbers is
[–(3×26 + 5×23 + 2×20), 28 + 27 + 3×26 + 25 + 24 + 22 + 21 + 2×20] = [–234, 632], with the
cardinality M = 867. The redundancy pattern is R = (005004003)2 = 355 = M – 29

An equivalent k-position canonical WBS encoding exists if M ≤ 2k+1 – 1 [12], wh
d
canonical encoding, that is reducing the number of bits in all the k radix-2 positions to at most 2,
is possible through the transformations outlined in Fig. 4. See [12] for additional details.

Example 4 (Canonical WBS encoding): Figure 5 depicts the transformation steps for con
th
bottom. Note that, owing to a singular negabit in position 3, the 2-deep encoding no longer
corresponds to a posibit-hybrid-redundant number system.

Original Replaced with M
dots in
position j and j

ultiples of
2 that are
representable

 j

0, 1, 2, 3

–1, 0, 1, 2

–2, –1, 0, 1

–3, –2, –1, 0

(a)

(b)

(c)

(d)

Fig. 4. Replacement of three equally weighted posibits and negabits.

Constant-Time Addition with Hybrid Redundancy 11 G. Jaberipur and B. Parhami (January 2, 2007)

Fig. 5. Transforming a 6-deep encoding into an equivalent 2-deep encoding.

Based on the practical restriction of redundant digit sets to those representable by 2 bits, and in

iew of the fact that efficient addition schemes exist for redundant number systems represented

h-position

u h-position WBS encoding (i.e., 2h+1).

h ber

tations may be alternatively regarded as

v
by 2-deep WBS encodings [13], we are motivated to explore the characteristics of periodic
posibit-hybrid-redundant number systems representable by 2-deep WBS encodings.

Lemma 2: The digit set of a periodic radix-2h posibit hybrid-redundant number system Ω with

e redundant digit [–ν, π] in position g (0 ≤ g ≤ h – 1) is representable by a 2-deep th
WBS encoding iff ν + π ≤ 2h–g.

Proof: The digit set of Ω is [–2gν, 2g(π – 1) + 2h – 1] (Definition 3) and its cardinality should not
xceed the maxim m possible cardinality of a 2-deep e

Therefore 2g(π – 1) + 2h – 1 + 2gν + 1 ≤ 2h+1, leading to ν + π ≤ 2h–g.

Example 5 (Canonical WBS encodings for posibit-hybrid-redundant number systems): Table IV

epicts canonical WBS encodings for some radix-16 (= 4) posibit-hybrid-redundant numd
systems. The first five entries coincide with those of Table II. Note that in deriving the canonical
WBS encoding for the posibit-hybrid-redundant number system of row 7, using the
transformations of Fig. 4, the original posibits are not preserved. In all other cases, however, the
pale (dark) dots exactly represent the digit set corresponding to the original redundant
(nonredundant) positions.

Table IV shows that all posibit-hybrid-redundant number systems of Table II are representable

y 2-deep WBS encodings. These canonical represenb
hybrid-redundant number systems with all redundant positions meeting the constraint ν + π = 2
(BSD, SC, or in [–2, 0]). Other hybrid-redundant number systems with redundant digits of wider
range (e.g., those in the last two entries of Table IV), when represented by canonical WBS
encoding, can be alternatively regarded as having more redundant positions, all with ν + π = 2.
Therefore, one can design representationally closed adders for any posibit-hybrid-redundant
system, meeting the condition of Lemma 2, based on the adder cells of Fig. 1 in [24]; directly for
BSD and SDB hybrid-redundant and posibit nonredundant positions, and designed similarly for
other cases of Table II (see Section 6). Note, however, that needing such a wide variety of adder
cells is a disadvantage in VLSI design, which favors regularity.

Position index 8 7 6 5 4 3 2 0

6-deep

2-deep

1

Legend:

 x
 x
 x

 x
x Intermediate

reduction
steps

Constant-Time Addition with Hybrid Redundancy 12 G. Jaberipur and B. Parhami (January 2, 2007)

Table IV. Canonical WBS encoding of some posibit-hybrid-redundant number systems.

Posibit hybrid-redundant number system

Composition (digit pattern) ν + π g
WBS encoding with 3 radix-16 digits

1

1 BSD in [–1, 1], 3 posibits 2 3

2 1 SDB digit in [–2, 1], 3 posibits

3 0

3 1 SBC digit in [–1, 2], 3 posibits 3 1

4 1 SC digit in [0, 2], 3 posibits 2 3

5 1 SDC digit in [0, 3], 3 posibits 3 2

6 1 digit in [–2, 0], 3 posibits 2 3

7 1 digit in [–4, 2] , 3 posibits 6 1

8 1 digit in [–8, 8] , 3 posibits 16 0

Posibit hybrid redundancy does not allow single g s. The third
ntry of Table IV, with a single negabit in its WBS encoding may appear to contradict this claim.

Definition 10 (Exten redundant number

stem has k radix-2 positions numbered 0 to k – 1 and weighted 2 to 2 . Each radix-2 position
i (0 ≤ i ≤ k – 1) holds a digit from a digit set [–νi, πi], νi, πi ≥ 0 and νi + πi ≥ 1. Position i is

ne abits in nonredundant position
e
However, one must note that in the implementations offered in [25], this single negabit together
with a posibit in the next higher position forms an SBC digit in the same (redundant) position as
the negabit, and is thus not considered or manipulated by itself as a nonredundant radix-2 digit.
Because a negabit represents the nonredundant radix-2 digit set [–1, 0], we are motivated to
extend hybrid redundancy to allow for negabits in nonredundant positions. This implies that, in
designing the required adder cells, the negabit would be considered by itself and not as part of a
redundant digit.

