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Absfracf-A digital  formant  is  a  resonant  network  based  on  the 
dynamics of a  second-order  linear  difference  equation. A serial  chain 
of digital  formants  can  approximate  the  vocal  tract  during  vowel pro- 
duction. In this  paper,  the  digital  formant  is  defined  and i ts  proper- 
ties  discussed,  using  z-transform  notation.  The  results of detailed 
frequency  response  computations of both  digital and  conventional 
analog  formant  synthesizers  are  then  presented.  These  results  indi- 
cate that  the digital  system  without  higher pole correction is a  closer 
approximation than  the  analog  system  with  higher  pole  correction. 
Finally,  a set of measurements  on  the  signal  and  noise  properties of 
the  digital  system is described.  Synthetic  vowels  generated  for  dif- 
ferent  signal-to-noise  ratios  help  specify  the  required  register  lengths 
for the  digital  realization. A comparison  between  theory  and  experi- 
ment  is  presented. 

at  the 1967 Conference on  Speech Communication and Processing, 
Manuscript  received August 31, 1967. This  paper  was  presented 

Cambridge, Mass. 

Technology,  Cambridge, Mass. (Operated  with  support from the 
B.  Gold is with  Lincoln  Laboratory,  Massachusetts  Institute of 

U. S. Air Force.) 
~ L. R. Rabine; was at  the  Massachusetts  Institute of Technology, 
Cambridge,  Mass.  He is now with  Bell  Telephone  Laboratories, Inc., 
Murray  Hill, N. J. 

I. INTRODUCTION 
HE DEVELOPMENT, in recent  years, of the  
theory of digital  filter~,[~l-[31  has  made  it  feasible 
to  simulate a wide  variety of speech  communica- 

tion  devices on a general  purpose  computer. The for- 
mant-type  speech  synthesizer  is one of the  devices  that 
has  been  profitably  sin~ulated.[J]-[’j] I n  this  paper,  digital 
filter  theory is used to  study  the  behavior of a  serial  for- 
mant  synthesizer  for  generating  vowel-like sounds; 
this  type of synthesizer,  using  analog  components, 
has  been used in the OVEril series  and in SPASS.[81 In  
the  digital  simulation of such  devices,  two new problems 
arise,  namely, the sampling  and  quantizing  problems. 
As is well known, a sampled-data  filter is periodic in the 
frequency  domain.  Thus, a digital  formant  network 
obtained  via  simulation  has a different  frequency  re- 
sponse  than  does  an  analog  formant  network. As we 
shall see, the  periodic  frequency  response of a digital 
fornlant  network is actually a desirable  feature,  since i t  
eliminates  the need  for the  higher  pole  correction  used 
with  analog  synthesizers. The  quantization  present in the 
finite-register  length  computer  creates  two  distur- 
bances:  inaccuracies in the  formant  positions,[gl ; ~ n d  a 
wide-band  ‘Lnoise”  caused  by  roundoff  errors  during  the 
execution of the  linear , [ I r ]  These effects 
place a lower l i m i t  on the length of the  registers  used 
and,  therefore,  must  be  seriously  considered in simu- 
lating  digital  filters on computers  with  small register 
lengths.  Also,  the  component  advances in digital  hard- 
ware  raise the possibility tha t  a special  purpose  all- 
digital  speech  synthesizer or  fornlant vocoder could 
become  a  feasible  device;  clearly, the knowledge of rcg- 
ister  length  constraints  becomes  major design informa- 
tion. 

A widely held misconception is tllat dil?iculties arising 
in  computer  sitnulation of speech systems  can I)e 
avoided  by  increasing  the  sampling  rate.  l.Towever, 
quantization  problems will generally  increase  in  severity 
as  the  sampling  rate is raised.  Thus, a sound theoretical 
understanding of the  effects of both  sanlpling  and quan- 
tizing  are  necessary  for  the  design of digital  speech 
synthesis  programs  or  special  purpose  digital  hardware 
synthesizers. 

In  Section I1 of this  paper,  the  digital  formant  net- 
work will be defined and  discussed, and it will be shown 
that  although  linear  analysis,  using  z-transform  tech- 
niques, is applicable,  in  practice  it  is  necessary t o  COII- 

sider  carefully  the  lengths of registers  used  in  the  com- 
putation.  In  Section I1 I ,  the  frequency  response  char- 
acteristics of digital  formant  synthesizers will be studied 
theoretically  and  experimentally,  utilizing  only  the 
linear model. T h e  primary  purpose  is  to  find the extent  
to  which a digital  synthesizer  can  approximate  the 
vocal  tract  transfer  function. I n  Section IV, we will 
derive  the  characteristics of the higher  pole  correction 
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network  used  in  analog  synthesizers. In Section V, the 
quantization  problem will be  reintroduced,  and  theoreti- 
cal  and  experimental  methods will be applied  to  study 
the  register-length  problem. 

11. DIGITAL FORXANTS 

The  transfer  function H(z)  of a digital  formant Can 
be  defined,  using  z-transform  terminology, as 

(1 - 2r cos bT 4- y 2 ) z 2  

22 - (2r cos bT)z + r2 
H ( z )  = (1) 

where T is the  sampling  interval,  and r and b are  defined 
by reference to   the  z-plane  pole-zero  diagram  shown in 
Fig. 1. The  frequency response of the  digital  formant is 
obtained  by  setting . z = e j w T  in (1). Except  for  the  fre- 
quency  dependent  scale  factor in the  numerator,  this 
frequency  response  can  be  obtained  geometrically  fronl 
Fig. 1 by  measuring  the  distance  from  any  point on the 
unit circle (at an angle UT) to  the poles, the  magnitude 
of H ( e j a T )  being  inversely  proportional to  the  product of 
the  distances  from  that  point  to  the poles (and  directly 
proportional  to  the  product of the  distances  to  the zeros 
which, in our  case,  are  unity).  The  significance of r is 
illuminated  by  letting r=e-=T, so that  the  parameter a 
may  be  interpreted as a half-bandwidth  radian  fre- 
quency. I t  can be seen  from (1) that H(1)  =1, which 
shows that  the  digital  formant  has  the  correct  dc gain 
independent of the  resonant  frequency.  This is accom- 
plished  by making  the  numerator  dependent on the 
pole  positions so as always  to  satisfy  this  condition on 
the  dc  gain. 

