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Abstract: Hybrid-redundant number representation has provided a flexible framework for digit-
parallel addition in a manner that facilitates area-time tradeoffs for VLSI implementations via 
arbitrary spacing of redundant digit positions within an otherwise nonredundant representation. 
We revisit the hybrid redundancy scheme, pointing out limitations such as representational 
asymmetry, lack of representational closure in certain adder implementations, and difficulties in 
subtraction and carry acceleration. Given the intuitiveness of the hybrid redundancy concept and 
its potential for describing practically useful redundant number systems, we are motivated to 
extend it within the framework of weighted bit-set encodings to circumvent the aforementioned 
problems. The extension is based mainly on allowing negatively weighted bits (negabits), as well 
as standard posibits, to appear in nonredundant positions. Our extended hybrid redundancy 
scheme provides for arbitrary spacing of redundant positions in symmetric digit sets, without any 
degradation in arithmetic efficiency, while at the same time allowing low-latency subtraction by 
means of the same circuitry that is used for addition. Finally, we describe how inverted encoding 
of negabits leads to the exclusive use of unmodified standard full/half-adder, counter, and 
compressor cells, with no extra inverters, and to the direct applicability of conventional carry 
acceleration techniques in constant-time addition. 
 
Keywords: Arithmetic unit, carry-free addition, computer arithmetic, redundant number 
representation, signed-digit number system. 
 
 

1. Introduction 
 
Implementation of arithmetic algorithms has been subject to continual improvement to allow 
greater speed and to reduce VLSI area and power. The choice of number system and its encoding 
has a major influence on achieving such design goals. For example, the three well-known binary 
number systems (i.e., signed magnitude, 1’s and 2’s complement) offer different advantages and 
disadvantages, and thus interesting tradeoffs [22]. Redundant number systems [2], [8], and 
associated encoding variations, enable us to perform digit-parallel addition with a small constant 
latency. Such redundant number systems may be used as the primary mode of number 
representation in special application settings or as intermediate or internal forms, with attendant 
input conversion and output reconversion, for general use. 
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A suitable encoding of a redundant digit set can further improve the performance of redundant 
arithmetic operations. For example, a special encoding of double-carry digits in [7] leads to 
improved latency, area, and power. Other examples of encoding alternatives include representing 
a symmetric signed digit in the interval [−α, α] as a signed-magnitude, 1’s- or 2’s-complement 
digit [11] or as a stored-transfer digit [9]. Encoding of an asymmetric signed digit in [–2h–1, 2h–1] 
in hybrid-redundant format [24] constitutes yet another example. Various encodings may exhibit 
different levels of efficiency in implementing the same arithmetic algorithm. Theoretical studies, 
such as the generalized signed digit number systems [20], may open new horizons for 
explorations of encodings and implementation techniques that enhance the performance of 
digital arithmetic operations and systems [1], [12]. 
 
The redundancy index ρ of a digit set [−α, β] is defined as the difference between the number of 
digit values (i.e., α + β + 1) and the radix r of the number system [20]. The higher the 
redundancy index, the greater the number of bits needed to faithfully represent each digit and 
often, the longer the potential delays in digit-parallel arithmetic. In many cases, a redundancy 
index of ρ = 2 is adequate, and one never needs to go beyond ρ = 3, for carry-free addition in 
radices higher than 2 [20]. However, proper choice of the redundancy index ρ, coupled with 
suitable encoding of the resulting digit set, may allow for a faster and/or more compact VLSI 
realization. Such variations in redundancy indices and associated digit-set encodings are the 
main focus of this paper. Much of what we present deals, directly or indirectly, with facilitating 
area-time tradeoffs in the VLSI implementation of arithmetic operations on redundant operands. 
 
Stored-transfer representations [9], [14], weighted bit-set encodings for redundant digit sets [12], 
and representation paradigms of high-radix signed-digit number systems [11] are all motivated 
by area-time tradeoff concerns, improvement in the representation coverage, speed of arithmetic, 
and/or regularity in VLSI implementation. Similarly, hybrid-redundant number systems 
introduced in [24], extended in [25] and, based on [1], improved with regard to implementation 
in [17], provide a framework for the efficient design and implementation of digit-parallel 
addition for a class of redundant number systems. Briefly, a hybrid-redundant number is 
composed mostly of normal, positively-weighted bits (posibits), with some radix-2 positions 
holding redundant digits. The hybrid signed-digit (HSD) number systems, as originally described 
in [24], entailed a composition of nonredundant and redundant positions as an alternative to fully 
redundant number systems where redundancy appears in every digit position. But later extension 
of the concept seems to have focused on fully redundant number systems with a variety of 
redundant digit sets [25]. Unfortunately, the design and implementation of a rather general-
purpose redundant arithmetic based on the original notion and subsequent extension of hybrid 
redundancy engenders some limitations, such as the following, where the last two apply only to 
the extended form in [25]: 
 

• Considerable difference in the range of positive and negative numbers, leading 
to inefficiencies in the implementation of subtraction. 

• Inapplicability of conventional carry acceleration methods, and the associated 
highly optimized circuits, due to the use of nonstandard adder cells. 

• Inability to faithfully cover, as a representation paradigm, almost all symmetric 
digit sets as well as many other useful digit sets. 

• Lack of representational closure of true hybrid-redundant adders in both the 
original [25] and subsequently improved [17] efficient adder cells. 

• Increasing the likelihood of apparent overflow due to tendency of addition 
operation to reduce the resultant digit set in some implementations. 
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To circumvent these problems, which are more fully explained in Sections 2 and 3 of the paper, 
and exploit the strength of hybrid redundancy in facilitating arithmetic system design with 
specific area-time tradeoff goals, we reformulate and extend the hybrid redundancy scheme 
within the framework of weighted bit-set encodings in Section 4. Our quest for more efficient 
and VLSI-friendly carry-free addition schemes for hybrid-redundant numbers leads us to a 
scheme for the encoding of negabits (i.e., negatively weighted bits) in Section 5, where we 
explore different functionalities for standard full-adders, with no added elements (not even 
inverters), in the summation of any collection of three negabits and posibits. This leads, in 
Section 6, to new designs for efficient adder cells for both nonredundant and redundant positions 
in a hybrid-redundant representation. Section 7 shows the power of extended hybrid redundancy 
scheme in deriving symmetric hybrid-redundant number systems with arbitrary spacing of 
redundant positions; a property that is vital to exploitation of the main advantage of hybrid 
redundancy (i.e., spacing of redundant digits to match the area-time design goals). This is 
followed, in Section 8, by implementation details of an efficient, regular, and representationally 
closed adder/subtractor for symmetric extended-hybrid-redundant operands and conversion from 
2’s-complement representation in Section 9. Section 10 concludes the paper. 
 
The extended dot notation used in this paper is described in Table I for ease of reference. Posibit 
is an ordinary bit with a value in {0, 1}, and its heavy-dot symbol is the same as in standard dot 
notation commonly used in computer arithmetic. Negabit is a negatively weighted bit, with a 
value in {–1, 0}. Finally, a “redundant dot” appears in any position containing a value whose 
range is wider than a posibit or negabit and is usually realized through multiple posibits and/or 
negabits. For example, a redundant position holding a value in [–1, 2] is realizable by one 
negabit and two posibits. The latter three bits would appear in a column corresponding to the 
radix-2 weight of the redundant dot. When the latter substitution is made in the third example of 
Table I, the resulting dot-notation diagram is said to be “3-deep,” meaning that the tallest column 
of dots contains 3 posibits and/or negabits. According to this terminology, an ordinary unsigned 
or 2’s-complement binary number, appearing in the first two examples of Table I, is 1-deep, and 
a carry-save or borrow-save number is 2-deep. 
 