Fig. 6. Relating WBS encodings and their various subclasses.

NonperiodicPeriodic (GSD)

WBS Encodings

Extended Hybrid

Posibit Hybrid

ded hybrid redundancy): A k-position extended-hybrid
0 k–1

-
sy

Constant-Time Addition with Hybrid Redundancy 13 G. Jaberipur and B. Parhami (January 2, 2007)

hybrid redundancy.

he relative complexity of the adder cells in [24] and [25] is mainly due to carry and borrow
propagation within the sam d full-adders, augmented

ith input/output inverters, have been proposed in [1] as efficient tools for the compression and

he most significant position of
andard 2’s-complement representation. The lower (higher) value of a negabit, that is, –1 (0), is

redundant (nonredundant) iff νi + πi ≥ 2 (νi + πi = 1). Graphically a redundant position is shown
as ®, or by a collection of two or more posibits () and negabits (); a nonredundant position
contains exactly one posibit or one negabit.

Figure 6 depicts the relationships among WBS encodings, GSD number systems, extended-
hybrid-redundant number systems, and posibit

5. Inverted Encoding of Negabits

T

e circuit. Variants of (4; 2)-compressors an
w
addition of equally-weighted mixed collections of posibits and negabits. Kornerup [17] has used
the compressors of [1] as more efficient alternatives to the adder cells of [24] and [25]. Other
attempts at similar treatment of equally weighted posibits and negabits (e.g., [6] and [23]) have
led to slight variations in full/half-adder circuits for different combinations of posibits and
negabits. The difference is often due to extra inverters at inputs and outputs of the standard cells.
Although intermediate inverters may cancel each other out in automated VLSI design, inverters
for original inputs and final outputs contribute to extra delay, area and power consumption; a
problem, that we aim to solve by inverted encoding of negabits. It is well known that inverting
all three inputs of a full-adder will result in inverted sum and carry. This hints at using a standard
full-adder for adding any three posibits and negabits (see Fig. 4).

Definition 11 (Inverted encoding of negabits): Inverted encoding of negabits is exactly the
opposite of the conventional encoding, as used, for example, in t
st
inversely encoded as 0 (1). We use uppercase (lowercase) letters to designate the logical value of
a negabit (posibit). Then the arithmetic value of a negabit X (a posibit x) would be X – 1 (x).

FA

s

in c out c

x y

FA

x Y

in c out c

S

FA

s

in c out C

X Y

FA in C out C

X Y

S
Fig. 7. Universality of a binary full-adder for adding equally weighted posibits

(shown as lowercase variables) and negabits (uppercase).

Figure 7 dep nter for any
equally weighted colle ts. A full adder with

osibit inputs is characterized by the equation x + x + x = 2c + s which relates the arithmetic

icts the universal functionality of a standard full-adder as a (3; 2)-cou
ction of 3 posibits and inversely encoded negabi

p 1 2 3
values of its inputs and outputs. Now, if the posibit input x1 is replaced by the negabit input X1,
denoting the arithmetic value X1 – 1, the equality (X1 – 1) + x2 + x3 = 2c + (S – 1) shows that the

Constant-Time Addition with Hybrid Redundancy 14 G. Jaberipur and B. Parhami (January 2, 2007)

unctionality of half-adders is

All the posibit-hybrid-red ts that are representable
ith 2 bits, and many other extended-hybrid-redundant number systems (discussed in Section 4),

e.

ands, for i ≥ 0. See Fig. 8c.

I
on j + 1 (or position 0), followed by a chain of

The add
dders o pressor. The

full-adder will produce a negabit sum and posibit carry. The (3; 2)-counter functionality of a full-
adder for other combinations of inputs is similarly justified.

Similarly, one could use half-adders to convert any set of 2 equally weighted posibits and

egabits to an arithmetically equivalent 1-deep, 2-bit result. This fn
justified by using the equation x1 + x2 = 2c + s in the same manner as that of a full-adder in the
preceding paragraph. We have shown elsewhere [12] that conventional compressors,
independent of how they are implemented, offer a similar functionality in reducing larger
collections of posibits and negabits in any combination.

6. VLSI-Friendly Addition Scheme

undant number systems with redundant digi
w
can be represented by canonical WBS encodings. Addition of two canonical WBS-encoded
numbers is performed by conceptually copying the bits of the 2-deep operands in the bit
placeholders of a 4-deep WBS representation. This is then followed by digit-set conversion [15],
or reduction to canonical WBS encoding. In fact, if the redundancy patterns (see Definition 9) of
operand’s encodings are the same, only redundant positions of the operands produce 4-deep
results, with nonredundant positions yielding 2-deep results. Otherwise (i.e., operands with
different redundancy patterns), a nonredundant position of one operand may align with a
redundant position of the other, thus leading to 3-deep positions as well.