The  transfer  function H ( z )  can be approximately 
realized in a variety of ways;  “approximately”  because 
no  indication of t he  quantization  problem  appears in 
(1). Thus,  the  recursive relation 

y(7zT) = 2r cos (bT)y(?zT - T) - r2v(nT - 2T) 

+ (1 - 2~ COS bT 4- r’) ~ ( 7 z T )  (2) 

permits  the  variables x ( n T )  and y ( n T )  to  take on any 
real  values,  whereas in the  computer  these  variables  are 
always  contained in finite-length  registers. A conve- 
nient  way of representing  the  computation of (2) is via 
the  “network” of Fig. 2.  The  triangular  boxes  represent 
unit  delays of time T ,  the  rectangular  boxes  are  the 
fixed multipliers,  i.e.,  the coefficients of the  recursive 
equation (2) ,  and  the  sum is represented  by the circle 
with  the  plus  sign.  These  elements  are  the  basic ones 
for  any  general  system of linear  recursions. Computa- 
tionally,  Fig. 2 [and ( l ) ]  is interpreted as follows. A new 
sample x(nT) appears  at  the  input.  This  signal is mul- 
tiplied  by  the  fixed  number (1+r2-2r cos b T ) ;  the 
multiplications  indicated  by  the  other  two  rectangular 
boxes are  carried  out,  all  the  indicated  products 
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Fig. 1. Z-plane  pole-zero  diagram for digital formant. 
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Fig. 2. First  digital  network  representation of a  single formant. 

summed,  and  the  appropriate  register  transfers  per- 
formed,  to  fulfill (2). The  system is now ready  for a new 
input  sample. 

Because of the  linearity of the  network of (l), it is 
possible to  exchange  the  sequence of operations.  For 
example,  Fig. 3 represents a different  sequence of com- 
putations  leading  to  the  same  transfer  function H ( z )  of 
(1). Although  the  difference  between  the  networks of 
Figs. 2 and 3 may seem  trivial, if one remembers  that  
the  actual  computations  involve  finite  register  lengths, 
these  differences may  be  significant. T o  illustrate,  as- 
sume  that  1 +r2-2r cos bT= 0.01 for a given system. 
If an  input  sample x (nT)  of magnitude 20 appeared,   the  
product is less than  unity  and would  be truncated  to 
zero. Thus,   the  system of Fig. 2 exhibits a noticeable 
nonlinear  effect if the  input  signal level is too small. 
I-Iowever, the  same  signal  applied  through  the  network 
of Fig. 3 might  not  exhibit  such an  effect,  because t h e  
first  portion of the  network  (up  to  the final multiplier) 
could have  boosted  the  signal level to well above 100. 
Thus,  although  the  “linear”  behavior of the  networks of 
Figs. 2 and 3 is  identical,  the  actual  behavior of t he   two  
could  be  markedly  different. 

In  the  remainder of this  section  and  until  Section V, 
the  finite  register  length  problem mill  be ignored,  and 
the  frequency  response  characteristic of the  digital  



1 
2r COS bT 

Fig. 3. Second  digital  network  representation of a single formant. 
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Fig. 4. Frequency  response of a digital  formant. 

formant  network will be studied,  using (1) and  Fig. 1 as  
the  starting  point. H ( z )  actually  has  an  infinity of poles, 
occurring at  the  frequencies ( * b / 2 n i n f r )  H z  with 

sponse of the  digital  formant is periodic,  with  a  period 
equal  to  the  sampling  rateJ,.  This  well-known  property 
of sampled  system is made explicit  for the  digital  for- 
mant  by  writing \ W(e.+T) 1 ,  that  is, the  magnitude  of 
H ( z )  a t   any  angle UT on the  unit  circle 

1 N ( e i w T )  j 

[I++- 2 r c o s ( w - b ) T ] q 1 + r ~ - 2 ~ c o s ( w + b ) T ] ~  

n=O, 1, 2 ,  . . . and fT= 1 / T .  Thus,  the  frequency  re- 

1 -2r cos b T f r 2  - - -.  ( 3 )  

1 H(e jar )  1 is clearly  periodic in the  angle U T  with  period 
2n, and  this is equivalent  to  periodicity  in  frequency 
with  period f,.. Also,  the  resonant  effect is clearly seen 
via  the  left  side of the  denominator,  which  becomes 
small  when (w-b)T=nn,  n= 0, 1, + 2 ,  . . . yielding 
the  type of result  illustrated in Fig. 4. 

111. DIGITAL FORMANT SYXTHESIZER 

I t  is, of course, the  repetitive  nature of the  frequency 
response of the digital  formant  network  which  suggests 
t ha t  it  resembles  more  closely  (than does the  analog 
formant  network)  the  repetitive  frequency  response  of 
the  vocal  tract.  The  upper  sketch of Fig. 5 indicates  the 
frequency  response of an  acoustic  tube  excited a t  one 
end  and  open  at  the  other  end. (We have  assumed  equal 
bandwidths  for all  resonances.)  This  simple  model  is a 
representation of an  ideal  neutral  vowel. If the  sampling 

time T is  chosen  to be 0.5 millisecond,  then  a  digital 
f o r m a n t   a t  500 Hz has repetitive  modes a t   t h e   s a m e  
frequencies as the  tube,  while  a  single  analog fo rman t  at 
500 Hz does  not at all resemble  the  tube.  The remaini11g 
sketches of Fig. 5 show  the  comparison  between  five 
formant  analog  and  digital ( T =  seconds)  approxi- 
mations  to  the  tube.  I t  is clear that,  for  this  case,  the 
digital  system is a good  approximation  to  the  tube, 
whereas  the  analog  system  needs  a  correction  network 
to compensate  for  the high-frequenc>i falloff character- 
istics of cascaded  analog  formants. 

