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Abstract

In this paper, we propose a new class of interconnec-
tion networks called recursive hierarchical fully-connected
(RHFC) networks for high-performance parallel processing.
The degree of a partially-linked RHFC network is equal to
that of its nucleus graph plus a fized integer, leading to the
scalability of such networks. The diameters of suitably con-
structed RHFC networks ave asymptotically opiimal within
a small constant factor with respect to their node degrees.
We then present the construction of recursive hierarchical
swapped (RHS) networks and multi-dimensional hypernets,
both of which are subclasses of RHFC networks and can
emulate o hypercube efficiently. We conclude that RHFC
networks: are highly modularized, maoke the use of fized-
degree building blocks possible for any practically realizable
system, and lead to the construction of high-performance
interconnection networks with reasonable cost.

1 Introduction

High performance, low node-degree, and simplicity of
algorithms are all important, but often conflicting, re-
quirements for interconnection networks. To overcome
the problem of unbounded node complexity in large hy-
percube networks, some constant-degree variants, such as
cube-connected cycles (CCC) [7], de Bruijn graph, and
butterfly, have been proposed and shown to have some de-
sirable properties.

In practical applications, topologies that achieve bet-
ter performance and have intermediate node degrees (e.g.,
higher than 3, but lower than log, N) may be desirable.
Many such interconnection schemes for parallel architec-
tures have been proposed in the literature [2, 3, 4, 5, 8, 9].
However, some of them maintain logarithmic node degree,
which still grows rapidly when the system size increases.
Others may have larger diameter or incur congestion in
some applications.

In this paper, we propose a wide class of interconnec-
tion networks called recursive hierarchical fully-connected
(RHFC) networks for high-performance parallel processing
with low node degree. RHFC networks have node degrees
varying from O(1) to O (log N), depending on the param-
eters chosen, and can achieve asymptotically optimal di-
ameters with respect to their node degree. We present
the constructions of RHS networks, a subclass of RHFC
networks with specific connection rules, which are shown
to emulate a hypercube with asymptotically optimal slow-
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down. We also propose a novel scalable interconnection
network, multi-dimensional hypernet, which has fixed node
degree and small diameter, and can emulate a hypercube
with small dilation.

2 Multi-level Fully-Connected (MFC)

Networks

We define a multi-level fully-connected (MFC) network
as follows. ‘An MFC network begins with N; identical
copies of a nucleus with N; nodes, where Nz < N; + 1
and the nucleus can be any connected graph or hyper-
graph. Each nucleus copy is viewed as a level-2 cluster,
and connects to each of the other level-2 clusters via at
least: one level-2 inter-cluster link. The resultant intercon-
nection network is called a 2-level MFC network. To con-
struct an l-level MFC network, we use N; identical copies
of an (I — 1)-level MFC network with Hf;i N; nodes as
level-l clusters, and connect each level-l cluster to each of
the other level-! clusters via at least one level-l inter-cluster
link, where Ny < []'Z] Ni +1. This recursive definition al-
low us to construct arbitrarily large' MFC nétworks based
on any type of nucleus. An Il-level MFC network based
on the nucleus G is denoted by MFC(l, G); in particular,
MFC(1, G) is the nucleus G.

Note that each node is allowed to have at most one link
at a certain level, which is the reason we restrict Ny to be
no more than H:;: N; 4+ 1, one plus the number of nodes
in a level-! cluster.

2.1 Topological Properties and Routing
Algorithms '

We start with a nucleus G having Ny nodes of degree
de and at each level & use Vi copies of the (¢ —1)-level
MFC petwork. Thus the size N of an MFC(I, G) network
is given by :

!
N=]]m.
i=1

We give a node in G a [log, Ni}-bit string € [0, N1 —~
1] as its node address. We also give each level-t cluster
a [log, Ni]-bit string € [0, N; — 1] as its cluster address,
where N; is the number of level-¢ clusters in 4 level-(i + 1)
cluster,

Given the address for a node in an MFC(i — 1,G)
(¢ = 2 initially), we can assign the address for the node
in MFC(i, G) by simply concatenating the cluster address



for the level-i cluster (i.e., MFC(: — 1,G)) to which the
node belongs and the address for the node within its clus-
ter.

The degree of an MEC(I, G) may vary according to dif-
ferent connection rules.: An upper bound on the degree d;
of MFC(!, G) is given by d; < dg +! — 1, according to the
definition. :

In what follows, we present a recursive routing algo-
rithm to route a packet from node z to node y in an
MFC(l, G) network.

Let Cz and Cy be level-! clusters to which nodes z
and y belong, respectively, and assume that node z knows
the address of at.least one of the nodes (within the same

" level-I cluster) that have a link connecting Cx to the level-!