With inverted encoding of negabits, reduction of a 4-deep WBS number to a 2-deep one can be

elegated to any standard reduction network such as a Wallace tree [27] or Dadda tree [5]. But, d
the resulting 2-deep number may show an arbitrary redundancy pattern that is not necessarily the
same as that of the input operands. This pattern change is what may happen in Algorithm 1
below. Algorithm 2, however, provides for addition results with a preserved redundancy pattern,
which, as we will see later, is not necessarily the same as representational closure.

Algorithm 1 (WBS reduction with shifted redundancy pattern)

put: A 4-deep WBS-encoded number derived by aligning two canonical WBS operands with In
identical redundancy patterns. See Fig. 8a for an exampl

Output: A canonical WBS-encoded result with shifted redundancy pattern, where the
redundancy index ρi+1 of the result is equal to ρi of the oper

I. For each 4-deep position j, use a full-adder to reduce it to a 2-deep position. This leads
to a 3-deep position j + 1. See Fig. 8b

I. Use a cascade of full-adders for carry-propagate addition starting with a single full-
adder at an intermediate 3-deep positi
full-adders for 2-deep positions up to, but not including, the next higher 3-deep position.
The carry-out of the full-adder for the leftmost 2-deep position in a chain will stop at the
following 3-deep position, where it joins the sum bit generated in that position to form
the redundant 2-deep position j + 1 of the result.

er cells required for implementation of Algorithm 1 are depicted in Fig. 9. The two full-
f Fig. 9a, used for redundant positions, may be replaced by any (4; 2) coma

single full-adder of Fig. 9b is used for nonredundant positions. Note that a single full-adder for a
nonredundant position is the minimum possible.

Constant-Time Addition with Hybrid Redundancy 15 G. Jaberipur and B. Parhami (January 2, 2007)

(a)

(b)

(c)

ig. 8 e h if u te .

F . R duction wit sh ted red ndancy pat rn

Fig. 9. Adder cells leading to shifted redundancy pattern.

Algorithm 2 (WBS reduction with preserved redundancy pattern)
Input: A 4-deep WB l WBS operands with

identical redundancy patterns. See Fig. 10a, for an example.
undancy pattern, where the

I

The
preservi alf-adder per nonredundant position (compare

igs. 9b and 11b). However, the addition latency is the same as that of the circuit for shifted

S-encoded number derived by aligning two canonica

Output: A canonical WBS-encoded result with preserved red
redundancy index ρi of the result is equal to ρi of the operands, for i ≥ 0. See Fig. 10c.

I. Use a full-adder (half-adder) for any 4-deep position j (2-deep position i). This turns
each 4-deep position j into a 3-deep position and leaves the multiplicity of 2-deep
positions intact (Fig. 10b).

I. Proceed exactly as in step II of Algorithm 1. See Fig. 10c, where the result has the same
redundancy pattern as of the operands.

 required adder cells for Algorithm 2 are depicted in Fig. 11, where the extra cost for

ng the redundancy pattern is seen to be a h
F
redundancy pattern. Again, the circuit in Fig. 11a may be replaced by a (4; 2)-compressor. Note
that the adder cells for redundant positions in both algorithms are identical. Also note that all
adder cells are universal in that their functionality does not depend on the polarities of inputs and
outputs. This is an important feature of our designs, in the sense of enabling the use of
conventional building blocks that, over time, have been highly optimized with regard to
complexity, speed, and power requirements.

Constant-Time Addition with Hybrid Redundancy 16 G. Jaberipur and B. Parhami (January 2, 2007)

(a)

(b)

(c)

Fig. 11. Reduction cells for preserved redundancy pattern addition.

An approach that preserves the redundancy pattern (e.g., Algorithm 2) does not necessarily lead
to representationa t e redundancy

atterns of the operands and the result but also identical polarity combinations for like positions.

 area, speed, and regularity. In Section 7, we present
presentationally shifted and representationally closed high-level designs for VLSI-friendly

Fig. 10. Reduction with preserved redundancy pattern.

l closure, because the latter requires not only a match in h
p
But it is interesting that the adder cells of Fig. 9 preserve the polarity sets of the operands,
leading to a representationally shifted result similar to the result of true hybrid redundant adders
based on the adder cells in [25] or those in [17]. While the adder provided in [24] for BSD
hybrid-redundant operands is representationally closed, neither [25] nor [17] offers or hints at the
idea of such an addition scheme for other variants of true hybrid redundancy (i.e., where
nonredundant positions do exist).

In [12], we have presented a representationally closed adder for SDB-hybrid-redundant operands
showing advantages in terms of
re
constant-time adders with symmetric extended-hybrid-redundant operands.

y′j

cj

s′j

y″j

tj+1

cj+1

x′j

FA

s″j
tj

FA

ti

y′i

ci

HA

s′i

ti+1

ci+1

x′i

FA

(a) Redundant position

x″j

(b) Nonredundant position

Constant-Time Addition with Hybrid Redundancy 17 G. Jaberipur and B. Parhami (January 2, 2007)

ecalling our discussion in Section 2, variants of symmetric posibit hybrid redundancy are
limited to hybrid red sets [–(π + 2h – 2),

 + 2h – 2] for all h > 0, where π is the maximum positive value which can be represented by the

ween radix-2 redundant
ositions for area-time tradeoff, as it is this number that defines the area requirement and the

ndant number system and its equivalent canonical WBS
ncoding. Each radix-8 digit belongs to [–6, 6]. The reduction process from 6-deep to 2-deep is

 (a 6- e hy rid d ndant (b) Equivalent 2-deep encoding

Fig. 12. Depth reduction for a symmetric posibit-hybrid-redundant number system.