A mathematical  representation of the  distributed 
parameter  vocal  tract  system is quite  difficult, and \ve 
are  not  able  (nor  have n e  really  tried)  to  create a purely 
theoretical  argument  for  choosing  either  the  digital 01’ 

analog  formant  as  the  better  approximation to the 
actual  vocal  tract. I-Tonever, it can be argued t h a t  an 
analog  formant  synthesizer,  consisting of a  large  nurnlxr 
of resonators  and  higher  pole  correction,  can  scrve as a 
criterion  for  the  correct  frequency  response charac:teris- 
tic of the  vocal  tract. T h e  standard w e  have  adopted 
uses 10 cascade  resonators  and  an  improved  higher  pole 
c0rrection.l If we denote  this  standard  configuratioI1  as 
system 1, then  the  remainder of this  section  presents 
and  discusses  experimenta.1  comparisons bet\veen system 
1 and  the  following  three  systenls: 

System 2:  10-pole  digit31  formant  synthesizer  using 

System 3: 5-pole  digital  formant  synthesizer  using 

Syste,m 4:  5-pole  analog  formant  synthesizer  with  inl- 

20-kHz sampling; 

10-kHz sampling; 

proved  higher  pole  correction. 

As indicated  previously, w e  have  guessed t h a t  a 
digital  synthesizer  does not need any  higher  pole correc- 
tion,  and no  such netLvork is used i n  systems 2 and 3. 

Fig. 6 represents  system 3. The resonant  frequencies 
of PI ,  Fz, and F3 are varinl,le  and  correspond  to  the  three 
lowest  resonances in the voiced  speech  spectrum,  thus 
determining,  for  example, the particular  vowel sound 
generated.   The fixed  resonators F5 and F 4 ,  with  reso- 
nances   a t  4500 and 3500 Hz, help  provide t,he correct 
overall  spectrum  shape. S(z) represents a formant-like 
digital  network  which  has been recommended as a 
suitable  source  filter,  and  the  transfer  function 1-2-1 

approximates  the  mouth-to-transducer  radiation.  Each 
of the  digital  formant  networks is of the  form  given i n  
Fig. 2 or 3 ,  and  has a transfer  function of the  form of 
(1). Thus,  the  transfer  function of the  entire  synthesizer 
is given by  

1 

F ( 2 )  = S(z)(1 - 2-1) n Fi(2) 
<=I 

1 The  nature of this  improvement is examined in Section IV. 
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Fig.  6. 5-pole, 10-kHz  digital formant synthesizer. 
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For  the 10-pole  digital 20-kHz system 2, five addi- 
tional  digital  formants at 5500,  6500,  7500, 8500, and 
9500 Hz  have been inserted  into  the  chain of Fig. 6. 

Each  digital  formant is specified  by values of the 
parameters Y ;  and bi. To change these parameters  into 
frequencies, we  use the relations ri= e--?=oiT and b ;  = 27~f;, 
so that f; is the resonant frequency and g i  is the half- 
bandvidth expressed as a Herzian frequency.  Table I 
shows the values off1,fZl and f3 chosen[l21 for each of the 
10 vowel sounds  analyzed by us. Table I1 shows the 
bandn-idths of all the  formants;  the  same fixed values 
were  used throughout for both  digital  and  analog cases. 
The values and extrapolations for higher formants  are 
based on data by Dunn.[131 

The analog formant synthesizers are  the classical 
vowel synthesizer  treated by  Fant.Il4l They consist  of 5 
(for Case 4) or 10 (for  Case 1) analog  resonators of the 
form 

SlSl* 

(s - J 1 ) b  - s1*) H ( s )  = > (5 )  

an additional  analog  resonator of center  frequency 200 
Hz and bandu-idth 250 Hz for the source  filter,  a differ- 
entiator,  and  a higher pole correction (to be described 
in greater  detail in Section IV). 

Given the 10 von-els listed in Table I ,  a total of 40 
frequency response curves had to be experimentally 
determined  in  order  to  compare  systems 1, 2, 3, and 4. 
The  measurement  for systems 2 and 3 was made by 
passing a unit sine  wave  through  a  simulation of the 

TABLE I 
FORMANT  FREQUENCIES FOR THE VOWELS 

IY 1 
I I 
E E 
AE 
UH A 
A a 

a: 

OW 
U 
00 
ER 

- I -  
(beet) 
(bit) 
(bet) 
(bat) 
(but) 
(hot) 
(bought) 
(foot) 
(boot) 
(bird) 

270 2790 
390 1990 
530 1840 
660 1720 
520 1190 
730 1090 
570 840 
440 1020 
300 870 
490 1350 

TABLE I1 
AKALOG AND DIGITAL  RESONATOR  BANDWIDTHS 

AND CENTER FREQUENCIES 

__- 

E, 

30 10 
2550 
7180 
2110 
2390 
2140 
2410 
2210 
2 210 
1690 

. ~.._I_ 

Resonator  center Frequency ~ Bandwidth 
(Hz) (Hz) 

Fi 

6500 F7 

5500 FB 
4500 F5 
3500 Fa 

Variable F3 
Variable Fz 
Variable 

100 
60 

Fb I 7500 1 1250 

j 9500 1 4750 
SSOO 2125 

FI o 

Variable 
Variable 
Variable 

20 
16 
12  
9 
G 
4 
2 

system,  and  determining  the  peak  output  amplitude 
after  the  transient response of the  system  had  sulxided. 
The frequency of the  input was varied  from  50 Hz to 
5000 Hz in 50-Hz  steps.  The  data  for  systems 1 and  4 
were theoretically  calculated  from the  synthesizer sys- 
tem  functions.  Figs. 7 through 10 show  results  for  the 
four  systems for  each of three vowels.2 I n  these  figures, 
the  logarithmic  magnitude (in dB) is plotted  on a linear 
frequency  scale. The  contribution of the  source  filters is 
omitted from these  curves  and will be treated sepa- 
rately. No generality is lost  thereby,  since, as we shall 
see, it is a  simple matter  to  combine  the  effects of the 
source  and  resonators. 