" cluster Cy within the same level-(I +1) cluster (which is an
MFC(!, G) containing nodes z and y). Given the routing
algorithm for the nucleus G {denoted by MFC(1, (7)), here
is how routing is done at level 1.

o Case 1: Nodes = and y belong to the samie level-! clus-
ter: We use the routing algorithm for MFC(I — 1,G)
to route the packet since any level-l cluster is an
MFC(l - 1,G).

s Case 2: Nodes z and y belong to different level-l clus-
ters: Let nodes x and y belong to level- clusters Cz
and Cy, respectively, and let (2', ') be a level-! inter-
cluster link that connects Cz and Cy. To route a
packet from node z to node y, we use the routing al-
gorithm for MFC(l — 1, @) to route the packet from
node z to node z’, send the packet from node z' to
node y' via the level-l inter-cluster link, and then use
the routing algorithm for MFC(l—1, G) again to route
the packet from node y’ to node y.

If the routing algorithm in MFC(i, G) requires at most
Tr,mrc(i, G) time steps, and the routing algorithm in G
requires no more than Tr ¢ time steps, the recursive rout-
ing algorithm in MFC(!, G) requires time not exceeding

Tr,mrc(l,G) 2Tp mrc(l~1,G)+1
2T+ 2 ~1.

(1]

1

An upper bound on the diameter of an MFC network
is obtainable from the preceding routing algorithm (as-
suming optimal routing algorithm in the nucleus graph),
leading to the following theorem:

Theorem 2.1 The diameter of an l-level MFC network is
no more than (Do +1)2'~! — 1 where Dg is the diemeter
of the nucleus graph.

3 Recursive Hierarchical Fully-
Connected Networks

When there are multiple links connecting a pair of clus-
ters, the distribution of these links within a cluster may
affect the efficiency of MFC networks. Roughly speaking,
if they are distributed uniformly, it is easier for a node
to access other clusters, leading to smaller internode dis-
tances, lower congestion, and better performance.

In this section, we present recursive hierarchical fully-
connected (RHFC) networks, a subclass of MFC networks,

" Definition 3.1 (HFC({,G)) An [(-level MFC(,G)
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which have approximately uniformly distributed links con-
necting a pair of clusters, leading to desirable topological
and algorithmic properties. An RHFC network is char-
acterized by its nucleus graph G, its recursive depth r
(henceforth simply depth), numbers Iy, - _1, ..., 11 of hierar-
chical levels at various depths, and numbers N; ; of depth-i
level-j clusters within a depth-¢ level-{(j + 1) cluster. We
first define hierarchical fully-connected (HFC) networks,
or RHFC networks of depth 1, and then present the con-
struction of general r-deep RHFC networks. The top view
of an r-deep RHFC network is shown in Fig. 1.

depth-r
. level-| clusters
(i.e. RHFC (I -L1,,,
lr-z!"" I /G))
depth-r
level-(I,-1) clusters
(i.e. RHFC(I1-2,1,,,
Learml o

N2 - inter-cluster links

Fig. 1. Top view of an RHFC(l,,l,-1,...,11,G), where
M, H;’:‘; N,,; is the number of depth-r level-2 clusters
in a depth-r level-r — 1 cluster.

8
called an HFO(L,G) if Ni S N1+ 1, N; = O(Ny), i =
2,3,...,1, and each nucleus of the MFC network has ezactly
one link connecting it to each of the other level-i clusters
within the same level-(i + 1) cluster to which the nucleus
belongs, i = 2,3,...,1, where N; is the number of level-i
clusters within e level-(§ + 1) cluster, for i =2,3,..,l, N
is the number of nodes in the nucleus G, and the level-
(t + 1) cluster refers to the MFC(l,G) itself.

The I-tuple
Nov (N1, No, ..., Nt)
is called the characteristic vector of the HFC({, G). Given
Nov of an HFC network, there exist unique I-tuples
Acv = (a1,82,...,a;) and Beov = (b1, ba, ..., bi) satisfying
Nov = Acv Nt + Bev,
where a; = O(1) and b; = o(N1) !, i = 1,2,...,I. We call
Acv and Bov the coefficient vector and the remainder

vector of the HFC network, respectively. Clearly, a; =1
and by = 0. When N; = O(1), we have b; = 0 for all 4.

TIE f(n) = o(g(n)), limn—sco £(n)/g(n) = 0.




Definition 3.2 (RHFC(l,G))
An r-deep RHFC(ly 1,1, ..., 11, G) network is recursively
defined as an HFC(l,, RHFC(l, 1,1, —2, ... 11, G})}.

Clearly, an RHFC({-,l.~1,...,11,G) network is a p-
level MFC(p,G) based on G, where p = 5 0 i —r+
1. The level-j cluster of an HFC(i;, RHFC(li-1, k-3,
11,G)) is called a depth<i level-j cluster of the
RHFC(l-,lr-1,...,11,G) network; its level-j inter-cluster
link is called a depth-i level-j inter-cluster link of the
RHFC(l-,l._1,..., 11, G) network. A depth-i level-j cluster
(inter-cluster link) of the RHFC(,, -1, ..., 11, G) network
is called a level-(zz: I; — i+ 1+ j) cluster (inter-cluster
link) of the MFC(p, G).

