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Abstract 

A great deal of work has been  done recently on  techniques  for  optimally 
designing  finite  duration  impulse  response (FIR) filters. One of these 
techniques, called frequency  sampling, is a method  for  designing a digital 
filter  from a set of samples  of  the  desired  filter  frequency  response. In this 
paper we present a unified  discussion  of  the  various types of frequency 
sampling  designs  and  show  how to realize them,  both  recursively  and 
nonrecursively. 
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Introduction 

Several  techniques for designing  finite duration impulse 
response (FIR) digital  filters  have  been  proposed [1]-[5]. 
One of  these  techniques,  called  frequency  sampling,  allows 
the designer to specify  values of the filter’s  frequency  re- 
sponsel at equispaced  frequencies, and hence  derive an 
approximation to the desired continuous frequency  response. 
For certain types of standard filter  designs,  such as lowpass, 
bandpass, and highpass  filters, computer programs have  been 
written to optimally  choose  several of the frequency  samples 
in transition regions  between  passband and stopband to 
optimize the filter  design [3], [4]. 

Several  types of frequency  sampling  designs  can be used. 
One of the relevant  design parameters is  whether N, the 
number of samples  in the impulse  response,  is  even or odd. 
Another important parameter is the frequency of the first 
sample  of the frequency  response.  When the initial  sample 
is at 0 frequency, the filters are called  Type 1 designs. When 
the initial  sample is offset  by an angle of a /N  rad, i.e.,  half a 
sampling  interval, the filters are called  Type 2 designs [4]. 

An FIR filter can be  realized  either  recursively  or nonre- 
cursively.  Recursive  realizations of frequency  sampling  de- 
signs are simple to program and use and can be very  effi- 
cient.  Nonrecursive  realizations  include  direct  convolution 
and fast  convolution.  Depending on whether N is  even or 
odd, and on  whether the design  is  Type 1 or Type 2, the 
realizations of these  filters can be  vastly  different. In this 
paper we present a unified treatment of ail the cases of fre- 
quency  sampling  designs and give explicit formulas for their 
realizations. 

Type 1 Frequency Sampling Designs 

Fig. 1 shows an arbitrary frequency  response  (solid  curves) 
that one wants to approximate and a sequence of N fre- 
quency  samples H k  that can be  represented as 

H I ,  = I HA l p ,  IC = 0, 1, ‘ . . , N - 1. (1) 

Using the discrete Fourier transform (DFT), a finite dura- 
tion impulse  response  can be determined from  the Hk’s as 

A, == - gke‘ . iZrl i~’’)kn , n = 0, I, . . . , N - 1. (2) 
1 N-I 

N k = O  

The z transform of h,, which is of the form 

AT- 1 

H(2)  = h,x-n, (34 
,=O 

has the property that 

= HI,. (3b) 
N ( x )  I r  = e j (?a i l v )k  

Thus, the continuous frequency  response of the filter has  the 
desired  values at  the frequency  samples.  However,  between 

These values are called “frequency samples.” 



RABlNER AND SCHAFER: DIGITAL FILTER  DESIGN 

Fig. 1. The frequency samples (heavy points) and the desired con- 
tinuous frequency response (solid curves) for  a  Type 1 FIR filter. The 
upper curve shows the  magnitude response and the lower curve 
shows the phase response. 

frequency  samples, the continuous frequency  response may 
differ  significantly from  the desired  frequency  response. 
Using (2) and (3), we can solve for H(z) in terms of the sam- 
ples Hk as 

which,  by interchanging the order of summation and per- 
forming the summation over the n index,  can  be put in the 
form 

2 0 1  

Real Impulse  Response  Coefficients 

In most applications, the desired  filter  impulse  response  is 
purely  real. This constraint introduces the following  sym- 
metry on the frequency  samples: 

I H k  1 = I H N - k  I > (6) 
ek  = - BN-k, (7) 

eo = 0. (8) 
and if Ho> 0, 

That is, the  magnitude of the frequency  samples  is a real, 
symmetric  sequence and the phase is a real, anti-symmetric 
sequence. 

Assuming that  the value of N is  even  (we  will  discuss the 
differences  when Nis odd later), we can apply the constraints 
of (8) to (5) to give 

H(x)  = -__- 
N 

Ho H N / 2  

k = ( ~ 1 2 ) + 1  1 - x - l e j ( Z a / N ) k  1 - x-' I + 2-1 
+- +---I. (9) 

Making the substitution k'= N -  k in the second summation 
and using (6) and (7), we obtain 

I H k  I eiek 
H ( x )  = -___ 

N k=l 1 - %-1/3i(Za/N)k 

(h'/2)-1 1 Hk I e-jOk' 

+ ,z 1 - %-le- i (2a/N)k'  

HO H N / 2  +- + -_- . (10) 
1 - 2-1 1 + 2.-1 1 

Combining  complex conjugate terms in the first  and  second 
summation gives 

In  the most  general  case, both the frequency  samples H k  Equation (1 1) can be  realized  recursively as  a cascade of a 
and the filter  impulse  response  coefficients hn are complex. comb filter and  a parallel connection of (N/2)- 1 resonators 
Equation (sa) shows that  the filter can be  realized  recursively and two networks with real axis  poles. 
as a  cascade of a  comb filter (1 -+') which  has N zeros at It has been noted [ 11 that it is wise to move both the zeros 

and poles of the recursive realization slightly  inside the unit 

(Sb) hence  avoid  instability problems  that might arise. The sug- 
gested transformation is to replace z1 by r z l  where r is in 

and  a parallel connection of N complex resonators2 whose the order of 1 -2-L and L is the number of' bits used to 
poles occur at  the zeros of the comb filter. The filter can also represent the coefficients. n u s  (1 1) becomes 

zk = e i ( 2 a / N ) k ,  k = 0, 1, . . . , L+7 - 1, circle to avoid inexact cancellation of a pole by a zero, and 
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Fig. 2. The recursive realization of a Type 1 FIR filter with real impulse re- 
sponse coefficients. (A) Realization  of the kth resonator section. (B) Cascade of 
the comb filter and the parallel  bank of resonators. 

