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An n-node network, with nodes numbered O to - 1, is an undirected double-loop network with chord lengths
1 and s (2 < 5 < n/2) when each node i (0 < i < n) is connected to each of the four nodes i + 1 and i + s via an

1

link; all node-index expressions are evaluated modulo n. Let n = gs + r, where r (0 < r < 5) is the

undirecied
remainder of dividing n by s. Furthermore, let s = ar + b, where b (0 < b < r) is the remainder of dividing s by
r. In this paper, we provide closed-form formulas for the diameter of a double-loop network for the case ¢ > r
and for a subcase of the case g < r when b < aq + 1. In the complementary subcase of ¢ < r, when b > ag+1,
network diameter can be derived by applying the O(log n)-time algorithm of Zerovnik and Pisanski (J.
Algorithms, Vol. 14, pp. 226-243, 1993). Obtaining a closed-form formula for diameter of the double-loop

network in the latter subcase remains an open problem.
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1. Introduction

Double-loop networks find applications in the design of communication networks,
multimodule memory structures, data alignment in parallel memory systems, and
supercomputer organizations. Past research on double-loop network has dealt with both
directed networks (e.g., [1-5]) and undirected ones (e.g., [6-13]). Among problems
studied in connection with double-loop networks are routing algorithms, determination of
graph diameter, and optimal assignment of chord lengths. For more detail on properties of
double-loop networks and their applications, we refer the reader to the survey papers [14]
and [15].

A double-loop network is characterized by its number » of nodes (network size) and by its
two chord lengths. In this paper, we take one chord length to be 1, and denote a
double-loop network as LL(n, 1, s), where nodes are numbered 0 to n — 1, the chord
length s satisfies 2 < s < n/2, and each node i (0 < i < n) is connected to each of the four
nodes i + 1 and i + s by an undirected link; all node-index expressions are evaluated
modulo n. Note that the condition on s only excludes the case s = n/2 for even n; this is to
limit our discussion to networks of uniform node degree 4 and to avoid having to deal
with the degenerate degree-3 case. Note also that setting one chord length to 1 is a real
restriction in that it excludes some double-loop networks such as LL(15, 3, 5) from .
consideration. Any double-loop network with one chord length relatively prime to its size
n is, however, included. Such a chord length, which defines a Hamiltonian cycle, can be
converted to a chord length of 1 via renumbering of the nodes. Formally, a double-loop
network LL(n, 1, s) is a graph G = (V, E), where:

Vv=2Z,={0,1,...,n-1} (D
E={@G,it1modn),(i,itsmodn)I0<Li<n} )

Figure 1 depicts the double-loop network LL(16, 1, 5) as an illustrative example. Section
3 contains two other examples: LL(19, 1, 0) and LL(39, 1, 17). An additional example,
LL(15, 1, 6), used in constructing Fig. 2, highlights the fact that n and s need not be
relatively prime.

Let d(i, j) and D(n, 1, s) denote the length of the shortest path from node i to node j and
the diameter of LL(n, 1, s), respectively. Because LL(n, 1, s) is vertex-symmetric, we
have:

D(n, 1, 5) = max;{d(, j)} = max;{d(0, j)} €)

Consider a network size n = gs + r, where r (0 < r <) is the remainder of dividing n by s.
Furthermore, when g < r, let s = ar + b, where b (0 < b < r) is the remainder of dividing s
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by 7. Du et al [8] showed the following upper bound for D(n, 1, s):

Fig. 1. The double-loop network LL(16, 1, 5) with 16 nodes and chord lengths 1 and 5.

Dn,1,s)<max{q+1,r-2,s—r—-1}

In [2], we provided a new algorithm to compute the diameter of directed double-loop
networks. Zerovnik and Pisanski [13] gave a corresponding O(log n)-time algorithm to
compute the diameter of an n-node undirected double-loop network. Mukhopadhyaya and
Sinha [9] discussed an optimal O(D)-time routing algorithm for an undirected
double-loop network with diameter D, while also enumerating a number of open research
problems. One such open problem is to derive an analytical formula for the diameter of

LL(n, 1, s).