We define the characteristic matrix of RHFC(l,,{,-1,
w11, G) as

Now & (Nlcvo,‘NZCvo, o Nlova)T,

where Nicvg

(NiCV’O, 01“'90): lmu: = ma'x(lj) .7 =
N st

lman—l:

1,2,..,1), and Nicv, i = 1,2,..,r, is the characteristic
vector of a depth-7 level-(l; + 1) cluster of the RHFC net-
work, which is an HFC(l;, RHFC(li—1, li-2, ..., 11,G)). We
denote element i, j of Noa as N;; and abbreviate N1,; as
N;.
We define the coefficient matrix and the remainder ma-
trix of the RHFC(l,,l,-1,....[1,G) as

Aoy € (Alove, A20v0, ., Alovo) T,

Bom ¥ (Blove, B2ovo, -, Blove),
where

Aicve = (Aicv 0,0, ...,0), Bicve = (Bicv,0,0,...,0),
N e’ Nt

lmaw—li Imaz—1¥;i

lmaz = m&X(lj, J = 1; 21 sy l"), and AiCV1 (Bl',CV), i =
1,2,...,r, are the coefficient (remainder) vectors of a depth-
i level-(I; + 1) cluster of the RHFC network, which is an
HFC(!;,RHFC(Ii-l,li_g,...,II,G)). Clearly, a1 == 1 and
bip=0,i=1,2,...,r. When Ni = O(1), we have b;,; = 0.
3.1 Network Diameter

The routing algorithm presented for MFC networks can
be applied to an l-level HFC networks directly in consider~
ably smaller time than Tr mrc(l, &) (Eq. (1)) due to the
special structure of HFC networks..

Lemma 3.1 A packet can be routed in [Trc +!~1 time
on an HFC(l,G), where Tr,g s the time required for the
packet routing algorithm on the nucleus G.

Proof: Let Tr,urc(i, G) be the time required for the rout-
ing algorithm on an HFC({,G). Since there always exists
one node z’ within the nucleus to which node z belongs
(see Case 2 of the routing algorithm for an l-level MFC
network), it requires only Tr,¢ time to send a packet from
node z to «/. Thus, the overall routing time is given by

Tr,urc(l, G) Trare(l~1,G) +Tre +1
Tpa+1-1.

@
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Note that the resultant routing time on an l-level HFC
network is much better than the upper bound on a general
I-level MFC network, which requires time Tr,mrc(l, G) =
2" Tre+1) -1

Since an r-deep RHFC network can be decomposed into
an HFC network based on an (r — 1)-deep RHFC network,
the preceding lemma can be applied to RHFC networks,
leading to the following theorem.

Theorem 3.2 A packet can be routed in (Tre +
DT, b — 1 éime on an RHFC(l lr_1, ..., 11, G), where
Tr,; i3 the time regquired for the packet routing algorithm
on a nucleus G.

Proof: Let Ta,rurc(li,li-1, .., 11, G) be the time required
for the routing algoritbm on an RHFC(l;,Li-1,...,[1,G).
From Lemma 3.1, the routing algorithm on an
RHFC(l-, lp~1, ..., I1, G) requires time at most equal to

Tr,ruFC(lr lr-1,.,11,G)
= L (Tr,parc(le-1,dr-2, 0., 1, G) + 1) — 1
= (Tre+ D[ li~1

(3
o

3.2 Asymptotically Optimal Diameter

An N-node interconnection network with degree d will
be said to have asymptotically optimal diameter if its di-
ameter is asymptotically within a constant factor from the
gniversal lower bound:Djy(d, N) = logyiV/log,d. Hy-
percubes, meshes, folded hypercubes, HCN, and WK-
recursive- networks, do not have asymptotically optimal
diametefs; while star, pancake, and compléte graphs are
examples that achieve asymptotically optimal diamneter.

In this subsection, we show that a suitably constructed
RHFC network can have optimal diameter within a con-
stant factor. '

Theorem 3.3 The diameter of an N-node RHFC net-
work based on the nucleus G is asympiotically optimal if
the number of inter-cluster links per node is at most equal
to a polynomial in dg (i.e., log (Y.7_, ki) = O(logdg) for
RHFC(ly,lp—1,...,11,G)) and the diameter -of the nucleus
G 1is asymptotically optimal, where dg ts the degree of the
nucleus G.

Proof: Let N; be the number of nodes in a nucleus G,
and D¢ be its diameter. Then we have

_ log N
Do =6 (logdc) ’
The diameter of the RHFC network is no more than

log Vi 7T,
( log dg H lt)

i=1

D, =(Ds+)[[u-1=0

#==1

from Eq. (3).



The degree d, of the RHFC network is given by

dr =dg + Z(" - 1)
EESY R

from its definition. Since the number of inter-cluster links
is at most equal to a polynomial in dg, that is,

log (Z(zf - 1)) = O(log da),

we can easily show that V; cannot be a constant indepen-
dent of N and that

log 4. = O(log de).