Examp of orollary 3 that posibit 2-deep hybrid redundancy
provides fo redundant

dix-4 digit set [–2, 2]. This observation establishes that posibit 2-deep hybrid-redundant

le
osibit in every other position (i.e., a 10-deep representation of the radix-8 digit set [–8, 8]). An

7. Symmetric Extended Hybrid Redundancy

R

undant number systems with right-hybrid-redundant digit
π
right-side redundant position (see Lemma 1). A WBS encoding for such a digit set would have at
least 2h – 2 = 2(2d – 1) negabits in its radix-2 redundant position, where d is the distance between
consecutive radix-2 redundant positions. This means that the representation depth in radix-2
redundant positions grows exponentially with the distance parameter d.

The most important characteristic of posibit hybrid redundancy is the design flexibility in
allowing an arbitrary number of nonredundant radix-2 positions bet
p
associated latency for the design. With exponential growth of area for the radix-2 redundant
positions when symmetry is a requirement, any attempt to increase h would be ineffective as an
area-time tradeoff measure. As an example, for h = 3, corresponding to a rather short distance of
d = 2 between redundant positions, the encoding depth of redundant positions will be π + 6 (at
least 6). Converting such a deep WBS encoding to a 2-deep (canonical) encoding reduces the
number of radix-2 nonredundant positions, which is counterproductive as regards to the main
advantage of true hybrid redundancy.

Example 6 (Deep symmetric hybrid redundancy): Figure 12 depicts the WBS encoding of a
radix-8, 6-deep symmetric hybrid-redu
e
similar to that shown in Fig. 8.

) de p b -re u

le 6 serves to confirm the result C
r only two different symmetric digit sets, namely, BSD and the minimally

ra
representations are mostly asymmetric, thus essentially denying designers the flexibility of
spacing variations to trade off speed for economy (smaller VLSI area) in many cases where
symmetry is desired. To reduce the depth of a high-radix symmetric posibit hybrid-redundant
representation, it is possible to use more than one radix-2 position for representation of the
redundant radix-2 digit set, as was suggested by the equal-weight grouping (see Definition 6).

Example 6 (Shallow encoding of symmetric hybrid redundancy): Consider a 9-position (0 to 8)
hybrid-redundant representation with 2 posibits and 8 negabits in positions 0, 3, 6, and a sing
p

Constant-Time Addition with Hybrid Redundancy 18 G. Jaberipur and B. Parhami (January 2, 2007)

BS encoding,

equivalent 3-deep representation for the above contains a single posibit in positions 1, 4, 7, two
posibits in positions 0, 3, 6, and one posibit plus 2 negabits in positions 2, 5, 8.
The resultant symmetric posibit-hybrid-redundant number system of Example 6 is not a 2-deep
WBS encoding; it is thus unsuitable for the efficient universal addition scheme based on the
adder cells of Figs. 9 or 11. The process of deriving its equivalent canonical W
through the transformations of Fig. 4, leaves a single negabit in each of the originally redundant
positions. The canonical WBS encoding thus derived (Fig. 13) no longer represents a posibit-
hybrid-redundant number system, but it is an extended-hybrid-redundant number system, as
specified by Definition 10. This suggests a general method for constructing a 2-deep WBS
encoding to represent a given symmetric range [–α, α]. We begin with a one-position WBS
encoding with α posibits, and α negabits, and repeatedly apply the transformations of Fig. 9,
until no other similar transformation is applicable [12].

Fig. 13. A canonical WBS encoding of an extended hybrid-redundant
number system with the symmetric digit set [–8, 8].

8. Adding Extended-Hybrid-Redundant Numbers

umbers with arbitrary digit sets can be added digitwise to produce a sum with a digit set whose
range is the sum kept intact and

e result used as an operand in further arithmetic operations. It is also possible to convert the

e same redundancy
attern as that of the operands. Preserving the redundancy pattern is a necessary condition for

regular adder design for
n arbitrary radix-2 digit i extending from position ih to position (i + 1)h − 1, where the only

N

 of the ranges of the operand digits. This wider digit set can be
th
wider digit set to a more convenient one for further processing. Often, however, it is required to
obtain results with the same digit set as inputs [16]. Such representationally closed arithmetic is
desirable for storage efficiency, reusability of the arithmetic circuits, and regularity in VLSI
realization. While encoding-algorithm combinations that are not representationally closed can be
useful and are used in practice (e.g., [19]), when a representationally closed scheme is compared
against one that is not closed, fairness dictates that the overhead of conversion to the ultimate
encoding for the latter be taken into account in any cost/speed comparisons.

Where the two operands in addition are represented with the same canonical WBS encoding, the
reduction cells of Fig. 11 may be used to produce a 2-deep result with th
p
representational closure, but it is not sufficient; the number of posibits and negabits of the like
positions of the result and the operands should be the same as well. One obvious case, in which
the latter property is sufficient, is when the encoding consists of only posibits (e.g., SC digit) or
only negabits. The adder cells of Fig. 9, however, preserve representational closure, except for a
one position left shift in the resultant pattern, that is, the number of posibits and negabits of any
position i + 1 of the result is equal to that of position i of either operand.