Figs. 11, 1 2 ,  and 13 show plots of t he  differences 
between spectral  magnitudes of systems 2 ,  3, and  4 
relative to  the reference system 1 for  each of the  vowels 
IY, A, and 00. (Table I shows the IPA symbols  and  our 
typewritten  equivalents for the vowels.) We  see  that   the 
10-pole 20-kHz  digital  system 2 is extremely  close to  the 
reference  system.  This  strongly  indicates t ha t  higher 
poles of the vocal tract  transfer  function  are  automati- 
cally and more  or  less  correctly taken  into  account by 
the  repetitive  nature of the  digital  formant  frequency 

Research Lab. of Electronics report, 
All  40 curves will be made  available  in a forthcoming M.I.T. 
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Fig. 7. System 1: 10-pole analog. (a) IY; (b) A ;  ( c )  00. Fig. 8. System 2: 10-pole digital, 20-kHz sampling 

frequency. (a) IY; (b) A; (c) 00. 

response. W e  also  note that  this  intrinsic  correction  is 
actually  more  accurate  than  the  quite  good  analog 
higher  pole  correction  used  in  our  computations.  These 
results  are  generally  valid  for all the  vowels. 

Comparison of system 3 with  the  standard is of par- 
ticular  interest,  since a 5-pole  10-kHz  system  appears 
to  be a  good  compromise  design  for a possible  hardware 
version of a digital  formant  synthesizer.  The  peak  dif- 
fer'hce  between  the  magnitude  curves  for  systems 1 and  
3 is listed  in  Table  I11  for  each  vowel. On the  basis of 
this  result,  it  seems  reasonable  to  expect  that a 5-pole 
10-kHz digital vowel synthesizer  should  produce  syn- 
thetic  vowels of quality  comparable  to  a  well-designed 
5-pole  analog  vowel  synthesizer  which  includes  a  higher 
pole  correction.  Informal  listening  reinforces  this  expec- 
tation. 

Inclusion of the  source  filters  for  both  analog  and 
digital  cases  slightly  increases  the  deviations of systems 
2 ,  3, and 4 from the  reference.  Fig. 14 shows the  fre- 
quency  responses of the  two  digital  and one  analog 
source  filters.  (We  have  included  the  differentiator as 
par t  of the  source  filter.)  The  plots  are normaIized so 
the  peaks  are  set  to 0 d B  for  all  three  cases.  With  the 
inclusion of source  filters,  the  frequency  response of 
system 2 is within 1 dB of the reference  for all vowels 
and all frequencies. The peak  difference,  in  the  worst 
case  (for IY),  between  system 3 and  the  reference is 
7.48 dB at 5 kHz. For  all  vowels  except IY and  for  all 
frequencies below 4 kHz, the  difference  never  exceeds 
3.5 d B .   I t  is  possible tha t  a digital  source  filter  with 
slightly  decreased  bandwidth  could  bring  the two results 
closer together. 
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Fig. 9.  System 3: S-po!e digital, 10-kHz sampling 
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Fig. 11. Spectrum magnitude differences for I Y  
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where it has  been  assumed that  k analog  formant  net- 
works  are used to approximate  the  vocal  tract,  and w1 is 
the  radian Irecluency of the first  formant. In  order t o  
rnake Q ~ ( w )  into a network  with fixed rather  than  vari- 
able parameters, w1 is usually  chosen to  be an  average, 
say  2.rrXjOO radjs.  

Our observations were that   the  5-  and  10-pole  analog 
synthesizers, both using the Qk(w) specified by ( 6 ) ,  nev- 
ertheless  resulted i n  substantially  differing  frequency 
response  curves.  In  fact,  results  which  appeared  qualita- 
tively  wrong  were  obtained.  These  results  were  that  the 
5-pole system was attenuated  more  with  increasing 

IY 

1 .A4 dB 0 [I' 
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1.56   dB u n 
2 .OO dB A E 
2.18  dB E 
2 . 1 2  dB I 
3.69 dB 

00 
1.25   dB 
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E I< 0 .65   dB 

u 

0 i 2 3 4 5 
FREOUENCY i i l 2 i - c  

Fig. 14. Source filter characteristics. 

frequency  than was the 10-pole system.  Given  that  the 
10-pole  system  utilized  rather wide bandwidths  for 
formants 6, 7, 8, 9,  and 10, and  that  the  higher pole 
corrcction  presumaldy  corrects  for  higher  modes  having 
nurroLver lmldn~id ths ,  we would  presume  that  the  re- 
verse  result should have  been  observed. We conjec- 
tured  that  the  approximations  leading  to (6) were too 
gross,  and  herewith  present a son1em;hat more refined 
fornlula  for  approximating  the  higher  modes of the 
vocal  tract  for  an  analog  formant  synthesizer. 

We  begin \vit,h the  same assun1ptions used 1.11' Fant  i n  
his  original  derivation:  that  the  vocal  tract filter  during 
vowels  can be represented in the  frequency  domain  by 
the  infinite  product 

=h W n 2  

. K  
n-1 [ ( d  - d ) 2  + ( 2 L T n W ) 2 ] ' / z  

n=/c+l [ ( w 2  - ,?)e + ( 2 c 7 n W ) 2 ] 1 / 2  

W112 - 

= J ' k ( j ~ ) Q k ( j ~ ) .  (7) 

cn and wT1 are  the  damping  term  and  resonant  frequency 
expressed  in  radians  per  second,  and P,(jw) represents 
those k formants  which  are  explicitly  constructed in the 
synthesizer.  Thus, Qa(jw) appears as the product from 
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Fig. 15. First-order  higher pole correction. 
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Fig. 16. Second-order  improvement in higher  pole  correction. 

k f l  t o  infinity of those  formants which are  not  built 
into  the  synthesizer. T o  approximate I Qkbu) I , Fant  
first  assumes that  un is small  enough  to  be  set  to zero for 
all n. This  yields 

w 1 I Qk&> I = c 
n==k+l u2 (8) I'-y.,.J 

and,  taking  the  logarithm of both  sides, 

Fant then  expands  the  logarithm as a power in 
(1/wn)2 series,  and  uses  only  the  first  two  terms, which 
leads t o  (6). Our  extension  includes  an  extra  term in this 
series, so that  

If we now take  the modes to  be that  of a straight pipe 
of length I, the  values of wn are  periodic  and  are 
wn = ( 2 %  - l)wL = (2% - 1) (xc/21), where c is the velocity 
of sound.  Making  use of the  identities 

-=k T2 1 7 4  1 
and - = 5 

8 n-1 (2% - 1 ) 2  96 n=l (212 - 114 > 

we arrive at the  result, 

3s IEEE  TRANSACTIO 

The first term in (1 1) is the usual  higher  pole  correction. 
Fig. 15 shows  plots of the first  term of (11) [or (6)] for 
the  two cases k = 5  and k = 10. I t  is evident  that  both 
5 -  and 10-pole  systems need this  standard  higher pole 
correction,  Fig. 16 shows  plots of the  second  term in 
(11) , namely,  the expression  exp [$ ( w / w ~ ) ~ & ] .  We see 
that  if a 10-pole  synthesizer is used,  this  extra refine- 
ment is insignificant;  but if 5 poles are  used, a reason- 
ably  significant  correction is added. I t  should  be  noted 
that ,   a t  frequencies  above  about 4 kHz,  the  cross modes 
of the vocal tract  are of significance, thus  diminishing 
the significance of this  additional  correction  factor. 