Therefore, we bave

The size of the RHFC network can be derived as
i !
Hj,.=1 (a'fvjr vt (’13,]3 Hji:t (02,50°
[T (o N = ) - bs,ja) ) :
Therefore, we have

log, N = B(log N'),

N

= b2 5,

where

r

ni'zi-,n Ly
a;,j)
with [T,

7=ry1lv = 1. Note that N is obtained by remov-
ing the elements b;, ; in the remainder matrix for simplicity.
Therefore, we have

-l ]

i=]

.
log, N' > (log, Ny + logy Gmin) H l,

i=1

where @min = min(ai;, ¢ =:1,2,..,r, §j = 2,3,...,kL).
Since the a;; are positive constants for j < I; and N}
is not a constant independent of N it is clear that

log, N = ©(log N') = (lf’% N H") '

Vi i=1
Thus, the diameter of the RHFC ﬂet{x'}brk is

Jog N)‘ s

_e‘,\lngdr

which is asymptotically optinial fi om the universal lower
bound D.(d.,N).

Note that it is, in fact, impossible for the number of
inter-cluster links per node to be a constant in an RHFC
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network that uses a nucleus of constant size, since some of
the elements in the coefficient matrix will approach zero
(i.e., iy o0 ai; = 0 for some 1, §), which conflicts with
the definition of an RHFC network. It can be shown that
the diameter of an RHFC network based on a general-
ized hypercube [1] can be asymptotically optimal within
a factor of 1 with respect to its node degree by choosing
appropriate parameters.

4 Parallel Algorithms on RHFC Net-

works

In this section, we present efficient algorithms for semi-
group computation and on-line fault- tolerant routmg on
RHFC networks..

4.1 Semlgroup Computatnon

Let ® be an associative binary operator, ie., (uQv)®

= u® (v @w) for all w,v,w € 5. The operations
4, X,A,V, mar, and min are all examples of associative
bmary operators. A semigroup is a pair (§,®), where S
is a set of elements on which the associative. binary oper-
ator ® is defined. Given a list of values vy, v2,...,Un €
8, semigroup computation is the problem of computing
OV ... 8 Vn.

We first present the algorithm on an HFC network then
generalize it to RHFC networks.

Assume that each node in HFC(, G) holds at most one
value v; for computation. Nodes without values v; are
given padding valaes (e.g., oo for finding the minimum).
Semigroup computation on the HFC network can be per-
formed in three phases: ;

¢ Phase 1; Perform senugroup ‘computation on each
level-Z cl cluster, separately.

» Phase 2: Each node vexchanges its value via its level-
! inter~cluster link with its level-l neighbor. A node
that doesn’t’ recewe a value in this step assumes a
padding:value.

e Phase 3! Peérform semigroup computation on each nu-
cleus, separately.

This algorithm gives the following lemma.
Lemina 4.1 Semigfoup computation can be performed in

Ts.g+1~1 time on an HFC(l, G), where Ts,c is the time
required on the nucleus G.

Proof: Assume that the algoiithm' for an HFC(3, G) is
available and requires Ts(i, @) time, ¢ = 1,2, ...,I—1. Then
semigroup computation on an HFC(/, G) requires time

CTs(l,G) =Ts(l~1,G)+Tsg +1=1Tsc +1—1. (4)

[}

Since an r-deep RHFC(lr, br -1, ..., 11, G) can be viewed
as an Il,-level HFC(l,, RHS{l,-1,lr-2,...,11,G)), the pre-
ceding algorithm can be: a.pplied to:RHFC networks, lead-
ing to the following them;em

Theorem 4.2 Sengroup computa.twn can be performed
in (Ts,c+1) H,{__ Li—1 time on an RHFC(l,,1r~1, ..., 11,G)
where Ts g s the time required to perform semigroup com-
putation on the nucleus G.



Proof: Let Ts(li,li-1,..,11,G) be the time required
for semigroup computation on an REFC(l;, l;-1, ..., 1, G).
Then semigroup computation on an RHFC({l:, lr-1,...,
{1, G) requires time

Ts(lr lr-1,., 11, G)
P(Tslr-t,lrmz, 1, Gy + 1) = 1
(Tsc+1) Hirzl li-1.

= (5)

o

4.2 An On-Line Fault-Tolerant Routing
Algorithm

On-line fault-tolerant routing can be easily imple-
mented on an RHFC network in the presence of a small
number of faulty nodes and links, given an on-line fault-
tolerant routing algorithm on the nucleus G.