Figure 14 depicts, in dot notation, representationally closed addition of two 3-digit symmetric
hybrid-redundant operands with the digit set [–8, 8]. Figure 15 shows a

ha
building blocks are full- and half-adders (shaded boxes). Note that cells drawn with dashed lines
belong to position ih − 1. The addition process is outlined by steps of the algorithm that follows.

Constant-Time Addition with Hybrid Redundancy 19 G. Jaberipur and B. Parhami (January 2, 2007)

 1 0 0 0

Fig. 14. Repres a a c e d

Fig. 15. Representationally closed adder for digit i of radix-2 mmetric
hybrid-redundant numbers

 0

ent tion lly los d a dition of symmetric hybrid-redundant operands.

h sy

HA
1

HA
h−2

HA
h−1

FA
0

… HA
−1

h

B'ih−1

a'ih+1

b'ih+1

a'ih+h−2

b'
A'ih+h−1

ih+h−2

FA
0

FA
1

FA
−2 h

FA
h−1

…

b"ih

…

HA
0

FA
1

FA
−h 2

FA
−h 1

…

FA
−h 1

FA
−h 1

…

A'ih−1 B'ih+h−1

S'ih+h−1 s'ih+h−2 s'ih+1 s'ih

s"ih

Constant-Time Addition with Hybrid Redundancy 20 G. Jaberipur and B. Parhami (January 2, 2007)

lgorithm 3 (Representationally closed addition of symmetric 2-deep extended-hybrid-
dundant operands, exemplified by Fig. 13)

hmetic value. This produces a new negabit in the

2.

alued posibit and negabit

3.

For large h (say, h ≥ 4), one may use

The ex itwise inversion of each

igit, and then perform an addition as above. That simple bitwise inversion of each digit negates

digit value from a symmetric digit
t represented by posibits and inversely encoded negabits is negated by inverting all the bits.

is
plies that the sum of the weights associated with the set of all posibits or all negabits is α.

dders and one half-
dder per radix-2 position. An inverter per bit and a multiplexer is the minimum possible penalty

A
re

1. Replace the 2-deep column of equal-weight negabits by an (h + 1)-position 1-deep 2’s-
complement number of the same arit
next higher negabit position. A standard half-adder can produce the 2-bit 2’s-complement
sum of 2 negabits. An h-bit sign-extension of the latter produces the desired result;
however, due to our inverted encoding of negabits, an inversion is required for sign
extension. The required circuitry for this step, a half-adder in the leftmost position of
each radix-2h digit and two inverters, can be seen in Fig. 15.
Concurrently with Step 1, use a full-adder (half-adder) in the 4-deep (2-deep) posibit
positions to derive a 3-deep intermediate result. Zero-v
constants (boldface 0, regular-face 1) appear in the least significant digit position of Fig.
14 for regularity. The latency for this step is equal to that of one full-adder.
Use one full-adder per position to reduce the 3-deep result to one of depth 2. The latency
of this step is again equal to that of one full-adder.

4. Use a chain of h full-adders per every h positions to derive the final result. The delay of
this step is equal to that of h cascaded full-adders.
carry acceleration techniques to ascertain a delay of O(log h).

tra cost for subtraction is minimal. We negate the subtrahend by b
d
that digit, and thus the whole number, is justified as follows.

Theorem 1 (Negating a WBS-encoded symmetric digit): A
se

Proof: Let the symmetric digit set, represented over several radix-2 positions, be [–α, α]. Th
im
Consider a digit D whose encoding comprises a set of 1-valued posibits of total weight x and a
set of 0-valued negabits of total weight y, leading to D = x – y, with x, y ≤ α. The bitwise
complemented digit Dcompl will then have the value (α – x) – (α – y) = –D.

The overall adder circuitry, as depicted in Fig. 15, is comprised of two full-a
a
for subtraction, a bound that is achievable in this case, as noted above. The total addition delay,
corresponding to the critical path of Fig. 15 (the heavy broken line) is equal to that of h full-
adders and two half-adders. With a carry acceleration circuit, an O(log h) delay can be easily
achieved. Note that a representationally shifted adder, based on the adder cells of Fig. 9, has a
cost of one (two) full-adder(s) per nonredundant (redundant) position, that is, a total of h + 1
full-adders per radix-2h digit. The delay, in this case, is equal to that of h + 1 full-adders, almost
the same as in the case of representationally closed adder. However, the hardware penalty for
representational closure is rather substantial; the equivalent of one extra half-adder (and one
extra full-adder) per redundant (nonredundant) position.

Constant-Time Addition with Hybrid Redundancy 21 G. Jaberipur and B. Parhami (January 2, 2007)

9. Conversion from Two’s Complement

onversion from 2’s-complement representation to posibit hybrid-redundant representation is

ased on the preceding discussion, one potential drawback of extended hybrid redundancy is

he general process of conversion from k-bit 2’s-complement representation to a given

Table V. Carry propagation rule in conversion from 2’s-complement

C
quite simple as long as the digit set for redundant positions includes {0, 1}. In particular, this is
the case for all representations shown in Table II. Bits are directly transferred from one
representation to the other in nonredundant positions (which, by definition, consist of single
posibits) and one of the posibit components of a redundant digit is used in redundant positions.
The only nonroutine part of the conversion pertains to the sign position. In the case of the last
two entries in Table II, corresponding to two entries in Table III which do not include negabits in
the leftmost column, conversion of negative numbers is clearly impossible. For the first three
entries of Table II, the sign bit of the 2’s-complement number can be accommodated in the most
significant position of the hybrid-redundant representation. The conversion latency is thus no
greater than a single inverter delay.