V. QUAXTIZATION EFFECTS I N  DIGITAL 
FORM.4NT SYNTHESIZERS 

The  finite  length of the registers  containing  the  signals 
flowing through  the  networks of Figs. 2 and 3 influences 
the  results in several  ways.  First,  the coefficients of the 
difference ( 2 )  cannot, in general,  be  specified exactly, 
so that  the  true  pole positions may be in error.  This is a 
fixed error  and  easily  computed  by  comparing  the quan-  
tized  and  nonquantized coefficient values.  Second,  the 
signals are  perturbed  by  quantization  during  each 
iteration of the  computation. If signal  level  changes 
from  one  iteration to  the  next  are  large  relative  to an 
individual  quantum  step,  then i t  seems  reasonable  to 
hypothesizer21 ~ I l O ]  ~[111~[151 that  signal quantization he- 
haves  like  additive noise, that  all such  sources of noise 
are  uncorrelated,  and  that each sample of this noise is 
uncorrelated  with  past  and  future  samples.  Such  an 
hypothesis  greatly simplifies the  formulation of the 
digital  network  quantization  problem  and  makes  it 
easier to  interpret experimental  results, but  clearly  some 
indication  must  first be had  that  valid  predictions can 
be  made on the basis of such  a  simple  hypothesis. The  
first  portion of this section  is, therefore,  devoted  to a 
study of the  validity of the simple  additive  noise  model; 
the second  portion discusses  some of the  results  ob- 
tained,  these  results being illuminated  by  reference  to 
the model. 

Fig. 1 7  is a modified  version of Fig. 3, wherein  three 
noises el ,  e2, and e3 are  added,  corresponding  to  the 
roundoff or  truncation errors  implicit in each of the 
three  multiplications.  We  assume  that  each  noise  sample 
produced at every recursion is uncorrelated  with  all 
other noise samples  produced  by the  same noise  gen- 
erator  during  other  recursions,  and  that el(nT),  e2(nT),  
and e3(nT) are  mutually  uncorrelated  even  for  the  same 
i t e r a t i ~ n . ~   T h u s ,  all that  need  be known  statistically 
are  the one-dimensional  probability  distributions  asso- 

3 Such an assumption is surely  wrong, if, for  example, any two 
coefficients in the recursive  equation  were  exactly  equal, so that our 
hypothesis will not  include such  special  cases. 
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Fig. 1 7 .  Noise  model formant network. 
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Fig. 18. I'rohnhility density functions of noise. 

ciated \\:it11 cach o f  the  three  random varia1,les. Again,  a 
re:wmnlJe  ;Issumption is t l ~ ; ~ t  ~ 1 ,  c?, and e3 are  uniformly 
distri1)uted  over t~ clun11tizntion interval  and for fixed 
point  arithnletic, indeperldel1l of signal  level. We also 
specify  that  quantization  levels  arc  uniforrnly  spaced 
(linear  quantization of the  signals).  Whether  or  not  the 
pro1)al)ilit.y  distrilmtions  depend on the  sign of the  signal 
is dcternlined 1)y thc  precise  manner in which  quantiza- 
tion is effected. Let 11s exanline  this  point more closely. 

1x1 a digital  computation,  the  product of two  numbers 
can  occupy :L register of twice  the  length of each of the 
nunllxrs. For- example, the product of the  two  5-bit 
positive  I)inary  nuln1m-s 0,1011 and  0.1110  yields  the 
10-bit  product 00.1001  11010. To store  the  result  in a 
5-bit  register  requires  that  the  five  lower  bits  be  re- 
moved, and this  may be accomplished  via  truncation, 
wherein the low-level  bits  (after a I-bit  left  shift  to 
restore  the  original  decind  poillt  placement)  are  simply 
removed,  yielding  0.1001.  Alternatively,  the  result  may 
be rounded  off  to  the  nearest  quantization  level,  yield- 

ing, in this  example,  the  product 0.1010. Now, this 
latter  operation  results in the  uniform  probability  den- 
sity  shown  in  Fig. I8(a), while (b) holds for truncation 
of  a  positive  signal,  and  (c)  holds  for  truncation of a 
negative  signal.  Thus,  truncation  introduces a quasi- 
periodic  component of the  resultant noise. If a  sign 
dependent  truncation were  performed  which  could  lead 
to  the  result of either  Fig. 18(b) or  (c)  regardless of 
signal  sign,  then  only a dc  component would  be  induced 
in the noise  spectrum.  The  importance of raising  these 
seemingly  trivial  points  lies in the  fact   that  different 
hardware  configurations  on  different  computer  pro- 
grams  would be required,  depending on how the  extra 
bits  were  chopped off, and  the  programmer  or designer 
ought   to  be cognizant of the effects on the  resultant 
noise of these  different  realizations. 