For an HFC network to route elegantly and efficiently,
we assume that a node = knows the address of the node
(within the same nucleus) that has the link connecting
the nucleus containing z to each of the other level-i clus-
ters within the same level-(i + 1) cluster, 1 = 2,3,...,[.
Given the on-line fault-tolerant routing algorithm for the
pucleus G (i.e., HFC(1, G)), here is how fault-tolerant rout-
ing, FTR(l, z,y), is done at level 1.

e Case 1: Nodes x and y belong to the same level-{ clus-
ter: We use FTR(l - 1,z,y), the fault-tolerant rout-
ing algorithm for HFC(! — 1,G), to route the packet

" since any level-l cluster is an HFC(I —1,G).

o Case 2: Nodes z and y belong to different level-! clus-
ters: Let nodes z and y belong to level-l clusters Cz
and Cy, respectively, and let (z',y’) be the level-l
inter-cluster link that connects Cz and Cy, where
node z and z’ are in the same nucleus.

— Phase 1: To route a packet from node z to node
y, we use FTR( ~ 1,x,2'), the fault-tolerant
routing algorithm for HFC(I — 1,G), to route
the packet from node z to node z’.

— Phase 2:

+ Case (i): Node z’ and link (z'y’) are nor-
mal: We send the packet from node z’
to node y' via the level-l inter-cluster link
(=',¢), and then use FTR({ — 1,¢/,4)
the routing algorithm for HFC(I ~ 1, G), to
route the packet from node 3’ to node y.

* Case (ii): Either node 2’ or link (z'y’) fails:

© We divert the packet to a node z" that has
a normal level-l inter-cluster link, send the
packet via its level-l inter-cluster link (de-
noted by (z,4")), then perform the fault-
tolerant routing FTR(l,y",y) again.

Note that node z” in Case (ii) can be picked either
randomly, according to some rule, or perhaps by prob-
ing the vicinity of ' for a node that has a healthy level-l
inter-cluster link. As a result, no a-priori knowledge of
the locations of normal level-l links is required. For this
algorithm to work on-line without the knowledge of the
locations of faulty nodes/links, the number of faults must
be reasonably small.
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Since an r-deep RHFC network can be decomposed into
an HFC network based on an (r — 1)-deep RHFC network.
the preceding routing algorithm can be applied to RHFC
networks without modification. It can be easily established
that the penalty paid when a packet encounters a faulty
depth-i level-j inter-cluster link (or the corresponding node
failure) is at most equal to Tr(li-1,li-2, ..., {1, G)+1, where
Ta(li-1,li-2,....,11,G), the time required for routing in a
depth-(i — 1) level-(li-1 + 1) cluster, is usually negligible,
especially when 1 is smaller than r.

5 Fully-Linked RHFC Networks

A subclass of RHFC networks, fully-linked RHFC
networks, can perform many algorithms efficiently, and
achieves asymptotically optimal diameter within a small
constant. We define this class formally as follows.

Definition 5.1 (Fully-Linked RHFC(I, G))
An RHFC(le b1, 11, G) network is said to be fully-
linked if and only if

aij=1forj=23,..1

where ai; is element i, j of the coefficient matriz Acm of
the RHFC network.

Fully-linked RHFC networks form a high-performance
subclass of RHFC networks. It is also easier to develop
elegant algorithms on such RHFC networks.

5.1 Recursive Hierarchical Swapped Net-
works

Although packet routing and semigroup computation
can be performed on general RHFC networks efficiently,
some algorithms such as ascend/descend algorithms can-
not be performed unless appropriate connectivity is spec-
ified. In this section, we intraduce recursive hierarchical
swapped (RHS) networks, a subclass of swapped networks
[10] and fully-linked RHEFC networks with a;; = 1 and
proper connection rule, and show that they can emulate a
hypercube of the same size efficiently. We first present the
construction of a hierarchical swapped network [11}, or an
RHS network of depth 1, and then generalize the definition
to general RHS networks.

An I-level hierarchical swapped network, HSN(l, G}, be-
gins with a nucleus G, which forms an HSN(1,G). To
build an I-level hierarchical swapped network, HSN(/, G),
we use M identical copies of HSN(l — 1,G). Each copy
of HSN(! — 1,G) is viewed as a level-! cluster, and is
given a k-bit string X; as its address; each node is al-
ready given a k(J — 1)-bit string X{_; = X)_1. as its ad-
dress within the level-l cluster to which it belongs, where
Xi;j = Xy Xi1-- -Xj+1Xj. Node Xl’—-l within the level~
! cluster X; has a kl-bit string X{ = X/ X[ ; = Xi as
its address within the HSN(Z,G?. Each of the M level-l
clusters has M*~* nodes and M'~2 links connecting it to
each of the other M — 1 level-l clusters, via which node
X1 X _1:2X1 connects to node X1 X;_1.2X;. This connec-
tivity and the hierarchical construction are the reasons we
call such networks “hyerarchical swapped networks.” The
recursive definition allows us to construct arbitrary-level
HSNs based on any type of nucleus, as a subclass of HFC



networks. The construction of an HSN(3,@.) is shown is
Fig. 2. :

depth-1
)Fvel-Z clustei

}

2.

Fig.
HSN(3,Q2), with node addresses expressed as radix-4
numbers.