B
that it may complicate the process of conversion from 2’s-complement representation. In this
section, we discuss the conversion process in general, showing that any carry propagation in the
conversion process can be terminated at a redundant position, and provide an efficient solution
for the particular symmetric representation introduced earlier (see Fig. 14).

T
extended-hybrid-redundant representation is as follows. For each posibit in position i of the
source number, 0 ≤ i ≤ k – 2, we choose a conversion option from Table V, depending on the bit
pattern of the target representation in the same position i. The main objective in this choice is to
make the outgoing carry from a redundant position completely independent of the incoming
carry for that position. Table V shows how the latter goal can be achieved. Where we have at
least two posibits in a redundant position, they can absorb both the source bit and the incoming
carry, allowing us to set cout = 0; other posibits (negabits), if any, will be set to 0 (1),
corresponding to the arithmetic value 0. For a redundant position with exactly one posibit, we set
cout = x, where x is the value of the source posibit, and use xcin (respectively, x + cin) for the
target posibit (negabit). Finally, where a redundant position contains no posibit, we choose cout =
1 and set the two target negabits to x and cin. The choices listed for nonredundant positions in
Table V are self-explanatory. Because we use conventional or positive carries throughout, carry
acceleration techniques with standard circuitry can be easily introduced, if desired.

to extended-hybrid-redundant representation.

Source
digit x

cin

Nonredundant target
(exactly one bit)

Redundant target
(at least two bits)

0 0 0 1
0 0 0
0 1 0

0 1 1 0
0 1 0
1 1 1

1 0 1 0
1 0 1
0 0 0

1 1 0 1
1 0 1
1 1 1

 Cout x in cin = c x + 0 x 1

Constant-Time Addition with Hybrid Redundancy 22 G. Jaberipur and B. Parhami (January 2, 2007)

nt to extended-hybrid-redundant representation can

10. Conclusions

The hybrid redundancy scheme of], constitutes an easily understood
oncept leading to straightforward management of area-time tradeoffs in the design of hybrid-

hybrid redundancy and
owed that these problems can be overcome by two innovations:

metric hybrid-

The fact that carry propagation stops at dig
re

it boundaries for periodic canonical extended-hybrid-
dundant representations is a direct consequence of the fact that for the latter representation to

accommodate a continuous interval of integers, each period or h-position digit must be able to
represent all values in the range [0, 2h – 1].

In practice, conversion from 2’s-compleme
often be done with no carry propagation and with a latency equivalent to that of a single inverter.
For example, in case of the symmetric hybrid-redundant number system depicted in Fig. 13,
conversion from 2’s-complement representation involves only direct wiring and some inversions,
as shown schematically in Fig. 16. Note that the leftmost inverter is needed because of our
inverted encoding of negabits.

Fig. 16. Schematic view of conversion from 2’s-complement to the

extended-hybrid-redundant representation of Fig. 13.

[24], extended in [25

c
redundant number systems. The designer has the option of considering as many posibits between
the redundant positions as required by cost-performance targets. The redundant positions are
practically restricted to at most 4-valued digit sets to enhance the addition speed. The latter
constraint, with the help of equal-weight grouping, has led to 2-deep encodings (using the
terminology of WBS encodings) of hybrid-redundant number systems. However, the ordinary or
posibit hybrid redundancy scheme does not offer the latter design flexibility when shallow
symmetric number systems are desired. In such cases, hybrid redundancy fails to provide
representational closure in adding true hybrid-redundant operands, does not fully preserve the
original digit sets, is incompatible with the direct use of carry acceleration techniques, and lacks
support for subtraction by means of the same circuitry used for addition.

In this paper, we provided an in-depth analysis of limitations of posibit
sh

• Allowing single negabits in nonredundant positions. This possibility, which led to
definition of extended hybrid redundancy, helps in designing shallow sym
redundant number systems, which would become impractically deep otherwise (the depth
would increase exponentially with the spacing of redundant positions). Furthermore,
symmetric digit sets make the negation operation quite efficient and lead to direct
reusability of addition circuitry for subtraction. For example, in the case of some
common symmetric number systems, negation is performed via bitwise inversion.

2’s-complement number

Extended-hybrid-
redundant number

Not used

Constant-Time Addition with Hybrid Redundancy 23 G. Jaberipur and B. Parhami (January 2, 2007)

•
its and

We sho
true o l adder may

-redundant

. Jaberipur’s research was support r Grant CS1383-4-02. The authors
ous revie to clarification of some points and

References

 Aoki, T., Y. Sawada, and T. Higuchi, rithmetic and its Application to a Field-
Programmable Digital Filter Architecture, ronics, Vol. E82-C, No. 9, pp.1687-1698,
September1999.

[3] ang, and Y. Jiang, “Design and Analysis of Low-Power 10-Transistor Full Adders Using

[4] f 0.18-μm Full Adder Performances for Tree Structured
Arithmetic Circuits,” IEEE Trans. VLSI Systems, Vol. 13, No. 6, pp. 686-695, June 2005.