Returning now to  the noise  model of Fig. 1 7 ,  let us 
consider  the  noise  generated at the  output of the  digital 
filter  caused  by,  say, el(nT). The  variance of this noise 
at any  time nT created  by a noise  sample a t  m = 0 is 
given  by cr2h2(nT), where uz is the  variance of el(nT) and 
h(nT) is the  network  unit  pulse  response.  Similarly,  the 
variance  created by a noise  sample at m =1 is 
u2h2(nT- T ) .  Proceeding in this  way, one can  construct 
the  formula for the  output  variance  due  to el(nT) to be4 

n 
o;El(?tT) = u2 h2(rnT). 

m-0 

The  variance u2 of el(nT) can be obtained by inspec- 
tion of Fig. 18 and is Eo2/12, where Eo is the  magnitude 
of a single  quantization  step. To olltain  the  total  vari- 
ance  due  to all the noise sources in Fig. 17, we need  only 
add  the  contributions  due  to  each noise  source;  this 
yields 

T o  obtain  the  total  variance  due  to all the noise  sources 
in  a  more  complex  network,  such as the  three cascadec 
digital  formant  networks  shown in Fig. 19, we again add 
the  variances  due  to  each  source,  using  that  unit pulse 
response which  describes  the  passage of that  particular 
source  through  the  system. For example, el(nT) in Fig. 
19 passes  through all three  digital  networks,  whereas 
e,(nT) passes  through  only  the  final  one;  thus,  the h(nT) 
used to  compute ud12 is different  than  the h(nT) used to 
compute c ~ d 7 ~ .  

In a digital  system  where  all poles are  within  the  unit 
circle, the  summation (12) converges to a finite  value, 
so that ,  if we let the  upper  limit n of (12) become infi- 



Fig. 19. Noise  sources in a cascade of three  formants. -a- noise 

A V(2) 

Fig. 20. Noise measurement on digital formant  synthesizer. 

nite, lve have  an expression  for the  “steady-state”  vari- 
ance  of  the  system. Physically, one would expect this 
“steady-state”  to be reached  in a time which is about 
the  same  as  the  transient response time of the  system. 
For  this  case, evaluation of (6) for specific networks is 
algebraically less  cumbersome and,  indeed, crude ap- 
proximations can be made, which increase  physical 
insight  into  the noise  effects  and may perhaps help sug- 
gest improvements in  configurations. Before  further 
elaboration of these statements,  let us first describe an 
experimental method of measuring the noise in an  arbi- 
trary  system,  and  then show  some results  comparing 
theory  with experiment which tend to  verify  our noise 
model. 

The digital  transier function V ( z )  in Fig. 20 represents 
the complete 5-pole 10-kHz formant  synthesizer  de- 
scribed  previously, including source and  radiation  trans- 
fer  functions. A is  an attenuator such that  the  output is 
a small  fraction of the  input, and x (nT)  is a periodic 
train of pulses with a  duration of one sampling  interval. 
Since the  amount of quantization noise  is not  a function 
of the  input signal level, points b and c of Fig. 20 contain 
approximately equal noise levels. Attenuating  the  signal 
from b to d should not change the  signal-to-noise  ratio 
a t  these points; therefore the noise at  point c is appre- 
ciably  larger than  the noise a t  point d ,  although  the 
signal levels are equal. Thus,  subtracting  the  two  signals 
should give a reasonable  measure of the  noise, especially 
if there is significant noise present. 

In order to  compare theory  and experiment,  the noise 
variance from V(z)  should be measured using  the  setup 
Of Fig. 20, and  this  result should be compared  with that 
obtained by application of (12) to the  same  system.  This 

was done  for  the 10 vowels listed in Table I ;G thc precise 
cascading of the  components of V ( z )  is sho\vn i n  Pig, 6;‘ 
the  comparisons of the  variances  expressed :I$ o c 5 t . d  
numbers are  shown in Table IV. Although  the agree- 
ment is not  perfect, i t  is clearly close enough  to CIICOLIT- 

age use of our  simple noise model. 
We now can  return to the problem of crudell. iLpprosi- 

mating  the noise generated  by a single digi td  form:~.~lt .  
Using the result[’Ol 

m . P  

where H ( z )  and h(nT) are a transform  pair  and the i n t  C- 

gral is around  the  unit  circle,  computation of (t 2 )  is 
easily performed using the  calculus of residues i f  U ( z )  is 
a  digital formant  network.  The  approximate  result 
obtained  when the poles are close to  the  unit  rirclc is 
Eo2/12e, where E =  1 - r .  Since the gain at resonrmce of a 
digital  formant  network is also  inversely  proportional to 
E ,  it follows that  a network will amplify  rhe noise propor- 
tionally  to  its  resonant  gain.  From  this, i t  follows tha t  
the noise generated  by  the  digital  formant  netcvork c x n  
be altered by  rearrangement of the  order of the  chain. 
For  example,  since F5 has a higher  resonance gain than 
?I, it should  appear  earlier in the  chain,  since,  therel)y, 
all the noise generated by the  system  following F6 does 
not pass through F6 and is not  amplified  as  much. 

of 3500 samples of the noise. Measurements showed the  noise had 
The variance  was  measured by averaging the sum of the squares 

zero mean. 
The wrong value of the  damping  term  for  the  source  lilter was 

inadvertantly used  in this  experiment (60 Hz instead of 290 H z ) ,  
but this should have no effect on the  general  validity of this  compari- 
son between theory and fact. 
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TABLE IV 
COiME'Al<I~Ofi BwrTvEES THEORY AND EXPERIMENT 

FOR h E D I C T I N G  NOISE 1 r COS bT 

1 
E 
A E u I-I 
A 
OR' u 
00 
ER 

hleasured Soise Determined  Value 
Theoretically ii: 

702 664 I 735 547 
125 574 114 717 
101 110 ~ 104 036 
57 674 52 241 
51 414 
51 050 
50 700 
53 460 
41 044 
27 574 

52 241 
55  346 
52 763 
52 242 
42  123 
1 7  465 

1 
I 

Fig. 21. One  way of realizing a digital  formant on TX-2. 

'I r COS bT 

l + r Z - Z r  COS b T  
4 

L 
1;ig. 22. Alternate  method of realizing a digital formant on TX-2. 

We  see  that  quantization  considerations  using a sim- 
ple  noise  model  help us decide how the  synthesizer is to 
be arranged,  and in what  order  the  formant  networks 
should be arranged  to  keep  the  noise  low.  Other  consid- 
erations  also  enter  into  such  decisions.  For  example, it 
has  been  conjectured  that  the  system is less  sensitive to 
transient  disturbances  following  formant  frequency 
changes if the  higher  formant  networks  precede  the 
lower ones. Intuitively,  this  argument  resembles  the 
noise argument  and  leads  to  the  same  or  similar  arrange- 
ment.  Another  consideration  isdynamic  range;  the  prob- 
lems  arising  here  are  equivalent  to  those  arising in ana- 
log systems  wherein  the  formants  are  arranged so that  
the  signal  becomes  neither  too  large  nor  too  small. The  
comparisons of Figs. 2 and 3 allude  to  this  problem. 