Table I.  The extended dot notation used throughout this paper. 
 

 Symbol Name Meaning Example of use ( 8 radix-2 positions ) 

1  Posibit Value in {0, 1}         
2  Negabit Value in {–1, 0}         
3 ® Redundant Value in [–ν, π] ®    ®    

 
 

2. Properties of Ordinary Hybrid Redundancy 
 
Hybrid-redundant (or partially redundant) number systems are weighted radix-2 number systems 
with some redundant radix-2 positions (holding a digit value from a redundant digit set), but 
mostly nonredundant positions (holding a posibit). Special practical cases, where the redundant 
digit sets are limited to those representable by two bits, have been studied in detail [25]. The 
redundant digit sets for these cases are shown in Table II, where we have also included the 
notation used in [25], for ease of reference and comparison, and added the last two entries that 
also meet the restriction for 2-bit representation. Another restriction, as explicated in [25], is that 
only posibits are allowed in nonredundant positions.  
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Table II.  Redundant radix-2 digit sets that are representable with 2 bits. 

 
 Type of redundant digit Digit set: [–ν, π] Notation of [25] Redundancy index ρ 

1 Binary signed-digit (BSD) [–1, 1] SD 1 
2 Stored double borrow (SDB) [–2, 1] SD3{–} 2 
3 Stored borrow or carry (SBC) [–1, 2] SD3{+} 2 
4 Stored carry (SC) [0, 2] CS2 1 
5 Stored double carry (SDC) [0, 3] CS3 2 
6 Stored double borrow (SDB) [–2, 0] N/A 1 
7 Stored triple borrow (STB) [–3, 0] N/A 2 

 
To investigate the theoretical properties of hybrid redundancy, we relax the first restriction, 
namely, that of 2-bit redundant positions. Later, we present our main extension by also relaxing 
the second restriction via allowing negabits, as well as posibits, in nonredundant positions.  
 
Definition 1 (Posibit hybrid redundancy): A posibit hybrid-redundant number system has k 
radix-2 positions numbered 0 to k – 1, from the least to the most significant position. Each 
position may be nonredundant, holding a posibit (i.e., a normal bit in [0, 1]), or redundant with a 
digit in [–ν, π], where ν, π ≥ 0 and ν + π > 1. The digit in radix-2 position i (0 ≤ i < k), whether 
nonredundant or redundant, has the weight 2i.  
 
We use posibit hybrid redundancy to emphasize that in the original notion of hybrid redundancy, 
nonredundant positions ought to hold a single posibit. At one extreme of every position being 
redundant and using the same digit set, hybrid redundancy coincides with radix-2 generalized 
signed-digit (GSD) representations [20]. At the other extreme of no redundant position, a posibit 
hybrid-redundant number system represents unsigned binary integers. Thus, the claim in [25] 
that 2’s-complement numbers may be considered as a special case of ordinary hybrid redundancy 
is not valid, given that the negatively weighted sign position of a 2’s-complement number 
violates the requirement for nonredundant positions. 
 
Definition 2 (Periodic hybrid redundancy): A posibit hybrid-redundant number system is 
periodic if the separation or distance between two consecutive redundant positions remains 
constant, with the period h being one more than the constant distance.  
 
Thus, each radix-2h digit of a periodic hybrid-redundant number system has h – 1 nonredundant 
radix-2 positions and a single redundant radix-2 position. Definition 2 could have been more 
general (e.g., by allowing multiple redundant positions with varying digit sets in each period), 
but we use this restricted definition to expose the limitations implied in [24] and [25]. Prior 
applications of hybrid redundancy (e.g., [19]), mainly in the design of multipliers, have all used 
periodic subclasses that correspond to radix-2h digit sets encoded by zero or more posibits 
followed or preceded by a redundant digit. Such periodic hybrid-redundant number systems can 
be viewed as efficient encodings for special classes of GSD representations. However, there 
exist useful GSD number systems, with symmetric digit sets, that cannot be represented via 
posibit hybrid redundancy. In such cases, we cannot exploit the main benefits of hybrid 
redundancy, that is, area-time tradeoff. For example, the radix-8 GSD representation with digits 
in [−5, 5] has no viable representation in posibit hybrid redundancy (see Lemma 1 and Corollary 
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1 below). We will show later that the subclass of symmetric posibit hybrid-redundant 
representations is very limited and that efficient implementations, based on the adder cells in 
[25] and [17], exist only for fully redundant binary signed-digit (BSD) and minimally redundant 
radix-4 number systems (Corollary 3), both of which had been studied and used prior to, and in 
contexts other than, hybrid redundancy. We will focus on periodic hybrid redundancy. However, 
much of what we present pertains to the processing of single radix-2h digits. Therefore, our 
results may be applied to nonperiodic cases, for the latter can be studied as a weighted collection 
of digits with different radices (mixed-radix positional number system). 
 
Definition 3 (Periodic right-, left-, and free-hybrid redundancy): In a hybrid-redundant number 
system of period h (based on Definition 2), the position index for the redundant radix-2 digit in 
[–ν, π] may be 0, h – 1, or 0 < g < h – 1 (mod h). We refer to these variants as right-, left-, or 
free-hybrid redundancy, respectively. Taking each period of the hybrid-redundant representation 
as a radix-2h GSD position, the corresponding digit set of a right-hybrid-redundant 
representation is [–ν, 2h + π – 2],  that of a left-hybrid-redundant representation is [–2h–1ν, 2h–1π + 
2h–1 – 1], and for a free-hybrid-redundant representation with the redundant digit located in an 
arbitrary position g is [–2gν, 2g(π – 1) + 2h – 1].  
 
Example 1 (Variants of posibit hybrid redundancy): Table III shows examples of left-, right-, 
and free-hybrid-redundant numbers with three radix-2h digits in dot notation. The dot notation 
used is defined in Table I.  
 

Table III.  Variants of posibit hybrid redundancy, with ® in [–ν, π]. 
 

Variant Dot notation Position g of ® Radix-16 digit set 

Left-hybrid ®    ®    ®  3 = h – 1 [–8ν, 8π + 7] 

Right- ®   ®   ® 0 [–ν, π + 14] 

Free-hybrid ®    ®    ®  2  (0 < g < h – 1) [–4ν, 4π  + 11] 
 
Lemma 1 (Symmetry of digit sets associated with periodic hybrid-redundant representations): 
For periodic radix-r (r = 2h > 2) posibit hybrid-redundant representations with redundant digit in 
[–ν, π], there is no symmetric digit set for left- or free-hybrid redundancy, while symmetric right-
hybrid redundancy is possible for all h > 1, provided the radix-r redundant digit set is [–α, α], 
with α = ν = π + r – 2. 
 
Proof: Consider a radix-r (r = 2h) hybrid-redundant digit set D = [–2gν, 2g (π – 1) + r – 1], with 
the redundant digit being in radix-2 position 0 ≤ g ≤ h – 1. For D to be symmetric as D = [–α, α], 
we must have 2gν = 2g (π – 1) + 2h – 1 or ν = π – 1 + (2h – 1) / 2g. Obviously, the latter equation 
has integer solutions for ν and π only if g = 0 (i.e., right-hybrid), leading to α = ν = π + r – 2.  
 
Note that for h = 1 and ν = π, where the left-, right-, and free-hybrid categorization does not 
apply, the number system is fully redundant and symmetric (e.g., BSD). 
 