Encoding negabits in inverted form. This simple idea leads to the applicability of
conventional full/half-adders, counters, and compressors in reducing sets of posib
negabits and renders carry acceleration techniques directly applicable. For example, a
universal (4; 2)-compressor based on inverted encoding of negabits [12] is advantageous,
in terms of regularity and use of standard cells, to inverter-augmented (4; 2)-compressor
variants proposed in [17] for use in alternate implementations of the adder cells of [25],
given that the types and placements of these variants depend on the input/output digit
sets. Conventional binary full/half-adders and carry acceleration cells have been studied
extensively with regard to area, speed, and energy efficiency [26]; hence, using them in
our designs allows a wide choice of predesigned and highly optimized cells.

wed that when representationally shifted results are acceptable, as is generally the case in
sibit hybrid redundancy with the implementations in [25] and [17], a universa p

be designed with one (two) full-adders per nonredundant (redundant) position. The adder delay
for radix-2h periodic hybrid-redundant number systems equals that of h + 1 full-adders. As
shown in the representationally closed adder of Fig. 15, the hardware penalty for the coexistence
of symmetry and representational closure, both desired in practice, is the equivalent of one extra
half-adder (and one extra full-adder) per redundant (nonredundant) position. Fortunately,
however, the addition delay is almost the same (that of h full-adders and two half-adders in
series), so the speed penalty is negligible. Conversion from 2’s-complement to an extended-
hybrid-redundant number system requires limited carry propagation between consecutive
redundant positions in the most general case. However, for common symmetric representations,
conversion delay reduces to that of a single inverter, which is the minimum possible.

Further research on extended hybrid redundancy schemes may pursue the design of multipliers
nd dividers as well as efficient circuits for converting from various extended hybrida

formats to 2’s-complement binary format. The latter can, of course, be achieved via removal of
negabits from all intermediate positions (in a manner similar to step 1 of Algorithm 3) and
subsequent use of posibit compression, followed by a carry-propagate addition. However, more
efficient schemes may be applicable for specific encodings or classes of encodings.

Acknowledgments

G ed, in part, by IPM unde

wers whose comments ledare grateful to two anonym
to an improved presentation.

 [1] “Signed-Weight A

” IEICE Trans. Elect

[2] Avizienis, A., “Signed-Digit Number Representations for Fast Parallel Arithmetic,” IRE Trans. Electronic
Computers, Vol. 10, pp. 389-400, September 1961.
Bui, H. T., Y. W
Novel XOR-XNOR Gates,” IEEE Trans. Circuits and Systems II, Vol. 49, No. 1, pp. 25-30, January 2002.
Chang, C. H. , J. Gu, and M. Zhang, “A Review o

Constant-Time Addition with Hybrid Redundancy 24 G. Jaberipur and B. Parhami (January 2, 2007)

[6] ly

[7] adix-2 Digit Set

1304-

[10] Bit-Set Encodings for Redundant Digit Sets: Theory

[11] . Ghodsi, “High Radix Signed Digit Number Systems: Representation Paradigms,”

[12]
are Representation Schemes for Redundant Number Systems,” IEEE Trans. Circuits and Systems I,

[13] Universal Addition Scheme for all Hybrid-

[14] ansfer Representations with Weighted Digit-Set Encodings for

[15]
.

Proc. 8th IEEE Symp. Computer

[19] hatak, “Area×Delay (AT) Efficient Multiplier Based on an Intermediate Hybrid Signed-

[20]
. Computers, Vol. 39, No. 1, pp. 89-98, January 1990.

[23] s, Vol. 20, pp. 442-447,

[24] ified Framework for Redundant
o. 8,

[25] . and I. Koren, “Constant-Time Addition and Simultaneous Format Conversion Based on

[26] , “Survey and Evaluation of Low-Power Full-Adder Cells,” Proc. Int’l Conf.

[27]
y 1964.

[5] Dadda, L., “Some Schemes for Parallel Multipliers,” Alta Frequenza, Vol. 34, pp. 349-356, May 1965.
Daumas, M., and D. W. Matula, “Further Reducing the Redundancy of a Notation Over a Minimal
Redundant Digit Set,” J. VLSI Signal Processing, Vol. 33, pp. 7-18, 2003.
Ercegovac, M. D. and T. Lang, “Effective Coding for Fast Redundant Adders Using the R
{0, 1, 2, 3},” Proc. Asilomar Conf. Signals, Systems, and Computers, November 1997, pp. 1163-1167.

[8] Gonzalez, A. F., and P. Mazumder, “Redundant Arithmetic, Algorithms and Implementations,” Integration:
the VLSI Journal, Vol. 30, pp. 13-53, November 2000.

[9] Jaberipur, G., B. Parhami, and M. Ghodsi, “A Class of Stored-Transfer Representations for Redundant
Number Systems,” Proc. 35th Asilomar Conf. Signals Systems and Computers, November 2001, pp.
1308.
Jaberipur, G., B. Parhami, and M. Ghodsi, “Weighted
and Applications,” Proc. 36th Asilomar Conf. Signals Systems and Computers, November 2002, pp. 1629-
1633.
Jaberipur, G., and M
Scientia Iranica, Vol. 10, No. 4, pp. 383-391, October 2003.
Jaberipur, G., B. Parhami, and M. Ghodsi, “Weighted Two-Valued Digit-Set Encodings: Unifying Efficient
Hardw
Vol. 52, No. 7, pp. 1348, 1357, July 2005.
Jaberipur, G., B. Parhami, and M. Ghodsi, “An Efficient
Redundant Representations with Weighted Bit-Set Encoding,” J. VLSI Signal Processing, Vol. 42, No. 2,
pp. 149-158, February 2006.
Jaberipur, G. and B. Parhami, “Stored-Tr
Ultrahigh-Speed Arithmetic,” IET Proc. Circuits, Devices, and Systems, to appear in 2007.
Kornerup, P., “Digit-Set Conversions: Generalizations and Applications,” IEEE Trans. Computers, Vol. 43,
No. 5, pp. 622-629, May 1994

[16] Kornerup, P., “Necessary and Sufficient Conditions for Parallel, Constant Time Conversion and Addition,”
Proc. 14th IEEE Symp. Computer Arithmetic, April 1999, pp. 152-155.