In this paper, we derive two diameter formulas for undirected double-loop networks for
the case g > r and for the subcase of the case g < r corresponding to the condition b < aq
+ 1 whose components were defined above. The diameter formulas are presented in
Section 3, following a review of some relevant known results and derivation of two
inequalities relating D(n, 1, s) to the distance between lattice points in a parallelogram in
Section 2. A list of key notation is presented in Table 1 for ease of reference.
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Table 1. List of key notation.

LxJ

[x]
I'toQ
AtoX

a

b

D

D(n, 1,5
dist(A, B)
d, )

14

N N

Is congruent to

Floor function; largest integer that is no greater than x

Ceiling function; smallest integer that is no less than x

All upper case Greek letters represent parallelogram regions in the plane
All upper case Roman (non-italic) letters represent points in the plane
Quotient of dividing s by r

Remainder of dividing s by r

Network diameter

Diameter of an n-node double-loop network with chord lengths 1 and s
Distance between points A and B on the plane

Distance between nodes i and j in a network or graph

Edge set of a graph

Graph

Double-loop network

Signed integer denoting the number of skip links on a path

Signed integer denoting the number of ring links on a path

Largest value among those in a set or multiset

Smallest value among those in a set or multiset

Number of nodes in a network or graph

Quotient of dividing n by s

Remainder of dividing n by s

Chord length in a loop network (skip distance)

Nade oat

LA NUUW Ow

of a graph

The set of all integers
Theset {0,1,...,n—-1}

2. Tools and Preliminary Results

The four links incident to node i in LL(n, 1, 5), connecting it to nodes i + s, i — s, i + 1, and

i — 1, are called the forward skip, backward skip, forward ring, and backward ring links,

respectively. Along a shortest path from i to j in LL(n, 1, s), skip links of at most one type
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(forward or backward) and ring links of at most one type are taken. Given that the order
of traversing these links makes no difference, we can identify a shortest path from i to j
with two signed integers m, and m,, where Im,l is the number of skip links and Im;! is the
number of ring links taken; sign of m, or m, indicates the forward (positive) or backward
(negative) direction.

Fig. 2. Part of the infinite grid G, corresponding to the double-loop network LL(15, 1, 6). We have shown a

parallelogram and have shaded the lattice points within it.

Given LL(n, 1, s), we construct an infinite grid G, in Z%, labeling each lattice point (i, j)
by i + js mod n. For example, part of the grid Gis¢ corresponding to LL(15, 1, 6) is
depicted in Fig. 2. Every label / (0 <! < n) is repeated in G, infinitely many times. Let n
= ¢s + r, where r (0 < r <) is the remainder of dividing n by s. Then, lattice points (7, g)
and (s, —1) correspond to 0. We refer to a lattice point with label i as an i-point. For any
0-point (u, v) on the lattice, there is an integer k such that u + vs = kn. Thus, we have:

(u, v) = k(r, q) + (kg — v)(s, -1) &)
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This leads to the conclusion that every O-point (#, v) can be represented as #,(r, q) + 1,(s,
-1), where #,, t, € Z. We define

dist((x, y), (u, v)) =lx —ul + ly — vl (6)
as the distance between lattice points (x, y) and (u, v).

It is clear that we have a path consisting of x — u ring links and y —v skip links from node
X +ystonode u + vsin LL(n, 1, 5). Thus, the distance d(x + ys, u + vs) between nodes x +
ys and u + vs in LL(n, 1, s) is no greater than dis#((x, ¥), (u, v)) on the grid G, .. The
following lemma corresponds to the result on L-shaped tiles in [11]; we supply its proof,

both for completeness and to introduce our proof methods and constructions (Fig. 2).

Lemma 1: Suppose that 0-points B and D have coordinates (i, v) and (=x, y), respectively,
with &, x 2 0 and v, y > 0. Consider the parallelogram ABCD, where points A and C have
coordinates (0, 0) and (u —x, v + y), as shown in Fig. 3. If the area of the region X covered
by the parallelogram ABCD, excluding the two edges BC and CD (and by implication,
the lattice points B, C, and D) is n, then X contains exactly n lattice points whose labels
are0,1,...,n-1.