Corollary 1: There is no symmetric radix-r (r = 2h) posibit hybrid-redundant number system 
with the digit set [–α, α] for α < r – 2.  
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Corollary 2: A symmetric radix-r (r = 2h) right-hybrid-redundant number system with redundant 
digits in [–ν, π] and π ≥ 2, is over-redundant (i.e., the redundancy index ρ of its radix-r digit set 
satisfies ρ ≥ r). Furthermore the minimum redundancy index for such a radix-r symmetric digit 
set is ρ = r – 3 and it occurs when π = 0.  
 
Corollary 2 shows that symmetric posibit hybrid redundancy is possible only for highly 
redundant digit sets satisfying ρ ≥ r – 3, while, according to the results in [20], ρ ≥ 3 (2) is 
always (in most cases) sufficient for carry-free addition, and even ρ = 1 allows limited-carry 
addition, that is, carry-free addition with some look-back (see Definition 4). 
 
In a hybrid-redundant adder, the adder cell of a redundant radix-2 position does not propagate 
the incoming transfer (e.g., carry or borrow). Transfers generated by redundant or nonredundant 
positions may ripple up to the next redundant position, where they sink. This process is depicted 
in Fig. 1, where the larger boxes representing adder cells in redundant positions are intended to 
reflect the greater complexity of those cells relative to adder cells in nonredundant positions.  
 

. . .th–1 t2 t1  t0th  th+2  

Sink Sink

Redundant 
adder cell 

Redundant 
adder cell 

Nonredundant 
adder cell 

Nonredundant 
adder cell 

Nonredundant 
adder cell 

th+1  

 

 

One period

Fig. 1.  Schematic representation of an adder for right-hybrid-redundant numbers. 
 
To keep the complexity of adder cells in check, it is desirable to restrict the cardinality of 
redundant digits to 4, thus making them representable with 2 bits (i.e., the minimum possible for 
a redundant digit). This constraint leads to 1 bit of redundancy per radix-2h digit. Unfortunately, 
such encoding efficiency is gained at the cost of narrowing the spectrum of symmetric hybrid 
redundancy to only one case besides the fully redundant BSD number system, as is stated below. 
 
Corollary 3 (Restricted symmetry with single redundancy bit): In the case of single redundancy 
bit per radix-2h digit, there are only two possible symmetric digit sets in right-hybrid-redundant 
number system: fully redundant BSD and minimally redundant radix-4. 
 
Proof: Applying the constraint ν + π ≤ 3 (i.e., 2-bit encoding of redundant digits) to the result of 
Lemma 1 (i.e., ν = π + 2h – 2) leads to π ≤ 5/2 – 2h–1. Given that π ≥ 0, the latter inequality holds 
only for h ≤ 2. The case h = 1 leads to ν = π = 1 (i.e., fully redundant BSD). The case h = 2 
results in π = 0 and ν = 2 (i.e., minimally redundant radix-4).  
 
In constant-time addition of radix-r redundant numbers, the sum digit in radix-r position i, is a 
function of the operand digits in the same position i and at least those of position i – 1 [20]. 
 
Definition 4 (Look-back): The number of consecutive radix-2h operand digits in the right 
context of a radix-2h position i, which contribute to the value of the sum digit in position i, 
constitutes the look-back of position i.  
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For digit sets with ρ ≥ 3 and most cases of ρ = 2 (a few cases of ρ = 2 and all cases of ρ = 1), it 
has been shown that the required look-back is 1 (2). In other words, the sum digit in radix-2h 
position i is a function of four (six) operand digits; the two operand digits in radix-2h position i 
and the two in radix-2h position i – 1 (and the two in radix-2h position i – 2) [20]. It is interesting 
to note that for the minimally redundant case of ρ = 1, the look-back of 2 leads to more complex 
addition schemes. Thus, the representational cost reflected in ρ ≥ 3 may be more than 
compensated for by the need for smaller look-back. The few cases of ρ = 2 which require a look-
back of 2 are best avoided, because they offer no advantage to compensate for the more complex 
addition scheme. 
 
Definition 5 (Partial look-back): When, depending on the encoding and implementation (e.g., 
HSD in [24]), some bit positions of a look-back digit do not contribute to the derivation of a 
position sum, the look-back is said to be partial.  
 
The abstract view of a hybrid-redundant adder in Fig. 1 is based on a primary perception of 
complete separation of adder cells for redundant and nonredundant positions. The only 
connection between the two kinds of cells would be through carry and/or borrow propagation. 
But Phatak et al. have used a technique called equal-weight grouping (EWG), which entrusts the 
higher bits of a digit in radix-2 position i – 1, together with lower bits of a radix-2 digit in 
position i to a single adder cell in position i. This adder cell has been shown to be less complex 
than one designed without EWG. To investigate the consequences of EWG for hybrid-redundant 
addition, we consider the 2-bit representation of a redundant digit xi to be 〈xh

i xl
i〉, with xh

i and xl
i 

having the weights ±2i+1 and ±2i, respectively. We then define EWG formally as follows. 
 
Definition 6 (Equal-weight grouping, EWG): The higher weighted bit of a redundant digit in 
radix-2 position i – 1 has the same weight as the lower-weighted bit (only bit, in the case of a 
nonredundant position) of the digit in position i, thus constituting a group of 2 equally weighted 
bits, regardless of bit polarities. EWG allows us to intermix the processing of bits from various 
radix-2 positions in order to obtain a more efficient hardware realization.  
 
Definition 7 (Representationally closed addition): An addition scheme is representationally 
closed when the two operands are from the same number system (i.e., the equally weighted digits 
of the two operands belong to the same digit set) and the value of the resultant sum digit, in the 
corresponding digit-position, also belongs to the same digit set. Furthermore, representational 
closure requires that these identical digit sets all have the same encoding.  
 
Representational closure is vital for general-purpose arithmetic, where the same adder circuit is 
reused to process the results of previous additions. But equal-weight grouping, although 
simplifying adder cells in fully redundant adders, does not always lead to representational 
closure in true hybrid-redundant addition. For example, Figs. 2 and 3 represent, by means of 
digit-set conversion [15], a fully SDB-redundant and a true SDB-hybrid-redundant addition. 
Composition of two SDB digits results in the interval [–4, 2], whereas that of two posibits 
produces [0, 2]. The processes of decomposition (e.g., [–4, 2] = 2 × [–2, 0] + [0, 2]) and 
recomposition (e.g., [–2, 0] + [0, 1] = [–2, 1]) are self-explanatory. As is evident from Figs. 2 
and 3, the negabits of operands in position i – 1, contribute to the generation of negabits in 
position i. This causes a representational shift which, owing to the addition of fully redundant 
operand, remains hidden in Fig. 2, but that is clearly visible in Fig. 3. It is easy to see that the 
same representationally shifted behavior occurs for true SDC-hybrid-redundant addition with 
redundant digits in [0, 3], while a direct adaptation of an addition scheme based on the adder 
cells given in [7] for the same number system would be representationally closed. Also 
representationally closed addition of true SDB-hybrid operands is certainly possible (e.g., [13]). 
The sink functionality of position i may be seen in Fig. 3, where carry propagation starts at 
position i + 1. 
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Position index 

Position sum range 

Equal-weight 

Decomposition 

Recomposition 

i i – 1  i – 2  

[–4, 2] [–4, 2] [–4, 2] 

[0, 2] + [–2, 0] [0, 2] + [–2, 0] [0, 2] + [–2, 0] 

[–2, 2] [–2, 2] [–2, 2] 

[–2, 0] + [0, 1] [–2, 0] + [0, 1] [–2, 0] + [0, 1] 

[–2, 1] [–2, 1] [–2, 1]  
Fig. 2.  Addition of fully redundant SDB operands with equal-weight grouping. 