An r-deep RHS(I,,l,_1, ..., 11, G) is recursively defined
as HSN(‘,-, RHS(I,-gl, l,-_z, sy h,G)).
‘5.2 'Mixed Radix Number Systems

In this subsection, we introduce a mixed radix number
system, which is useful in presenting the time complexity
of emulation algorithms and their operation steps.

Let iu be an integer, ia € [0,[][_& — 1]. It can be
seen that i, has a unique (r +1)-tuple (a,,ar—1, ..., a1, a0),
a; € [0,l; — 1}, such that .

r LR
’a=za;’i “ lia.

Jr=0 ja=0

The (’l‘ + 1)'tuple (aﬁar—la =y al’ao)(lr,lr_l,...,ll,[o) is the
mized radiz representation of 1., and (I,,l.-1,...,11,1ls) is
the base of the mixed radix number system.
5.3 Emulating a Hypercube with Single-
Dimension Communication
In this subsection, we assume single-port communica-
tion, with all the nodes only capable of using links of the
same dimension at the same time. This assumption is used
in some SIMD architectures and their algorithms, in order
to reduce the cost of implementation, and is called single-
dimension communication in this paper. Such a model is
also suitable for a parallel system using wormhole routing,
and is assumed by some researchers (e.g., [6]), especially
when one input can only drive one output.

Theorem 5.1 The action of all the dimenston-i, links in
a pk-cube can bé emulated on an N-node RHS(l,,l, -1,
b, Qr), tn 2|8yl + 1 time steps, where p = []_ L,
ta = (@ry@ro1ys, 84,80}t 1,y 0 01,k)s [Sal 15 the number
of elements in Ss' = {ila; # 0,i = 1,2,..,7} (i.e., the num-
ber of non-zero digits ini’ the mized-radiz representation of
o), and Qi denotes e k-cube.

The complete structure of the 64-node -

" Proof: Emulation is done by exchanging data via depth-i

168

level-(a; + 1) links for all nonzero a; with the ordering of
fyi=rr-1,..,21012,..,r —1,r, where the depth-0
level-j link denotes a nucleus dimension-j link. No conges-
tion will occur. 0O

Clearly, any pk-cube algorithm with single-dimension
communication can be emulated on an N-node RHS based
on a k-cube with 2r 41 slowdown from Theorem 5.1, since
[Sa| € r. We refer to this algorithm as £Q8 algorithm.
It can be shown that no interconnection network can em-
ulate a pk-cube with dilation asymptotically smaller than
an RHS(L-, -1, ...y 11, Qx) with logr = O(loglmaz) and
|S| = ©(r), by a nonconstant factor, if they use nodes of
degree bounded by a polynomial in k (i.e. O(k°), where ¢
is a constant). In the above statement, |5} is the number
of elements in the set § = {iflogli = Ologlmnaz), t =
1,2,..,7} (e, Yoo logli = O(rloglmaz)), p = []I_, s
and lper = maz(k, b, i =1,2,...,7).

5.4 Emulating a Hypercube with All-Port
Communication o

In this subsection, we assume all-port communication,
with all the nodes capable of using links of all dimensions
at the same time.

i=1

Theorem 5.2 Any pk-cube algorithm with all-port com-
munication can be emulated on an RHS(l:,1.—1, ..., 11, Q)
with 2r — 1 + maxi=12,...r (Zﬁi,p) slowdown, where p =

H:=1. L.

Proof: In Subsection 5.3, we presented an algorithm emu-
lating a hypercube on RHS networks based on a small hy-
percube with single-dimension communication. The emu-
lation algorithm with all-port communication can be done
simply by performing single-dimension emulation for all di-
mensions concurrently and with proper scheduling. Since
2{:& packets will pass a depth-i level-j inter-cluster link;
p packets will pass a nucleus link, and the dilation for
emulating the pk-cube is 2r — 1 (Theorem 5.1), the time
required is given by 2r —~ 1 +maz (¥,p), i = 1,2,..,r.
a

By properly choosing the nucleus size and, the num-
ber of recursive and hierarchical levels, we can emulate a
hypercube with all-port communication on RHS networks
with optimal slowdown. .

6 Partially-Linked RHFC Networks

In this section, we define partially-linked RHFC net-
works, a subclass of RHFC networks, which can be con-
structed with fixed-degree modules, leading to the scala-
bility and low cost.

An e-partially-linked RHFC(l,,{,_1,...,l;,G) network
has coefficient matrix

-
E ai; Le<r,
i=1

where a;,;"is element 4,j of the coefficient matrix Acas
of the RHFC network. In view of the above condition, we



must assign the inter-cluster links such that at most e such
ezternal links are required per node. As a consequence, the
degree of a partially-linked RHFC network is equal to that
of its nucleus graph plus the fixed integer e.