[17] Kornerup, P., “Reviewing 4-to-2 Adders for Multi-Operand Addition,” J. VLSI Signal Processing, Vol. 40,
pp. 143-152, 2005.

[18] Kuninobu, S., T. Nishiyama, H. Edamatsu, T. Taniguchi, and N. Takagi, “Design of High Speed MOS
Multiplier and Divider Using Redundant Binary Representation,”
Arithmetic, pp. 80-86, 1987.
Lue, J. J. and D. S. P
Digit (HSD-1) Representation,” Proc. 14th IEEE Symp. Computer Arithmetic, April 1999, pp. 216-224.
Parhami, B., “Generalized Signed-Digit Number Systems: A Unifying Framework for Redundant Number
Representations,” IEEE Trans

[21] Parhami, B., “On the Implementation of Arithmetic Support Functions for Generalized Signed-Digit Number
Systems,” IEEE Trans. Computers, Vol. 42, No. 3, pp. 379-384, Mar. 1993.

[22] Parhami, B., Computer Arithmetic: Algorithms and Hardware Designs, Oxford University Press, 2000.
Pezaris, S. D., “A 40-ns 17-bit by 17-bit Array Multiplier,” IEEE Trans. Computer
April 1971.
Phatak, D. S., and I. Koren, “Hybrid Signed-Digit Number Systems: A Un
Number Representations with Bounded Carry Propagation Chains,” IEEE Trans. Computers, Vol. 43, N
pp. 880-891, August 1994.
Phatak, D. S
Redundant Binary Representations,” IEEE Trans. Computers, Vol. 50, No. 11, pp. 1267-1278, November
2001.
Sayed, A. and H. Al-Asaad
VLSI, June 2004, pp. 332-338.
Wallace, C. S., “A Suggestion for a Fast Multiplier,” IEEE Trans. Electronic Computers, Vol. 13, pp. 14-17,
Februar

Constant-Time Addition with Hybrid Redundancy 25 G. Jaberipur and B. Parhami (January 2, 2007)

Authors’ Photos and Biographies

 G. Jaberipur B. Parhami

Ghassem Jaberipur received BS in electrical engineering and PhD in computer engineering
from Sharif University of Technology in 1974 and 2004, respectively, MS in engineering
(majoring in computer hardware) from University of California, Los Angeles, in 1976, and MS
in computer science from University of Wisconsin, Madison, in 1979. Since 1979, he has been
with the Department of Electrical and Computer Engineering, Shahid Beheshti University, in
Tehran, Iran, teaching courses in compiler construction, automata theory, design and
implementation of programming languages, and computer arithmetic. Dr. Jaberipur is also
affiliated with the School of Computer Science, Institute for Studies in Theoretical Physics and
Mathematics (IPM), in Tehran, Iran.

Behrooz Parhami (PhD, University of California, Los Angeles, 1973) is Professor of Electrical
and Computer Engineering at University of California, Santa Barbara. He has research interests
in computer arithmetic, parallel processing, and dependable computing. In his previous position
with Sharif University of Technology in Tehran, Iran (1974-88), he was also involved in
educational planning, curriculum development, standardization efforts, technology transfer, and
various editorial responsibilities, including a five-year term as Editor of Computer Report, a
Persian-language computing periodical. His technical publications include over 220 papers in
peer-reviewed journals and international conferences, a Persian-language textbook, and an
English/Persian glossary of computing terms. Among his publications are three textbooks on
parallel processing (Plenum, 1999), computer arithmetic (Oxford, 2000), and computer
architecture (Oxford, 2005). He is currently serving on the editorial boards of IEEE Transactions
on Parallel and Distributed Systems and International Journal of Parallel, Emergent and
Distributed Systems. Dr. Parhami is a Fellow of both the IEEE and the British Computer Society,
a member of the Association for Computing Machinery, and a Distinguished Member of the
Informatics Society of Iran for which he served as a founding member and President during
1979-84. He also served as Chairman of IEEE Iran Section (1977-86) and received the IEEE
Centennial Medal in 1984.

	1. Introduction
	2. Properties of Ordinary Hybrid Redundancy
	3. Realization of Hybrid-Redundant Adders
	4. WBS Encodings and Hybrid Redundancy
	5. Inverted Encoding of Negabits
	6. VLSI-Friendly Addition Scheme
	7. Symmetric Extended Hybrid Redundancy
	8. Adding Extended-Hybrid-Redundant Numbers
	9. Conversion from Two’s Complement
	10. Conclusions
	Acknowledgments
	References
	 Authors’ Photos and Biographies