 

 

Position index 

Position sum range 

Equal-weight 

Emitted transfer 

Absorbed transfer 

i 
Nonredundant

i – 1 
Redundant

i – 2 
Nonredundant

[0, 2] [–4, 2] [0, 2] 

[0, 2] + [–2, 0] [0, 2] [0, 2] + [0, 1] 

[–2, 2] [0, 3] 

[–2, 0] [0, 2] + [0, 1] 

[0, 3] 

i + 1 
Nonredundant

[0, 1] 

[–2, 0] + [0, 1] [0, 1] [0, 1] [0, 1] 

[0, 1] 

[–2, 1] 

Fig. 3.  Addition of true SDB-hybrid-redundant operands with equal-weight grouping. 
 
The fully redundant SDB-hybrid addition of Fig. 2 is based on digit set conversion of [17], 
where the resultant digit may assume any value of the original digit set [–2, 1]. But an adder cell 
for the same purpose, offered in [25], does not preserve the operand’s digit set and produces digit 
values in [–1, 1]. A brief assessment of the consequences of this reduction in digit sets is offered 
below. 
 
Definition 8 (Digit set preservation): The digit set of a number representation is preserved under 
an arithmetic operation if the result digit may assume all the values in the digit set.  
 
Example 2 (Impact of digit set nonpreservation): The digit set conversions of Figs. 2 and 3 
preserve the digit set [–2, 1]. But the addition scheme of [25] for SDB-hybrid digits reduces the 
digit set [–2, 1] to [–1, 1], as noted in [17]. Briefly, with the scheme in Figs. 2 and 3, two –1 
redundant digits in position i are converted to –1  1 (in positions i + 1 and i) via equal-weight 
grouping, leading to a digit –2 in position i + 1. On the other hand, the addition scheme of [25] 
decomposes the resulting –2 digit into –1  0, thereby affecting position i + 2.  
 
A drawback of the digit-set nonpreserving addition scheme, mentioned in Example 2, is that 
addition of most significant digits may signal a false overflow. The digit-set preserving scheme 
may also signal an apparent overflow [21], but this is less likely. 
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3. Realization of Hybrid-Redundant Adders 
 

he adder presented by Phatak and Koren for BSD-hybrid-redundant operands (first entry in our 

oki et al. [1] have shown that an augmented (4; 2)-compressor, with some input/output 

 Section 6, we will show that by inverted encoding of negabits, to be introduced in Section 5, 

4. WBS Encodings and Hybrid Redundancy 
 

eighted bit-set (WBS) encoding of a redundant number system [12] has a fixed number of 

represented by canonical WBS encoding (see Table IV). 

T
Table II, Fig. 1 of [24]), with its redundant radix-2 positions utilizing the adder cell of [18], 
requires 42 (32) transistors for redundant (nonredundant) positions. Phatak and Koren’s 
corresponding design for redundant radix-2 positions with SDB or SCB  redundant digits 
(second and third entries in our Table II, Fig. 3a of [25]) requires seven multiplexers, a few 
gates, and several inverters. An analysis of the latter of these two adders shows that the effect of 
equal-weight grouping is to produce a representationally shifted result in which the redundant 
position moves from i at the input to i + 1 at the output (see also the explanations following 
Definition 7 in Section 2). The foregoing discussion suggests that for designing a true SDB-
hybrid-redundant adder that is representationally closed, specialized adder cells (besides the 
multiplexer-based design cited above) are needed for isolated redundant positions and 
immediately higher-weighted nonredundant positions. A high-level design for such adders is 
offered in [13]. 
 
A
inverters, can be used for redundant positions of a BSD-hybrid-redundant adder. Kornerup has 
used such augmented (4; 2)-compressors not only for the redundant position, as above, but also 
in place of the multiplexer-based cell of Phatak and Koren (see Sections 4.1 and 4.2 in [17]). 
However, none of these modifications leads to representational closure when applied to a true 
hybrid-redundant adder. Aoki et al. [1] have also shown that standard full-adders, augmented by 
suitable input/output inverters, may receive and produce negabits as well as posibits. This 
obviates the need for special cell designs for nonredundant positions of a hybrid-redundant 
adder. The inverters in the carry chain will cancel each other out, but the inverters needed for 
inputs and sum negabits lead to some overhead when compared with unmodified full-adders. 
 
In
the combining of posibits in a nonredundant position and the incoming borrow or carry can 
indeed be delegated to a conventional, unmodified full-adder. The benefits of such a design are 
the use of highly optimized standard full-adder cells (e.g., [3], [4], [26]) and the possibility of 
carry acceleration within multiple nonredundant positions by means of ordinary binary carry-
lookahead circuits (again, readily available in highly optimized forms); neither of these benefits 
is applicable when realizing hybrid-redundant adders with specialized adder cells. 
 
 

W
radix-2 positions, each holding a collection of zero or more equally weighted posibits and 
negabits. WBS encoding allows the representation of any GSD digit set, including those of 
hybrid-redundant systems. Furthermore, aperiodic hybrid-redundant number systems, not 
covered by the GSD paradigm, can also be represented by WBS encoding. For example a 
posibit-hybrid-redundant number, as in Definition 1, can be represented by a WBS encoding, 
where nonredundant positions hold a posibit and there is a collection of ν negabits and π posibits 
in redundant positions, representing [–ν, π]. Canonical WBS encodings, where each redundant 
radix-2 digit set is 3-valued and a proper subset of [–2, 2], are particularly useful for efficient 
constant time addition. All the variants of posibit hybrid-redundant numbers of Table II may be 
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nonical encoding): A WBS encoding Ω 
as k radix-2 positions, where each position i (0 ≤ i ≤ k – 1) holds π (≥ 0) posibits and ν (≥ 0) 

en 
udied in [12], but is irrelevant to hybrid redundancy. Any k-position posibit hybrid-redundant 

n posibit-hybrid-redundant 
umber system, with three redundant digit sets [–3, 3], [–5, 0], and [–2, 2] from left to right, 

ere M is the 
ynamic range of the source posibit-hybrid-redundant number system. The conversion to a 

verting 
e 6-deep, 9-position WBS encoding at the top to an equivalent 2-deep WBS encoding at the 

dots in positions 
j + 1 

 
Definition 9 (WBS encoding, redundancy pattern, and ca
h i i 
negabits representing the digit set [–νi, πi]. The cardinality of Ω equals the value of the (possibly 
redundant) radix-2 number M = (mk–1 mk–2 … m1 m0)2, where mi = πi + νi ≥ 0 is the bit multiplicity 
of position i. The redundancy pattern of Ω is defined as the possibly redundant radix-2 number R 
= (ρk–1 ρk–2 … ρ1 ρ0)2, where ρi = mi – 1. The encoding is canonical if 1 ≤ mi ≤ 2 (or 0 ≤ ρi ≤ 1), 
for all i, i.e., the digit set in each radix-2 position is [–2, 0], [–1, 0], [–1, 1], [0, 1], or [0, 2], 
which is representable by two equally weighted negabits, one negabit, a pair of one posibit and 
one negabit, one posibit, or two posibits, respectively. Given that mi ≤ 2, a canonical encoding is 
a 2-deep WBS encoding, unless all mi = 1, where the encoding is 1-deep and nonredundant.  
 
The unusual option of mi = 0, possibly leading to noncontiguous number systems, has be
st
number system (see Definition 1) may be represented by a k-position WBS encoding, where the 
latter has a posibit (νi negabits and πi posibits) in position i, corresponding to radix-2 position i of 
the former with a nonredundant (redundant) digit set [0, 1] ([–νi, πi]). 
 