For example, we can let a1; = 2/3,a2; = 2/3,a3,; =
1/2, leading to only 2 external links per node. As another
example, let I; = and
0<g«l, (6)
fori=1,2,..,r,j=1,2,.,1 Then only one external link
is reqmred for each node in the resultant partlally-lmked
RHFC network. If the recurslve depth'is:a constant, a;;
will: ot ‘approach zero and the diameter of such’ networks
is guaranteed to be asymptotically optimal if a nucleus
that has non-constant nodes and asymptotlcauy optimal
diameter is used (Theorem 3.3).°

An r-deep hypernet {called (k; r) cubelet-based hyper-

net in [5]) is a special case of RHFC(2,2,...,2,Q%), whose
\._v.._z

ai; & (1-g)g' ™",

coefficient matrix has elements a;; = 2‘ Ifwelet{ > 2
and a;,; € (0,1)], we obtain a generalization of hypernets,
called {-dimensional hypernet. In this paper, we refer to
the original hypernet {5] as a 2-dimensional hypernet.
6.1 Multi-Dimensional Hypernet

In this subsection, we present the construction of a
multi-dimensional hypercube-based hypernet, which can
emulate ‘& hypercube with considerably smaller dilation
and congestion than a 2-dimensional hypernet having sim-
ilar node degree.

For simplicity, we construct a special case of r-deep I-
dimensional hypernets based on a k-cube nucleus, with
a;; =27, 1=12,.,r1 j=2,38,.,l, as its coefficient
matrix, and call it (r,/,Qr) net.

An r-deep I-dimensional hypernet based on a k-cube, or:

(r,1,Qx) net, begins with a nucleus k-cube, which forms
a (1,1,Qx) net. A node in the (r,I,Q%) net has k nu-
cleus links, and [ — 1 external links. We give each of
the ! — 1 external links of a node an integer ID ranging
from 2 to I.” A link with ID i, 1 = 2,3,..,1, is called
a level-i link or dimension-i link. To build a (1,2,Q%)
net, we use M2 = a1,2N1,; = 2%~! identical copies of
the nucleus Qx, each having Ni,1 = 2% nodes. Each nu-
cleus is viewed as a depth-1 leve1—2 cluster, and is given
a (k — 1)-bit string X, as its address; we also give each
node a k-bit string X; as its address within the nucleus
to which it belongs. Node X, within nucleus X, has a
(2k — 1)-bit string X7 = X2X1 as its address within the
(1,2,Qk) net. Each of the Ny3.= 2% nucleus copies
has a link with ID equal to 2 connecting it to each of
the other Ny2 — 1 = 27! — 1 nuclei, via which node
X = X3X: connects to node z4.2X>0 if 1 = 0, where
T, 52 denotes the bits of the address of node X at posi-
tions ji,j1 —1,..., J2, jo 2 1. These links are called depth-1
level-2 ezxternal lmks or depth—I dimension-2 external links.
Clearly, Ni,i — Ny g +1=2¥"141 dxmensxon-2 external
links remain unassigned in each nucleus (2% of them be-
long to nodes whose least significant bit in the address is
equal to 1).
Tobmlda (1,1,Qx) net, we also use Ny = a1,Ny,) =
! jdentical copies of a (1 {—1, Q) net, which is viewed
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as a depth-1 level-l cluster. Each copy of the (1,1 —1, Q)
net is given a (k —1)-bit string X; as its address, each node
is already given an (lk— 1~k +2)-bit string X;_, = X;—1a
as its address within the level-I cluster to which it belongs,
where X;,; = X;Xi—1 ¢+ X;41X;. Node X]_, within the
level-! cluster X; has a bit string X] = X; X{_, = Xy of
length k; = Ik — [ + 1 as its address within the (1,1, Q%)
net. Each of the H'_2 Ni,j = 25=1DC-1 pyclei bas a link
connecting it to each of the other Ny — 1 = a3,(M,1 -
1 = 2F=1 _ 1 level-l clusters via which node X;X;-1.2X
connects to node Tx.2Xi—1:0X;0 if 1 = 0. These links are
called depth-1 level-! external links or depth-1 dzmenszon-l

external links. Clearly, there are N1,; — Ny +1=2F"141
unassigned dimension-! external links in a nucleus (2%~}
of them belong to nodes whose least significant bit in the
address is equal to 1).

To build an (r,2,Q:) net, we use Ny2 = ar2N,1 =
2Fr~1-7" jdentical copies of a (r,1,Q%) net, which is the
same as an (r — 1,1, Q) net and is viewed as a depth-r
level-2 cluster. Each copy of the (r,1,Q:) net is given a
(kr~1 — 7)-bit string X, as its address, each node is al-
ready given a kr—,-bit string X, = X]_,; = Xr-14:1
as its address within the (r — 1,1,@%) net to which it be-
longs, where Xi, j::1,0 = Xip 53 Xiggr-1- Xip1, X1 =
X1, and Xi,s = Xi. ach of the nuclei has a
link connecting it to each of the other depth-r level-
2 clusters via which node X;Xi_1.2X: counects to node

ZTry_yiri1 Xra Xpew1 -1+ 0&;-_];, if the least significant
r—1
r bits of the address of the node z,.; = 011---1, These
7—1

links are called ‘depth-r level-2 external links or depth-r
dimension-2 external links. Clearly, there is a depth-r
dimension-2 external link for every 2" nodes. The con-
struction of an (r,1,Qx) net follows similar rules, except
that dimension-! external links are used. This recursive
definition allow us to build an I-dimensional hypernet of
arbitrary depth.