Proof. It is easily verified that the area of X is luy + vxl. The fact that & with area n
contains n points is a direct consequence of the parallelogram ABCD tessellating the
plane and there being one grid point in each unit of area on average. To complete the
proof, we need to show that there is only one i-point within X for 0 < i < n. The proof is
by contradiction. Suppose there are multiple i-points for some i. The corresponding points
in all other parallelograms tessellating the plane will also be i-points. This means that

J-points do not exist in the lattice Z* for at least one J (0 <j < n); a clear contradiction. OJ

Lemmas 2 and 3 that follow establish the distance between points at or near the center of
a parallelogram and the closest 0-point on the grid. Because any double-loop network is
node-symmetric, its diameter can be found by obtaining the worst-case distance to a
O-point from another point. Lemma 2 covers the case where the midpoint of the
parallelogram of Fig. 3 is in the first quadrant (i > 0, j > 0), while Lemma 3 deals with the
case of the midpoint being in the second quadrant (i < 0, j > 0).

Lemma 2: Suppose that region X and the four lattice points A, B, C, and D are as in
Lemma 1 and that x <y, v<u, x < u, and v < y (see Fig. 3). Consider the points P and Q
with coordinates (I_(u - x)/2_], [ v+ y)/2—|) and (r (u - x)/2-l, r(v + y)/2—l), respectively. If X
includes n lattice points, then no 0-point is closer to P than the nearest of the points A, B,
C, D. Thus, the shortest distance from node 0 to node |_(u - x)/2J + l-(v + y)/ﬂ sinLL(n, 1,
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Ki(u+x,v-y)

Fig. 3. Six O-points (A, B, C, D, K, and L) on the lattice, along with other points used in proofs (some later on

in the paper). Points P and Q coincide when u — x is even.

s) is min(dist(A, P), dist(B, P), dist(C, P), dist(D, P)). The shortest distance from node 0 to
node [ (u ~ x)/21+[ (v + y)2]s is similarly related to point Q.

Proof. Let dp = min{dist(A, P), dist(B, P), dist(C, P), dist(D, P)}. Clearly, d(0, L (u - x)/2]
+[ v +y)2]s) < dp. We begin by deriving the distances between P and the four O-points
A,B,C,D:

dist(A, P) =L(u—x)2]+[(v + y)12] (Ta)
dist(B, P) =u—L(u -2l +[(v +y)y2]-v (7b)
dist(C,P)=u—x-l@u-02]+v+y-[@w+yr] , (7¢)
distD, P)=x +Lu -]l +y [ +y)2] (7d)

Suppose that the shortest path from node L(u — x)/2] + [ (v + )21 s to node 0 contains my
ring links and m; skip links, where m,, m, € Z. We have my + l_(u - x)/2_] + (m; + [ v+
y)/2—|) s =0 mod n. We know that (i, ) = (m; + L(u - x)/2), m, +[ v+yn2)isa 0-point by
definition. Because X contains # lattice points and the area of X is uy + vx, we have uy +
vx = n. The O-points (i, /), (4, v), and (~x, y) imply, by definition, i + js =0 mod , u + vs =
0 mod n, and ~x + ys = 0 mod n. So, we have iy + jx = 0 mod n and —iv + ju =0 mod n.
Thus, there exist two integers k; and &, such that iy + jx = k;n and —iv + Jju = kon by our
definition of 0-points. Because uy + vx = n, we have:
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(i, ) = (my + L = 002, mg + T + )21 = ky(u, v) + ko(=x, y) ®)

Hence, m; = kyu — kyx — L(u - x)/2J and m; = kyv + kyy — r(v + y)/2-|. There are four cases to
be considered: (1) ky, k221, 2) k1, k20, (B) k1 <0,k >0,and (4) k; > 0, k, < 0.