Example 3 (WBS encoding): A 6-deep WBS encoding of a 9-positio
n
respectively, is represented at the top of Fig. 5. The overall range of the representable numbers is 
[–(3×26 + 5×23 + 2×20), 28 + 27 + 3×26 + 25 + 24 + 22 + 21 + 2×20] = [–234, 632], with the 
cardinality M = 867. The redundancy pattern is R = (005004003)2 = 355 = M – 29  
 
An equivalent k-position canonical WBS encoding exists if M ≤ 2k+1 – 1 [12], wh
d
canonical encoding, that is reducing the number of bits in all the k radix-2 positions to at most 2, 
is possible through the transformations outlined in Fig. 4. See [12] for additional details. 
 
Example 4 (Canonical WBS encoding): Figure 5 depicts the transformation steps for con
th
bottom. Note that, owing to a singular negabit in position 3, the 2-deep encoding no longer 
corresponds to a posibit-hybrid-redundant number system.  
 

Original  Replaced with  M
dots in 
position j and j  

ultiples of 
2   that are 
representable 

 j  

0, 1, 2, 3 

–1, 0, 1, 2 

–2, –1, 0, 1 

–3, –2, –1, 0 

(a) 

(b) 

(c) 

(d) 

 
Fig. 4.  Replacement of three equally weighted posibits and negabits. 
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Fig. 5.  Transforming a 6-deep encoding into an equivalent 2-deep encoding. 

 
Based on the practical restriction of redundant digit sets to those representable by 2 bits, and in 

iew of the fact that efficient addition schemes exist for redundant number systems represented 

h-position 

u h-position WBS encoding (i.e., 2h+1). 

h ber 

tations may be alternatively regarded as 

v
by 2-deep WBS encodings [13], we are motivated to explore the characteristics of periodic 
posibit-hybrid-redundant number systems representable by 2-deep WBS encodings. 
  
Lemma 2: The digit set of a periodic radix-2h posibit hybrid-redundant number system Ω with 

e redundant digit [–ν, π] in position g (0 ≤ g ≤ h – 1) is representable by a 2-deep th
WBS encoding iff ν + π ≤ 2h–g. 
 
Proof: The digit set of Ω is [–2gν, 2g(π – 1) + 2h – 1] (Definition 3) and its cardinality should not 
xceed the maxim m possible cardinality of a 2-deep e

Therefore 2g(π – 1) + 2h – 1 + 2gν + 1 ≤ 2h+1, leading to ν + π ≤ 2h–g.  
 
Example 5 (Canonical WBS encodings for posibit-hybrid-redundant number systems): Table IV 

epicts canonical WBS encodings for some radix-16 (  = 4) posibit-hybrid-redundant numd
systems. The first five entries coincide with those of Table II. Note that in deriving the canonical 
WBS encoding for the posibit-hybrid-redundant number system of row 7, using the 
transformations of Fig. 4, the original posibits are not preserved. In all other cases, however, the 
pale (dark) dots exactly represent the digit set corresponding to the original redundant 
(nonredundant) positions.   
 
Table IV shows that all posibit-hybrid-redundant number systems of Table II are representable 

y 2-deep WBS encodings. These canonical represenb
hybrid-redundant number systems with all redundant positions meeting the constraint ν + π = 2 
(BSD, SC, or in [–2, 0]). Other hybrid-redundant number systems with redundant digits of wider 
range (e.g., those in the last two entries of Table IV), when represented by canonical WBS 
encoding, can be alternatively regarded as having more redundant positions, all with ν + π = 2. 
Therefore, one can design representationally closed adders for any posibit-hybrid-redundant 
system, meeting the condition of Lemma 2, based on the adder cells of Fig. 1 in [24]; directly for 
BSD and SDB hybrid-redundant and posibit nonredundant positions, and designed similarly for 
other cases of Table II (see Section 6). Note, however, that needing such a wide variety of adder 
cells is a disadvantage in VLSI design, which favors regularity. 

Position index 8 7 6 5 4 3 2 0
 

 

 
 

 
 

6-deep 

2-deep 

1

Legend: 
 
     x 
     x 
     x 
 
     x 
x Intermediate 

reduction 
steps 
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Table IV.  Canonical WBS encoding of some posibit-hybrid-redundant number systems. 
 

Posibit hybrid-redundant number system  

Composition (digit pattern) ν + π g 
WBS encoding with 3 radix-16 digits 

1                               
                                               

1 BSD in [–1, 1], 3 posibits 2 3 

2 1 SDB digit in [–2, 1], 3 posibits 
   

3 0                               
                                                      

3 1 SBC digit in [–1, 2], 3 posibits 3 1                               
                                                         

4 1 SC digit in [0, 2], 3 posibits 2 3                               
                                               

5 1 SDC digit in [0, 3], 3 posibits 3 2                               
                                                

6 1 digit in [–2, 0], 3 posibits 2 3                               
                                                

7 1 digit in [–4, 2] , 3 posibits 6 1                              
   

 
                                           

8 1 digit in [–8, 8] , 3 posibits 16 0                               
                               

 
Posibit hybrid redundancy does not allow single g s. The third 
ntry of Table IV, with a single negabit in its WBS encoding may appear to contradict this claim. 

 
Definition 10 (Exten redundant number 

stem has k radix-2 positions numbered 0 to k – 1 and weighted 2  to 2 . Each radix-2 position 
i (0 ≤ i ≤ k – 1) holds a digit from a digit set [–νi, πi], νi, πi ≥ 0 and νi + πi ≥ 1. Position i is 

ne abits in nonredundant position
e
However, one must note that in the implementations offered in [25], this single negabit together 
with a posibit in the next higher position forms an SBC digit in the same (redundant) position as 
the negabit, and is thus not considered or manipulated by itself as a nonredundant radix-2 digit. 
Because a negabit represents the nonredundant radix-2 digit set [–1, 0], we are motivated to 
extend hybrid redundancy to allow for negabits in nonredundant positions. This implies that, in 
designing the required adder cells, the negabit would be considered by itself and not as part of a 
redundant digit. 
 

 
Fig. 6.  Relating WBS encodings and their various subclasses. 

NonperiodicPeriodic (GSD)

WBS Encodings

Extended Hybrid

Posibit Hybrid

ded hybrid redundancy): A k-position extended-hybrid
0 k–1

-
sy
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hybrid redundancy. 

he relative complexity of the adder cells in [24] and [25] is mainly due to carry and borrow 
propagation within the sam d full-adders, augmented 

ith input/output inverters, have been proposed in [1] as efficient tools for the compression and 

he most significant position of 
andard 2’s-complement representation. The lower (higher) value of a negabit, that is, –1 (0), is 

redundant (nonredundant) iff νi + πi ≥ 2 (νi + πi = 1). Graphically a redundant position is shown 
as ®, or by a collection of two or more posibits ( ) and negabits ( ); a nonredundant position 
contains exactly one posibit or one negabit.  
 
Figure 6 depicts the relationships among WBS encodings, GSD number systems, extended-
hybrid-redundant number systems, and posibit 
 
 

5. Inverted Encoding of Negabits 
 
T

e circuit. Variants of (4; 2)-compressors an
w
addition of equally-weighted mixed collections of posibits and negabits. Kornerup [17] has used 
the compressors of [1] as more efficient alternatives to the adder cells of [24] and [25]. Other 
attempts at similar treatment of equally weighted posibits and negabits (e.g., [6] and [23]) have 
led to slight variations in full/half-adder circuits for different combinations of posibits and 
negabits. The difference is often due to extra inverters at inputs and outputs of the standard cells. 
Although intermediate inverters may cancel each other out in automated VLSI design, inverters 
for original inputs and final outputs contribute to extra delay, area and power consumption; a 
problem, that we aim to solve by inverted encoding of negabits. It is well known that inverting 
all three inputs of a full-adder will result in inverted sum and carry. This hints at using a standard 
full-adder for adding any three posibits and negabits (see Fig. 4). 
 