6.2 Emulating a Hypercube on Multi-
Dimensional Hypernets
Multi-dimensional hypernets based on a k-cube can em-
ulate a hypercube of the same size efficiently using an al-
gorithm similar to that for a 2-dimensional hypernet {5].
For example, to route a packet to the dimension-n
neighbor of the hypercube (which is the worst case) on
an 7-deep 2-dimensional hypernet, we have to first send
the packet to the node that has a depth«r dimension-2

external link (i.e. whose address ends with 011.--1), re-
N e

r—1
quiring 7 steps in the worst case. Then we have to send
it via depth-(r — 1), depth-(r — 2),...,depth-1 dimension-2
external links, requiring ©(r) steps, and we finally send it
to the destination.

To route a packet to the hypercube dimension-n neigh-
bor on an r-deep l-dimensional hypernet, we use an algo-
rithm that is essentially the same, except that the packet
is sent via dimension-/ external links. .

The dilation for both networks is ©(r). However, for
networks of similar size and node degree, an [-dimensional
hypernet can have considerably smaller depth. For exam-



ple, for a network with N nodes of degree ©(vIog V), a
2-dimensional hypernet requires ©(log log N) depth, since
the degree of a 2-dimensional hypernet based on a hyper-
cube will be reduced to approximately half when increasing
the depth by one. As a result, the dilation is ©(loglog N)
for a 2-dimensional hypernet to emulate a hypercube of the
same size. On the other hand, an [-dimensional hypernet
can have depth as small as'1 and node degree as small as
©(vTog N) when ! = O(/Tog N). As a result, the dilation
can be a constant for an I-dimensional hypernet of degree
©(Iog' N) to emulate a hypercube of the same size.
Moreover, congestion for a multi-dimensional hypernet
to emulate a hypercube can also be much lower than that
for a 2-dimensional hypernet. For example, the siowdown
is at least O(log N) for an N-node 2-dimensional hyper-
net to emulate a hypercube with all-port communication,

advantages of the 2-dimensional hypernet [5], such as scal-
ability, small diameter, and low node degree, and can em-
ulate a hypercube with considerably smaller dilation and
congestion.

One can also buxld RHFC networks based on other nu-
cleus graphs or hypergraphs such as a 2-D mesh, folded-
hypercube, and high-bandwidth buslet. With various nu-
cleus graphs and flexible connectivity, RHFC networks are

.. adaptable to the.needs of a wide range of applications.

even its depth is 1 and the node degree is ©(log N); while -

only a slowndown of @(y/Iog N) is required on a 1-deep I-
dimensional hypernet with N-nodes of degree ©(y/log N)
when | = ©(y/log N) (using an algorithm similar to that
for an HSN [11)).

An advantage of 2-dimensional hypernet over the pre-
vious l-diemnsional hypernet example is that the traffic

on each of its links is approximately balanced (when the -
sources and destinations are uniformly distributed over the -

network nodes). To overcome the unbalanced traffic prob-
lem, we can choose a;; =~ (1 — g)g°~*, g = 1/I, and the
resultant traffic on the l-dimensional hypernet with the
new coefficient matrix Acaq will also be approximately
balanced.

7 Scaling Up RHFC Networks

To scale up an r-deep RHFC network with smaller step
size, we can use Niop £ M; ; identical copies of the RHFC
network, where M, ; is the number of nodes in a depth-i
level-j cluster of the original RHFC network. Each copy
is given a k; j-bit string as its address, which forms the
most significant k;,; bits of the addresses of the nodes
within that copy, where ki,; = [log, Niop|. The links con-
necting these copies can be obtained in a way similar to
the construction of an HFC network. It can be seen that
most algorithms presented in this paper can be applied to
such networks with minor modifications. For example, to
perform the semigroup computation on such networks, we
simply perform the semigroup computation on each copy
in parallel, exchange data via the new links, and then per-
form the semigroup computation on each depth-i level-j
cluster in parallel. Analysis of the properties and perfor-
mance of such networks is straightforward and is omitted.

8 Conclusion .
" In this paper, we have proposed a new class of intercon-

. {101Y

" > nection networks, RHFC: networks, for modular construc- -

... tion' of massively parallel computers. We have shown that -
. [11] Yeh, C.-H. and B. Parbami, “erra.rchma,l swapped

suitably constructed RHFC networks have asymptotically

optimal diameter. We introduced RHS rietworks which can -

- emulate a hypercube of the same size with asymptotically
optunal slowdown with respect to their node degrees, as-
suming either sifigle-port or all-port communication. We
have also proposed multi-dimensional hypernets, a special
case of partially-linked RHFC networks, that inherit many
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