Case 1: When ky, k2 2 1, Imyl + Imy 2 ky(u + v) + kao(y = %) =L@ =x12] =T (v + y)2 12 u + v
+y—x~Lw-xrl-Tv+y/2]=dis«C, P).

Case 2: When ki, k, < 0, Imy! + Img = —ky(u +v) = kao(y = %) + L@ =02 + [ v + y)2 12 L(u
-]+ + y)2] = dist(A, P).

Case 3: When k; < 0 and &, > 0, Imyl + Imyl = —ky(u — v) + ka(y + %) + L(u — x)2] - (v +
W21z x+y +Lu-x2l-T@ +yy2l=dis(D, P).

Case 4: When k; > 0 and k, < 0, Imy| + Imyl 2 ky(u ~ v) = ko(y + x) = L(u = x)/2] + [ (v + y)2]
>u—v-Lu-x2]+[ (v +y)/2]=dis«B, P).

Noting that lm;! + Im,l > dp completes the proof of d(0, L(uz — x)/2] +[ (v + y)/21s) = dp. O

Because the following Lemma can be proven in the same way as Lemma 2, we omit its
proof.

Lemma 3: Suppose that region % and lattice points A, B, C, and D are defined as in
Lemma 1 and that x 2y, v 2 u, x > u, and v > y. Consider the points P’ and Q" with
coordinates (-L(x — w2, [(v + y)21) and ( x — w/2], [(v + y)2)), respectively. If =
includes n lattice points, then no 0-point is closer to P’ than the nearest of the points A, B,
C, D. Thus, the shortest distance from node 0 to node —L(x - u)/2_l +[ v+ y)/2-| s is
min(dist(A, P"), dist(B, P’), dist(C, P), dist(D, P’)). The shortest distance from node 0 to
node [ (u-x)21+[ (v + y)/2_] s is similarly related to Q’. (1

Lemma 4 below provides the worst-case distance from a point M inside the parallelogram
ABCD of Fig. 3 to the nearest corner. It does so by exhaustively considering the various
subregions in the parallelogram where M might lie, deriving the worst-case distance in
each case, and using the results of Lemma 2 in the process. Lemma 5 does the same for
the case where the center of the parallelogram is in the second quadrant, using Lemma 3
which covers this latter case.

Lemma 4: Suppose that region X and lattice points A, B, C, and D are defined as in
Lemma 1 and that x <y, v<u, x<u, and v <y (see Fig. 3). Let r, = |_(u + v)/2_|, n= l_(u -
xX+v+ y)/2_|, ro=lu+x+ y- v2), and r;=L(x + y)/2J. Further, let d; = min{max{ry, ri,
r3}, max{ry, r2, r3}}. f T includes n lattice points, then D(n, 1, 5) equals r, — 1 if r; = 1,
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and (u — x)(v + y) = 1 mod 2; otherwise, it equals d,.

Proof. As x <y and v < u, we have ro < ry and r; < r,. Let dy = max{min{dis«( A, M),
dist(B, M), dist(C, M), dist(D, M)} | M is a lattice point in £}. From ro < ry and r; < 1, we
get dy = min{max{ry, r;}, max{ro, r.}}. Referring to Fig. 3, the following inequalities are
seen to hold:

max{min{dis(A, M), dist(B, M)} | M is a lattice point in the triangle ANB} < r,
(92)
max{min{dist(C, M), dist(D, M)} | M is a lattice point in the triangle DTC} < r,
(9b)
max{min{dist(A, M), dist(D, M)} | M is a lattice point in the triangle AXD} < r;
: (9¢c)
max{min{dist(B, M), dist(C, M)} | M is a lattice point in the triangle BRC} <r;
(9d)
max{min{dist(B, M), dist(D, M)} | M is a lattice point in the rectangle XTRN} < r,

(%)
Thus dy < max{ro, rz, r3} = max{ro, r.}. Additionally, given that
max{min{dist(A, M), dist(C, M)} | M is a lattice point in the rectangle XTRN} < r
(10)
we have dy < max{ro, ri, r3} = max{r,, r3}. This leads to:
D(n, 1, 5) < dm < min{max{ro, r2}, max{r,, r3}} = d,
(11)

In the rest of our proof, we deal with three possible cases: Dn<rn @rn>rnad@B)n
= r,. Each of the three cases has two subcases.