Definition 11 (Inverted encoding of negabits): Inverted encoding of negabits is exactly the 
opposite of the conventional encoding, as used, for example, in t
st
inversely encoded as 0 (1). We use uppercase (lowercase) letters to designate the logical value of 
a negabit (posibit). Then the arithmetic value of a negabit X (a posibit x) would be X – 1 (x).  
 

FA 

s 

in c out c 

x  y  

FA 

x  Y  

in c out c 

S 

FA 

s

in c out C 

X  Y  

FA in C out C 

X  Y  

S  
Fig. 7.  Universality of a binary full-adder for adding equally weighted posibits  

(shown as lowercase variables) and negabits (uppercase). 
 
Figure 7 dep nter for any 
equally weighted colle ts. A full adder with 

osibit inputs is characterized by the equation x  + x  + x  = 2c + s which relates the arithmetic 

icts the universal functionality of a standard full-adder as a (3; 2)-cou
ction of 3 posibits and inversely encoded negabi

p 1 2 3
values of its inputs and outputs. Now, if the posibit input x1 is replaced by the negabit input X1, 
denoting the arithmetic value X1 – 1, the equality (X1 – 1) + x2 + x3 = 2c + (S – 1) shows that the 
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unctionality of half-adders is 

All the posibit-hybrid-red ts that are representable 
ith 2 bits, and many other extended-hybrid-redundant number systems (discussed in Section 4), 

e. 

ands, for i ≥ 0. See Fig. 8c. 

I
on j + 1 (or position 0), followed by a chain of 

 
The add
dders o pressor. The 

 

full-adder will produce a negabit sum and posibit carry. The (3; 2)-counter functionality of a full-
adder for other combinations of inputs is similarly justified. 
 
Similarly, one could use half-adders to convert any set of 2 equally weighted posibits and 

egabits to an arithmetically equivalent 1-deep, 2-bit result. This fn
justified by using the equation x1 + x2 = 2c + s in the same manner as that of a full-adder in the 
preceding paragraph. We have shown elsewhere [12] that conventional compressors, 
independent of how they are implemented, offer a similar functionality in reducing larger 
collections of posibits and negabits in any combination. 
 
 

6. VLSI-Friendly Addition Scheme 
 

undant number systems with redundant digi
w
can be represented by canonical WBS encodings. Addition of two canonical WBS-encoded 
numbers is performed by conceptually copying the bits of the 2-deep operands in the bit 
placeholders of a 4-deep WBS representation. This is then followed by digit-set conversion [15], 
or reduction to canonical WBS encoding. In fact, if the redundancy patterns (see Definition 9) of 
operand’s encodings are the same, only redundant positions of the operands produce 4-deep 
results, with nonredundant positions yielding 2-deep results. Otherwise (i.e., operands with 
different redundancy patterns), a nonredundant position of one operand may align with a 
redundant position of the other, thus leading to 3-deep positions as well. 
 
With inverted encoding of negabits, reduction of a 4-deep WBS number to a 2-deep one can be 

elegated to any standard reduction network such as a Wallace tree [27] or Dadda tree [5]. But, d
the resulting 2-deep number may show an arbitrary redundancy pattern that is not necessarily the 
same as that of the input operands. This pattern change is what may happen in Algorithm 1 
below. Algorithm 2, however, provides for addition results with a preserved redundancy pattern, 
which, as we will see later, is not necessarily the same as representational closure. 
 
Algorithm 1 (WBS reduction with shifted redundancy pattern) 

put: A 4-deep WBS-encoded number derived by aligning two canonical WBS operands with In
identical redundancy patterns. See Fig. 8a for an exampl

Output: A canonical WBS-encoded result with shifted redundancy pattern, where the 
redundancy index ρi+1 of the result is equal to ρi of the oper 

I. For each 4-deep position j, use a full-adder to reduce it to a 2-deep position. This leads 
to a 3-deep position j + 1. See Fig. 8b  

I. Use a cascade of full-adders for carry-propagate addition starting with a single full-
adder at an intermediate 3-deep positi
full-adders for 2-deep positions up to, but not including, the next higher 3-deep position. 
The carry-out of the full-adder for the leftmost 2-deep position in a chain will stop at the 
following 3-deep position, where it joins the sum bit generated in that position to form 
the redundant 2-deep position j + 1 of the result.  

er cells required for implementation of Algorithm 1 are depicted in Fig. 9. The two full-
f Fig. 9a, used for redundant positions, may be replaced by any (4; 2) coma

single full-adder of Fig. 9b is used for nonredundant positions. Note that a single full-adder for a 
nonredundant position is the minimum possible. 
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(a)             

      

             

                          
(b) 

         

            

    

                          
(c) 

 
ig. 8 e  h if  u  te . 

 

            

             

F .  R duction wit  sh ted red ndancy pat rn

 
Fig. 9.  Adder cells leading to shifted redundancy pattern. 

 
Algorithm 2 (WBS reduction with preserved redundancy pattern) 
Input: A 4-deep WB l WBS operands with 

identical redundancy patterns. See Fig. 10a, for an example. 
undancy pattern, where the 

I

The
preservi alf-adder per nonredundant position (compare 

igs. 9b and 11b). However, the addition latency is the same as that of the circuit for shifted 

S-encoded number derived by aligning two canonica

Output: A canonical WBS-encoded result with preserved red
redundancy index ρi of the result is equal to ρi of the operands, for i ≥ 0. See Fig. 10c.  

I. Use a full-adder (half-adder) for any 4-deep position j (2-deep position i). This turns 
each 4-deep position j into a 3-deep position and leaves the multiplicity of 2-deep 
positions intact (Fig. 10b).  

I. Proceed exactly as in step II of Algorithm 1. See Fig. 10c, where the result has the same 
redundancy pattern as of the operands.  

 
 required adder cells for Algorithm 2 are depicted in Fig. 11, where the extra cost for 

ng the redundancy pattern is seen to be a h
F
redundancy pattern. Again, the circuit in Fig. 11a may be replaced by a (4; 2)-compressor. Note 
that the adder cells for redundant positions in both algorithms are identical. Also note that all 
adder cells are universal in that their functionality does not depend on the polarities of inputs and 
outputs. This is an important feature of our designs, in the sense of enabling the use of 
conventional building blocks that, over time, have been highly optimized with regard to 
complexity, speed, and power requirements. 
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(a)              

     

              

                            
(b)  

         

            

     

                            
(c)  

 

 

 
Fig. 11.  Reduction cells for preserved redundancy pattern addition. 

 
An approach that preserves the redundancy pattern (e.g., Algorithm 2) does not necessarily lead 
to representationa  t e redundancy 

atterns of the operands and the result but also identical polarity combinations for like positions. 

 area, speed, and regularity. In Section 7, we present 
presentationally shifted and representationally closed high-level designs for VLSI-friendly 

            

             
Fig. 10.  Reduction with preserved redundancy pattern. 

l closure, because the latter requires not only a match in h
p
But it is interesting that the adder cells of Fig. 9 preserve the polarity sets of the operands, 
leading to a representationally shifted result similar to the result of true hybrid redundant adders 
based on the adder cells in [25] or those in [17]. While the adder provided in [24] for BSD 
hybrid-redundant operands is representationally closed, neither [25] nor [17] offers or hints at the 
idea of such an addition scheme for other variants of true hybrid redundancy (i.e., where 
nonredundant positions do exist).  
 