A further  benefit  may  be  derived  by  closer  examina- 
tion of the  precise  way  that  the  computation  for a single 
digital  formant is carried  out.  Often,  the way the  com- 
putation is performed  depends on the  computer;  in  what 
follows, we will illustrate  by an example  using a TX-2 
computer  program. TX-2 is a fixed-point  computer  with 
an automatic  left  shift  after  multiplication, so that  if the 
decimal  points  directly follow the high  level  bit (as in 
the  example  earlier in this  section),  then  the  product 
mill automatically  have  the  same  decimal  point  position. 
This  makes  it  convenient  to  treat  all  numbers as decimal 
fractions. IHowever, the coefficient 2r cos(bT)  in (2) is 

usually  greater  than  unity,  and  the  program  must  take 
this  into  account. TKO ways of doing  this  are  illustrated 
in  Figs. 2 1  and 22 .  Multiplications  by  powers of two  are, 
of  course,  only  shifts, so that  the  above  restriction of 
treating  numbers as decimal  fractions  does  not  apply. 
We  intuitively feel that  the  configuration of Fig. 21 
leads  to  better  signal-to-noise  ratio,  since  the roundoff 
or  truncation  caused by the  multiplications  in  either 
case  are  the  same,  but  the  signal  levels in Fig. 21  are 
maintained  higher.  Experimental  results  indicate  that 
the noise  variance of the  formant  network  using  Fig. 21 
is approximately  double  that  obtained  using  Fig. 22. 

Finally,  we  present  experimental  results  which  make 
it possible to specify  the  required  register  lengths  needed 
for  each of the  data  carrying  registers in each of the  net- 
works.  This is accomplished as follows. A given vowel 
is generated  by  setting,formants 1 , 2 ,  and 3 to  one of the 
rows of values in Table I ;  the digital  synthesizer if 
excited  by a periodic  pulse  train  corresponding  to thc 
pitch  (for most experiments the pitch was set  to 125 Hz) 
and  the  magnitude of this  excitation is systematicall) 
reduced  until  the effects of quantization  are  audible 
Also, the  signal-to-noise  ratio  (defined as the  ratio  of the 
rms of the  output signal to  the  rms  value of the  noise) if 
measured.  During  the  execution of the  program, peak 
magnitudes  are recorded  for  each  register in the  system. 
From  this  information,  it is possible to  construct a table 



SIGNAL TO NOISE RATIO 
MEASURED  HERE 

Fig. 23.  540321 sequence of digital formants. 

for  any given configuration,  listing the  number of bits 
needed for each register.  Referring to Figs. 2 and 3 ,  we 
see that only two registers per  digital  formant need be 
listed;  for example, in Fig. 2 ,  the  input  and  output of the 
numerator rn~l t ipl ier .~ 

For  convenience, we express  each digital  formant 
H ( z )  as  the  ratio N ( z ) / D ( z ) .  The chain drawn in Fig. 23 
shovvs the sequence of operations in one particular  run. 
Yote  that we have  omitted the  numerator  factors Ng, 
N4 ,  and No. These  are fixed multipliers, and  should  not 
be included since they  introduce  extraneous  and  unnec- 
essary noise. 

Table V shows the required  register length associated 
with  each  member of the  chain.  The  particular  ordering 
of the chain was chosen to  try to  pass as little noise as 
possible through  the high-gain formants;  hence Fs and 
F4 were put at the beginning. The  signal-to-noise  ratio, 
defined as  the rms signal divided  by the  rms noise, is 
listed in the last column of Table V, in  bits.  Thus, for 
example, 8 bits  corresponds to  a  ratio of 256, while S$ 
bits is 4 5 1 2 .  Listeners  agreed that  this configuration 
corresponded most closely with  the  threshold of audible 
noise. Speaking  rather loosely,  if we allow a reasonable 
tolerance  for problems such as transients  caused  by 
formant  changes, it would seem that a computer with 
an 18-bit  register  length would satisfy  fidelity  require- 
ments on a digital formant  synthesizer. 

We should  keep in mind that  the  numbers  obtained 
hold for a 5-pole 10-kHz system. If the  number of poles 
is increased, the  situation worsens. More  noise is gener- 
ated, and the problem of maintaining  fairly  uniform 
dynamic  range becomes more difficult. If the  sampling 
rate is increased, the  situation also worsens,  since,  then, 
the poIes come closer to  the  unit circle, so tha t   the  gain 
of t h e  system increases. Again, this means  that uni- 
formly  distributing register  lengths  becomes more diffi- 
cult,  although  the effect on the signal-to-noise ratio  is 
not clear. 
BY contrast with the configuration of Fig, 23, where 

gains were judiciously adjusted, Fig. 24 and  Table VI 
show the  result o f , a  rather  arbitrary  arrangement  of  for- 
mants. Notice that, although the register lengths need 

the Same length as the register containing y ( n ~ ) .  
The registers containing y(nT-T)  and y(Q-2T)  will be of 

IY 
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AE 
E 

UH 
A ow 
00 
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10 12 13 11 12 14 13 14 13 8 4 .5  
10 12 13 11 12 13 12 12 12 8 4 
10 12 13 11 12 12 12 12 12 9 4 . 5  

I 10 12  13 11 11  12 11  11 11 0 4 
io i 2  i j  11 11 12 11 10 11 8 5 
10 12 13 11 11 12 11 10 11 Y 4.5 
10 12 13 11 11 12 11 9 12 0 4 