Case 1: If r; < rp, then dy = min{max{r,, r,}, max{r, r3}} = max{r,, r3}.

Subcase 1.1: If r; < ry, then d, = r. Let P be the point with coordinates (I_(u - x)/2_l, r(v +
y)/2-’). We have v < x, given that r; < r,. From the distance formulas (7) in the proof of
Lemma 2, we have d(0, L(u - x)/2] +[ (v + y)/21 5) = min{dist(A, P), dist(B, P), dist(C, P),
dist(D, P)} = ry. Thus, D(n, 1, s) 2 r; =d;. So, D(n, 1, 5) = d, in this subcase.

Subcase 1.2: If r3 > ry, then d; = r;. Consider lattice points A, C, D in Fig. 3, plus the
point L with coordinates (—u, —v) and let the region Q correspond to the parallelogram

ACDL, excluding the edges CD and DL. As the area of the parallelogram Q is (4 — x)(—v)
— (v + y)(—u) = uy + vx, it contains n lattice points labeled 0, 1, . . ., n — 1. Let point R
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have coordinates (— L2l T y/2-|). We have dist(A, R) = Le2] + |—y/2-|, distC,R)=u—-x+
Lxr2] + v +y =[y2], dist(D, R) = x = Lx/2) + y ~[y/2], and dist(L, R) = u + /2] + v +
[y/2]. As in the proof of Lemma 2, we can show that d(0, —Lx/2 + /21 5) = min{dist(A,
R), dist(C, R), dist (D, R), dist(L, R)} = r5. Thus, D(n, 1, 5) = r; = d|, completing the
proof that D(n, 1, 5) = d, in this subcase.

Case 2: If r; > rp, then d; = min{max{ro, r»}, max{ry, r3}} = max{ry, r,}.

Subcase 2.1: If ro < ry, then d) = r,. Let Q be the point with coordinates (| (u — 121w+
)2 1. From Lemma 2, we have d(0, [ (u — x)/21+ [ (v + y)/2] 5) = min{dist(A, Q), dist(B,
Q), dist(C, Q), dist(D, Q)} = r,. Thus, D(n, 1, s) = r, = dy. So, D(n, 1, s) = d, in this
subcase.

Subcase 2.2: If ro > r,, then d; = ry. Consider lattice points A, B, D in Fig. 5, plus the
point K with coordinates (# + x, v — y) and let the region © correspond to the
parallelogram AKBD, excluding the edges BD and BK. As the area of O is uy + vx, it
contains # lattice points labeled 0, 1, . . ., n — 1. Let point S have coordinates (w/2],
[v/21). As in the proof of Lemma 2, we can show that d(0, Lu/2| + [v/2]s) = min{dist(A,
S), dist(K, S), dist (B, S), dist(D, S)} = ro. Thus, D(n, 1, 5) = ro = d,, completing the proof
that D(n, 1, 5) = d; in this subcase.

Case 3: If ry = r,, then from ro < r; and r; < ry, we get d; = min{max{ro, r,}, max{ry, r3}}

=Tr.

Subcase 3.1: If (4 - x)(v + y) = 0 mod 2, let P be the point with coordinates (L(u - x)/2],
[ v+ y)/2.|). We know that at least one of the two values u — x and v + y is even. Thus, all
four of the distances dist(A, P), dist(B, P), dist(C, P), and dist(D, P) equal or exceed r,.
From Lemma 2, we have d(0, | (u - x)/2] + r(v + y)/2—l s) = min{dist(A, P), dist(B, P),
dist(C, P), dist(D, P)} = r;. Thus, D(n, 1, s) 2 r; =d,. So, D(n, 1, s) = d, in this subcase.