In [12], we have presented a representationally closed adder for SDB-hybrid-redundant operands 
showing advantages in terms of
re
constant-time adders with symmetric extended-hybrid-redundant operands. 
 

y′j

cj

s′j 

y″j 

tj+1 

cj+1 

x′j

FA 

s″j 
tj 

FA 

ti 

y′i

ci 

HA

s′i

ti+1 

ci+1 

x′i

FA

(a) Redundant position

x″j

(b) Nonredundant position 
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ecalling our discussion in Section 2, variants of symmetric posibit hybrid redundancy are 
limited to hybrid red  sets [–(π + 2h – 2), 

 + 2h – 2] for all h > 0, where π is the maximum positive value which can be represented by the 

ween radix-2 redundant 
ositions for area-time tradeoff, as it is this number that defines the area requirement and the 

ndant number system and its equivalent canonical WBS 
ncoding. Each radix-8 digit belongs to [–6, 6]. The reduction process from 6-deep to 2-deep is 

   
           

   (a  6- e  hy rid d ndant       (b)  Equivalent 2-deep encoding 

Fig. 12.  Depth reduction for a symmetric posibit-hybrid-redundant number system. 
 
Examp  of orollary 3 that posibit 2-deep hybrid redundancy 
provides fo redundant 

dix-4 digit set [–2, 2]. This observation establishes that posibit 2-deep hybrid-redundant 

le 
osibit in every other position (i.e., a 10-deep representation of the radix-8 digit set [–8, 8]). An 

7. Symmetric Extended Hybrid Redundancy 
 
R

undant number systems with right-hybrid-redundant digit
π
right-side redundant position (see Lemma 1). A WBS encoding for such a digit set would have at 
least 2h – 2 = 2(2d – 1) negabits in its radix-2 redundant position, where d is the distance between 
consecutive radix-2 redundant positions. This means that the representation depth in radix-2 
redundant positions grows exponentially with the distance parameter d. 
 
The most important characteristic of posibit hybrid redundancy is the design flexibility in 
allowing an arbitrary number of nonredundant radix-2 positions bet
p
associated latency for the design. With exponential growth of area for the radix-2 redundant 
positions when symmetry is a requirement, any attempt to increase h would be ineffective as an 
area-time tradeoff measure. As an example, for h = 3, corresponding to a rather short distance of 
d = 2 between redundant positions, the encoding depth of redundant positions will be π + 6 (at 
least 6). Converting such a deep WBS encoding to a 2-deep (canonical) encoding reduces the 
number of radix-2 nonredundant positions, which is counterproductive as regards to the main 
advantage of true hybrid redundancy.  
 
Example 6 (Deep symmetric hybrid redundancy): Figure 12 depicts the WBS encoding of a 
radix-8, 6-deep symmetric hybrid-redu
e
similar to that shown in Fig. 8.  
 

          
       

           

           

           

  ) de p b -re u  

le 6 serves to confirm the result C
r only two different symmetric digit sets, namely, BSD and the minimally 

ra
representations are mostly asymmetric, thus essentially denying designers the flexibility of 
spacing variations to trade off speed for economy (smaller VLSI area) in many cases where 
symmetry is desired. To reduce the depth of a high-radix symmetric posibit hybrid-redundant 
representation, it is possible to use more than one radix-2 position for representation of the 
redundant radix-2 digit set, as was suggested by the equal-weight grouping (see Definition 6). 
 
Example 6 (Shallow encoding of symmetric hybrid redundancy): Consider a 9-position (0 to 8) 
hybrid-redundant representation with 2 posibits and 8 negabits in positions 0, 3, 6, and a sing
p
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BS encoding, 

equivalent 3-deep representation for the above contains a single posibit in positions 1, 4, 7, two 
posibits in positions 0, 3, 6, and one posibit plus 2 negabits in positions 2, 5, 8.  
The resultant symmetric posibit-hybrid-redundant number system of Example 6 is not a 2-deep 
WBS encoding; it is thus unsuitable for the efficient universal addition scheme based on the 
adder cells of Figs. 9 or 11. The process of deriving its equivalent canonical W
through the transformations of Fig. 4, leaves a single negabit in each of the originally redundant 
positions. The canonical WBS encoding thus derived (Fig. 13) no longer represents a posibit-
hybrid-redundant number system, but it is an extended-hybrid-redundant number system, as 
specified by Definition 10. This suggests a general method for constructing a 2-deep WBS 
encoding to represent a given symmetric range [–α, α]. We begin with a one-position WBS 
encoding with α posibits, and α negabits, and repeatedly apply the transformations of Fig. 9, 
until no other similar transformation is applicable [12]. 
 

            

            

Fig. 13.  A canonical WBS encoding of an extended hybrid-redundant  
number system with the symmetric digit set [–8, 8]. 

 
 

8. Adding Extended-Hybrid-Redundant Numbers 

umbers with arbitrary digit sets can be added digitwise to produce a sum with a digit set whose 
range is the sum  kept intact and 

e result used as an operand in further arithmetic operations. It is also possible to convert the 

e same redundancy 
attern as that of the operands. Preserving the redundancy pattern is a necessary condition for 

regular adder design for 
n arbitrary radix-2  digit i extending from position ih to position (i + 1)h − 1, where the only 

 
N

 of the ranges of the operand digits. This wider digit set can be
th
wider digit set to a more convenient one for further processing. Often, however, it is required to 
obtain results with the same digit set as inputs [16]. Such representationally closed arithmetic is 
desirable for storage efficiency, reusability of the arithmetic circuits, and regularity in VLSI 
realization. While encoding-algorithm combinations that are not representationally closed can be 
useful and are used in practice (e.g., [19]), when a representationally closed scheme is compared 
against one that is not closed, fairness dictates that the overhead of conversion to the ultimate 
encoding for the latter be taken into account in any cost/speed comparisons.  
 
Where the two operands in addition are represented with the same canonical WBS encoding, the 
reduction cells of Fig. 11 may be used to produce a 2-deep result with th
p
representational closure, but it is not sufficient; the number of posibits and negabits of the like 
positions of the result and the operands should be the same as well. One obvious case, in which 
the latter property is sufficient, is when the encoding consists of only posibits (e.g., SC digit) or 
only negabits. The adder cells of Fig. 9, however, preserve representational closure, except for a 
one position left shift in the resultant pattern, that is, the number of posibits and negabits of any 
position i + 1 of the result is equal to that of position i of either operand. 
 
Figure 14 depicts, in dot notation, representationally closed addition of two 3-digit symmetric 
hybrid-redundant operands with the digit set [–8, 8]. Figure 15 shows a 

ha
building blocks are full- and half-adders (shaded boxes). Note that cells drawn with dashed lines 
belong to position ih − 1. The addition process is outlined by steps of the algorithm that follows. 
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Fig. 15.  Representationally closed adder for digit i of radix-2 mmetric 
hybrid-redundant numbers 
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lgorithm 3 (Representationally closed addition of symmetric 2-deep extended-hybrid-
dundant operands, exemplified by Fig. 13) 

hmetic value. This produces a new negabit in the 

 
2. 

alued posibit and negabit 

 
3. 