10 12 13 11  11 12 11 9 12 7 4 
10  12 13 11  11 12 11  10  11 7 4 

1 10 12 13 11 11 11 11 10 12 8 -1 
- -  - - 

all vowels 
Maximum over 

10 12 13 11 12 14 13 14 13 (1 
-____I_ ".. - -  

to  be  larger in this  case,  comparable  signal-to-noisc  ratio 
results.  Thus, we see that  some  care in the  orderiIlg of 
the elements  results in a more  efficient system, and ~ll i ly  

make  the difference  between a successful and I I O I I S ~ ~ C -  

cessful  run on  an 18-bit  computer. 
For each digital  resonator,  there  are  three noise 

sources,  corresponding  to  the  three  multipliers. M'c 
discussed  earlier a method of reducing  the nu1nl)cr of 
multipliers  by  one,  for the fixed resonators, by removing 
the  numerator  multiplier.  However,  this  method  cannot 
be used for the  variable  formants  because the numerator 
contains  terms  which  depend  on the  frequency of the 
resonator. A method  for  reducing  the  numlxx of multi- 
pliers to two per  formant for both  variable and fixed 
formants has been suggested by C. M .  Coker.ti  Fig. 25 
shows  this  method of realizing a digital formtult. Iliffcr- 
ences of the  input  signal  and  delayed  versions of the 
output signal are  the  multiplier  inputs,  thereby  elimi- 
nating  the  output  multiplier. 

One would expect  the noise variance at the  output. of 
the  formant  network of Fig. 25 to  be  about  two-thirds 
the noise variance of Fig. 3. This is not  the case, holy- 
ever. The noise variance  at  the  output  node of Fig. 25 
is identical to  the noise variance a t   the   ou tput  of the  
summer of Fig. 3 since, in both  cases, the  comparalAe 
noises go through  identical  loops.  However,  the noise of 
Fig. 3 is then  multiplied  by  the  numerator  coefiicient 
which,  for  frequencies less than 1667 Hz, is  less than 1 
in  magnitude.  Hence,  the noise of Fig. 3 can  be less than 
the noise of Fig. 25 by an appreciable  amount. 

The  formant  network of Fig. 2 5  was used  in  Fig. 23 
to  replace formants 1, 2,  and 3 (the low-gain formants), 
and  signal-to-noise  ratios were measured  and  compared 
with  those using the  network of Fig. 3. The  results  are 
presented in Table VII. Column I shows  the  signal-to- 
noise ratio (in bits)  using the  network of Fig. 25, and 
column I1 shows  signal-to-noise  ratios  for the  network 

8 Private  communication. 
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Fig. 24. 543210 sequence of digital formants. 

TABLE VI 
REGISTER LENGTHS FOR 543210 SYNTHESIZER  CONFIGURATION 

Vowel 

I 
IY 

E 
AE 
UH 
A ow 
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over all 
NIaximum 

vowels 

Node 

12 14 15 15 16 16 17  15 10 12 5 
12 14 15 14 15 15 15 14 10 12 5 
12 14 15 14 15 14 15 14 10 12 5 
12 1 4  15 14 15 14 14 13 11 12 5 
12 14 15 14 15  14 13 12 9 12 25 
12 14 15 14 15 14 13 12 10  l.? 
12 14 15 14 15 13 ii ii 9 ii i _ _  

12 14  15 14 15 13 11 12 
7 12 4+ 

12 14 15 14 1.5 13 12 12 8 12 4+ 

12 14  15 13 13 13 1 2  13 9 12 

12 14  15 15 16  16 17 15 10 13 

- 

W 

Fig. 25. Digital formant with  two  multipliers. 

TABLE VI11 
TABLE VI1 NOISE  VARI.4NCE I N  BITS AS A FUNCTION O F  INPUT 

COMPARISON BETWEEN TWO FORM.4NT I\;ETWORI<S LEVEL FOR SYNTHESIZER OF FIG. 23  

Vowel I 
S N R  (bits) 

I1 
S N R  (bits) 

Input 

(hits) I 
Vowel 

E AE UH A OW U 00 ER 

IY 
I 
E 
A E  
UH 
A ow 
U 
00 
ER 

2 

1 
3 

- 
9 

10 
2 2 3 3 2 4 5 3 1 3  

11 
1 3 2 3 2 3 3 2 1 3  
2 2 2 3 3 5 3 3 2 2  

12 2 3 4 4 4 6 6 3 3 4  
13 2 3 4 3 4 5 4 3 2 4  
15 1 2 2 2 3 4 3 2 2 4  
16 
17 

2 3 3 3 4 5 5 3 3 3  
2 2 2 4 4 5 4 2 2 4  

18 2 2 2 3 3 5 4 4 2 3  
19 2 4 3 4 3 6 4 4 4 4  

of Fig. 3. T h e  signal-to-noise  ratios  are  from 4 bit  to 3 
bits  lower  using the  network of Fig. 25. Even  for  the 
high-gain  formants (F4 and F6), the  network  of  Fig. 25 
provides no advantages  over  the  network of Fig. 3. This 
is because we do  not  have  to  use  the  high-gain  numera- 
tor  multiplier  for  these fixed formants.  Therefore,  the 
internal  noise  generated  by  both  networks is identical. 
However,  the  network of Fig. 25 automatically  includes 
the  high-gain  multiplier;  therefore,  the  noise a t   t h e  
input  to  the  network (as well as the  signal) will  be  ampli- 
fied. This is an undesirable  feature  when  trying to keep 
register  lengths  uniform. 

Experimental  study of the noise  generated by a digital 
formant  synthesizer  showed  that  this noise was corre- 
lated  both  with  the  pitch  and  the  vowel; so much so, 
t h a t  one  could  detect  by  eye  the  pitch  period  from  the 
noise  waveform,  and  hear  the  vowel  when  listening  to 
the  noise. 

The  dependence of the noise  variance  upon  input 
level was investigated  quantitatively  using  the  synthe- 
sizer of Fig. 23. The  results of this  investigation  are 
presented  in  Table VIII .  For  any  one  vowel,  the noise 
variance  depends upon the  input  level,  but  not in a 
smooth,  continuous way. The  peak  variation  in noise 
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variance  (in  bits)  for any one vowel was 3 bits.  Table 
VI11 indicates  a fairly significant  variation of noise 
variance  with  signal  level. This variation is greater  than 
would have been  expected  from  Table I V .  This is pos- 
sibly due  to  the low noise levels of the  data of Table 
VIII.  The  agreement between  theory  and  experiment 
may be better  when a significant amount of noise is 
generated,  as is the  case for the  data of Table IV. 
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