Subcase 3.2: If (u — x)(v + y) = 1 mod 2, then both values u — x and v + y are odd. Because
r =ry, we have x = v, ro <rj, and r; < r;. Let P be the point with coordinates (I_(u - x)/2J,
[(v + y)21). From Lemma 2, we have D(n, 1, s) > d(0, L(u — x)12] + [v + W21 s) =
min{dist(A, P), dist(B, P), dist(C, P), dist(D, P)} = dist(D, P) = r; — 1. Also, D(n, 1, 5) <
max{ry, r3}= r,. To complete the proof in this subcase, we need to prove that D(n, 1, s) <
ri. If max{min{dist(A, P), dist(B, P), dist(C, P), dist(D, P)} | P is a lattice point in T} = r,,
there must be a lattice point, say point J with coordinates (¢, w), for which min{dist(A, D),
dist(B, 1), dist(C, 1), dist(D, J)} = r. From ro < r; and r3 < ry, it can be verified by the
inequalities (9) in the proof of Lemma 4 that J must be in the rectangle NRTX (see Fig. 3).
Given that dist(A, )) +dist(C, ) =w+t+u—-x-t+v+ y—w=2r,dist(A,J) = r,, and
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dist(C, J) 2 r;, we have dist(A, J) = dist(C,J) =t + w = r,. Thus, distB,))=u—-t+r—t-
v=u—-x+n-2t=3n-Ww+y)-2t=r +[2r - (v +y) - 2f] and disxD, D=t+x+y-—
ntt=v+y-n+2t=n-[2r-w+y)-2t. As 2r; ~ (v + y) - 2t is an odd integer, we
know that min{dist(B, J), dist(D, J)} < r,, leading to the desired result. [

Because the following Lemma can be proven in the same way as Lemma 4, we omit its
proof.

A, B, C, and D

Lemma 5: Suppose that region ¥ and lattice pomt d

Lemma 1 and that x 2y, v2u, x> u,and v>y. Le |_(u+v)/2Jr —L(x u+v+
W2l ' =L@+ x+v-y)/2], and ry = L(x + y)21. Further let di’ = min{max{ro, r\’, r3},
max{ro, ry’, r3}}. If Z includes n lattice points, then D(n, 1, s)equals r," - 1if r" = r,” and

(# = x)(v +y) = 1 mod 2; otherwise, it equals d;”. O

are d
’

The stage is now set for the derivation of our diameter formulas.

3. Deriving the Diameter Formulas

In this section, we derive two diameter formulas for the undirected double loop networks
corresponding to the two cases (1) ¢ > r and (2) g < r with b < ag + 1. These are stated in
Theorems 1 and 2, respectively.

Theorem 1: Consider the double-loop network LL(n, 1, s) with chord lengths 1 and s (2 <
s<nf2) and let n = gs + r, where r (0 < r < 5) is the remainder of dividing n by s.

1A |

(1) Ifn — L)L

~
b
Lt
-
[
M
12
N’
]
—
~~
21
+
L]

IH

—_ a
aqs, le.,q>1-— , IO

() I g>r>1,then D(n, 1, 5) = max{L(s + g — r + 1)/2] L(g + n/2).

B)Ifg>r=1, then D(n 1,5) = (s + ¢)/2 ~ 1 if s and q are both even, and [ (s + q)/2_l
otherwise.

Proof. (1) Let lattice points A, B, C’, D’ have coordinates 0, 0), (0, @), (=s, g + 1), and
(=s, 1), respectively, and region I be the parallelogram AB’C’D’ with edges B’C’ and C'D’
not included. We know that the area of " is n. Let wy = Lq/ZJ wy = |.(s +qg+ 1)/2 1, Wy = |_(s
+q- 1)/2_| and w; = l_(s + 2] Asw, > w,, by Lemma S we have D(n, 1, s) = |_(s +q-
1)/2].

(2) Let lattice points A, B’, C’, D’ have coordinates (0, 0), (r, ), (=s + r, q + 1), and (s,
1), respectively, and region I be the parallelogram AB’C’D’ with edges B’C’ and C’'D’ not
included. We know that the area of I"is n. Let wo = L(r + g)/2, wy =L(s = r + g + 1)/2], w,
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Fig. 4. Shortest paths from node 0 to all other nodes in LL(19, 1, 9). Solid and dotted lines represent skip and

ring links, respectively.