For large h (say, h ≥ 4), one may use 

 
The ex itwise inversion of each 

igit, and then perform an addition as above. That simple bitwise inversion of each digit negates 

digit value from a symmetric digit 
t represented by posibits and inversely encoded negabits is negated by inverting all the bits. 

is 
plies that the sum of the weights associated with the set of all posibits or all negabits is α. 

dders and one half-
dder per radix-2 position. An inverter per bit and a multiplexer is the minimum possible penalty 

A
re 

1. Replace the 2-deep column of equal-weight negabits by an (h + 1)-position 1-deep 2’s-
complement number of the same arit
next higher negabit position. A standard half-adder can produce the 2-bit 2’s-complement 
sum of 2 negabits. An h-bit sign-extension of the latter produces the desired result; 
however, due to our inverted encoding of negabits, an inversion is required for sign 
extension. The required circuitry for this step, a half-adder in the leftmost position of 
each radix-2h digit and two inverters, can be seen in Fig. 15.  
Concurrently with Step 1, use a full-adder (half-adder) in the 4-deep (2-deep) posibit 
positions to derive a 3-deep intermediate result. Zero-v
constants (boldface 0, regular-face 1) appear in the least significant digit position of Fig. 
14 for regularity. The latency for this step is equal to that of one full-adder. 
Use one full-adder per position to reduce the 3-deep result to one of depth 2. The latency 
of this step is again equal to that of one full-adder.  

4. Use a chain of h full-adders per every h positions to derive the final result. The delay of 
this step is equal to that of h cascaded full-adders. 
carry acceleration techniques to ascertain a delay of O(log h).  

tra cost for subtraction is minimal. We negate the subtrahend by b
d
that digit, and thus the whole number, is justified as follows. 
  
Theorem 1 (Negating a WBS-encoded symmetric digit): A 
se
 
Proof: Let the symmetric digit set, represented over several radix-2 positions, be [–α, α]. Th
im
Consider a digit D whose encoding comprises a set of 1-valued posibits of total weight x and a 
set of 0-valued negabits of total weight y, leading to D = x – y, with x, y ≤ α. The bitwise 
complemented digit Dcompl will then have the value (α – x) – (α – y) = –D.  
 
The overall adder circuitry, as depicted in Fig. 15, is comprised of two full-a
a
for subtraction, a bound that is achievable in this case, as noted above. The total addition delay, 
corresponding to the critical path of Fig. 15 (the heavy broken line) is equal to that of h full-
adders and two half-adders. With a carry acceleration circuit, an O(log h) delay can be easily 
achieved. Note that a representationally shifted adder, based on the adder cells of Fig. 9, has a 
cost of one (two) full-adder(s) per nonredundant (redundant) position, that is, a total of h + 1 
full-adders per radix-2h digit. The delay, in this case, is equal to that of h + 1 full-adders, almost 
the same as in the case of representationally closed adder. However, the hardware penalty for 
representational closure is rather substantial; the equivalent of one extra half-adder (and one 
extra full-adder) per redundant (nonredundant) position. 
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9. Conversion from Two’s Complement 
 

onversion from 2’s-complement representation to posibit hybrid-redundant representation is 

ased on the preceding discussion, one potential drawback of extended hybrid redundancy is 

he general process of conversion from k-bit 2’s-complement representation to a given 

Table V.  Carry propagation rule in conversion from 2’s-complement 

 

C
quite simple as long as the digit set for redundant positions includes {0, 1}. In particular, this is 
the case for all representations shown in Table II. Bits are directly transferred from one 
representation to the other in nonredundant positions (which, by definition, consist of single 
posibits) and one of the posibit components of a redundant digit is used in redundant positions. 
The only nonroutine part of the conversion pertains to the sign position. In the case of the last 
two entries in Table II, corresponding to two entries in Table III which do not include negabits in 
the leftmost column, conversion of negative numbers is clearly impossible. For the first three 
entries of Table II, the sign bit of the 2’s-complement number can be accommodated in the most 
significant position of the hybrid-redundant representation. The conversion latency is thus no 
greater than a single inverter delay. 
 
B
that it may complicate the process of conversion from 2’s-complement representation. In this 
section, we discuss the conversion process in general, showing that any carry propagation in the 
conversion process can be terminated at a redundant position, and provide an efficient solution 
for the particular symmetric representation introduced earlier (see Fig. 14). 
 
T
extended-hybrid-redundant representation is as follows. For each posibit in position i of the 
source number, 0 ≤ i ≤ k – 2, we choose a conversion option from Table V, depending on the bit 
pattern of the target representation in the same position i. The main objective in this choice is to 
make the outgoing carry from a redundant position completely independent of the incoming 
carry for that position. Table V shows how the latter goal can be achieved. Where we have at 
least two posibits in a redundant position, they can absorb both the source bit and the incoming 
carry, allowing us to set cout = 0; other posibits (negabits), if any, will be set to 0 (1), 
corresponding to the arithmetic value 0. For a redundant position with exactly one posibit, we set 
cout = x, where x is the value of the source posibit, and use xcin (respectively, x + cin) for the 
target posibit (negabit). Finally, where a redundant position contains no posibit, we choose cout = 
1 and set the two target negabits to x and cin. The choices listed for nonredundant positions in 
Table V are self-explanatory. Because we use conventional or positive carries throughout, carry 
acceleration techniques with standard circuitry can be easily introduced, if desired. 
 

to extended-hybrid-redundant representation. 

Source 
digit x  

 

 
cin

Nonredundant target
(exactly one bit)  

           

Redundant target 
(at least two bits)  

                                              

0 0 0               1 
0                0                0 
0                1                0 

0 1 1               0 
0                1                0 
1                1                1 

1 0 1               0 
1                0                1 
0                0                0 

1 1 0               1 
1                0                1 
1                1                1 

 Cout      x in cin  =  c         x + 0               x              1 
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nt to extended-hybrid-redundant representation can 

 
 

10. Conclusions 

The hybrid redundancy scheme of ], constitutes an easily understood 
oncept leading to straightforward management of area-time tradeoffs in the design of hybrid-

hybrid redundancy and 
owed that these problems can be overcome by two innovations: 

metric hybrid-

 

The fact that carry propagation stops at dig
re

it boundaries for periodic canonical extended-hybrid-
dundant representations is a direct consequence of the fact that for the latter representation to 

accommodate a continuous interval of integers, each period or h-position digit must be able to 
represent all values in the range [0, 2h – 1]. 
 
In practice, conversion from 2’s-compleme
often be done with no carry propagation and with a latency equivalent to that of a single inverter. 
For example, in case of the symmetric hybrid-redundant number system depicted in Fig. 13, 
conversion from 2’s-complement representation involves only direct wiring and some inversions, 
as shown schematically in Fig. 16. Note that the leftmost inverter is needed because of our 
inverted encoding of negabits. 

 
Fig. 16.  Schematic view of conversion from 2’s-complement to the 

extended-hybrid-redundant representation of Fig. 13.  

 
[24], extended in [25

c
redundant number systems. The designer has the option of considering as many posibits between 
the redundant positions as required by cost-performance targets. The redundant positions are 
practically restricted to at most 4-valued digit sets to enhance the addition speed. The latter 
constraint, with the help of equal-weight grouping, has led to 2-deep encodings (using the 
terminology of WBS encodings) of hybrid-redundant number systems. However, the ordinary or 
posibit hybrid redundancy scheme does not offer the latter design flexibility when shallow 
symmetric number systems are desired. In such cases, hybrid redundancy fails to provide 
representational closure in adding true hybrid-redundant operands, does not fully preserve the 
original digit sets, is incompatible with the direct use of carry acceleration techniques, and lacks 
support for subtraction by means of the same circuitry used for addition.  
 
In this paper, we provided an in-depth analysis of limitations of posibit 
sh
 

• Allowing single negabits in nonredundant positions. This possibility, which led to 
definition of extended hybrid redundancy, helps in designing shallow sym
redundant number systems, which would become impractically deep otherwise (the depth 
would increase exponentially with the spacing of redundant positions). Furthermore, 
symmetric digit sets make the negation operation quite efficient and lead to direct 
reusability of addition circuitry for subtraction. For example, in the case of some 
common symmetric number systems, negation is performed via bitwise inversion. 

2’s-complement number 

Extended-hybrid- 
redundant number 

Not used
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