=|(s+r+g-1)2]), and ws =L(s + 1)/2]. As r> 1, we have w, > w,. This combined with
wo < wa, wi < wy, and Lemma 5 yields D(n, 1, s) = max{L(s - r + g + 1)/2, L(g + rr2]}.

(3) Let lattice points A, B”, C’, D" have coordinates (0, 0), (1, q), (-s + 1, ¢ + 1), and (-s,
1), respectively, and region I be the parallelogram AB’C’D’ with edges B'C” and C'D’ not
included. We know that the area of I' is n. Let wy = l_(l + q)/2_|, Wy =wy = l_(s + q)/2_|, and
ws=L(s + 1)/2). As w; = wy, Lemma 5 yields the desired diameter formula. []

Example 1. Computing the diameter of LL(19, 1, 9), a 19-node double-loop network with
skip distance 9: Here, we have n =19, s =9, g = 2, r = 1. Case (3) of Theorem 1 yields

D(19, 1,9) =L.(9 + 2)/2] = 5. This is confirmed by Fig. 4, where shortest paths from node
0 to all other nodes are shown. 1

| Theorem 2: Consider the double-loop network LL(n, 1, s) with chord lengths 1 and s (2 <
s < n/2) and let n = gs + r, where r (0 < r < s) is the remainder of dividing n by s.
Furthermore, assume that s = ar + b, where b (0 < b < r) is the remainder of dividing s by
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Fig. 5. Shortest paths from node 0 to all other nodes in LL(39, 1, 17). Solid and dotted lines represent skip and
ring links, respectively.

r. Define po=L(g + N2), pr=L(r—b + @@+ g+ 1)2), p=L(r + b + (a - g + 1)/2],
and p; =|_(b +aq + 1)/2J. Let e; = min{max{p,, p3}, max{po, p}}. ff g <rand b < ag+1,
then D(n, 1, 5) is p; — 1 when p; = p, and (r + b)(ag — g + 1) = 1 mod 2: otherwise, it is e.

I N NI

et lattice points A, B”, C”, D” have coordinates (0, 0), (r, q), (r— b, (a + g + 1),
and (b, aq + 1), respectively, and region ‘¥ be the parallelogram AB”C”D” which does
not include the edges B”C” and C"D”. We know that the area of ¥ is n. Given that ¢ < r
and b < aq + 1, we have po < p, and p; < p,. Thus, min{max{po, p1, ps}, max{po, P2 p3t) =
min{max{p1, p3}, max{po, p2}} = e;. Because g < r and b < ag+1, wehave b<rand g <
aq + 1. Thus, Lemma 4 applies and completes the proof. (1

Daen ~
rr

Example 2. Computing the diameter of LL(39, 1, 17), a 39-node double-loop network
with skip distance 17: We have n=39,5=17,9g=2,r=5,a=3,b=2, po= 3, p; = 6, D2
=6, p3 = 4. Because py = p,= 6 and (r + b)(ag — ¢ + 1) = 35 = 1 mod 2, Theorem 2 yields
D@39,1,17) = pr—1=5. This is confirmed by Fig. 5, where shortest paths from node
0 to all other nodes are shown. [J
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4. Conclusion

Determination of the exact diameter of double-loop networks in the form of closed-form
formulas, like many other combinatorial problems, is difficult. In this paper, we have
provided closed-form formulas for the diameter of a double-loop network for the case g >
r (Theorem 1) and for a subcase of the case ¢ < r when b < aq + 1 (Theorem 2). In the
complementary subcase of ¢ < r, when b > ag + 1, the O(log n)-time algorithm of
Zerovnik and Pisanski [13] can be used to derive the diameter, but we do not have a
closed-form formula for the diameter in this subcase. Deriving such a formula constitutes
a possible direction for further research, as is the exploration of other topological and
algorithmic properties of double-loop networks.
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