where n = 0, 1, + . . is the sample number and it  is  assumed 
that all  initial conditions are zero.  When r<  1, each of the 
resonators requires four multiplications  per output sample. 
The entire realization of  (1 1) is  shown in Fig.  2(B).  All 
ztransform equations presented  in the remainder of this 
paper assume that the zeros and poles  lie on the unit circle 
(i.e., r =  1). Figs.  2, 5 ,  and 9, depicting  recursive  realizations 
of these  filters,  however, are  drawn assuming that  the above 
stabilizing transformation has been  performed  (i.e., r<  1). 

The filter of (1  1) can be realized  by direct convolution  after 
solving for the impulse  response  coefficients h, using  (2). 
Btcause of the symmetry constraints on the Hk’s [(6>-(8)], 
(2) can be  reduced to 

k = l  

For the case  where N is odd, (1 I), (13), and (14) are modi- 
fied  slightly. The upper index in  the summation becomes 

( N -  1)/2  instead  of (4’2)- 1, and the term involving HNI2  
is  missing  because,  when N is odd, there is no frequency 
sample at half the sampling  frequency. 

Linear Phase Type 1 Filters 

One of the reasons FIR filters are of importance is that 
they can be  designed to have an exactly  linear  phase,  i.e., 
they can approximate an arbitrary magnitude  frequency  re- 
sponse  with no phase error.  It is this aspect  of FIR filters 
that makes them useful for designing standard lowpass, 
bandpass, and highpass  filters. It can be shown [7] that if 
the impulse  response  is of length N =  27+ 1 samples, then 
the filter  will  have  linear  phase  with a delay of T samples 
(not necessarily an integer) if and mly if the impulse  response 
is symmetric  (i.e., A,= Depending on whether N is 
even  or odd, there are two distinct  impulse  response  shapes 
that can satisfy this symmetry constraint. These are illus- 
trated in Fig. 3. If N is  even, the impulse  response  must  be 
as shown in Fig. 3(A) to obtain linear phase. The important 
properties of this  impulse  response  include the following, 

1) There is no unique peak in the impulse  response. 
2) The impulse  response  is  symmetric,  i.e., 

h, = h.+--~-~, n = 0, I ,  . . * , (Nj2) - 1. (15) 

3) The center of symmetry  lies  midway  between  sample 
(N/2) and (N/2)-  1,  i.e., the delay  of the filter  is 
T = ( N -  1)/2  samples, a noninteger  delay. 

For  the case  where N is odd, as is usually  implicitly  assumed 
in the literature on FIR filters, the shape of the impulse  re- 
sponse of a realizable  filter  must  be as shown  in Fig. 3(B) to 
obtain linear phase. In contrast to Fig. 3(A), the following  is 
noted. 

1) There is a unique peak in the impulse  response at 

2) The impulse  response  is  symmetric,  i.e., 
sample ( N -  1)/2. 

h, = hN+-l, n = 0, 1, . . . , ( N  - l)/2. (16) 

3) The center of symmetry  occurs at sample ( N -  1)/2, 
i.e., the delay of the filter  is 7 = ( N -  1)/2  samples, an 
integer. 

In the next  sections we derive  expressions for the z trans- 
forms of Type 1 design,  linear phase filters  for the cases of 
even and odd values of N .  

N Even: An example of the frequency  response  specifica- 
tions for a linear phase filter is shown in Fig. 4. The addi- 
tionel constraints on the frequency  samples are 

O k =  {(2 ,’ T T , A ) ( N - / c ) T ,  k=(N/2)+1, . . . , N-1 (17) 
(- 2n/N)/c7, lc = 0, 1, . . . , (N/2) - 1 

where 7 is the filter  delay. The constraint of (18) can be 
shown  valid  by  examining the effect of the frequency  sample 
HAri2 on  the impulse  response. From (14) we see that it con- 
tributes a term of the form 
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Fig. 3. The shape of the impulse response for  Type 1, linear 
phase FIR filters. (A) Resulting impulse response when N is even. 
(8) Impulse response when N is odd. 

h, = (- 1 ) " H N / 2 ,  (19) 

which is not a symmetric sequence. Thus H N , ~  must  be zero 
to satisfy the linear phase ~onstraint .~ Furthermore,  from 
Fig. 4, one  can see that  at half the sampling  frequency 
(z= - 1) there is a phase discontinuity of 2m rad. However, 
since there is a zero at half the sampling  frequency 
(H(z)j z=-l = H.br,2 = 0), the phase discontinuity must  be 
(a+27rmo) rad, where  mo  is an integer.  Hence, 7 the filter 
delay  is (mo+1/2) samples. This fact is consistent  with the 
observation from Fig. 3(A) that the delay of the filter  is not 
an integer number of samples. It is also clear from Fig. 3(A) 
that mo, the integer part of the delay, is (N/2)- 1 samples 
and the  total delay 7 is (N-  1)/2 samples. 

Substituting the constraints discussed above with those 
of (17) and (18) into (1 1)  gives the z transform as 

Fig. 4. The  frequency samples (heavy points) and the de- 
sired continuous frequency response (solid curves) for a Type 
1, linear  phase FIR fllter. Magnitude and  phase curves are 
shown. 

This resonator requires  two multiplications per output point. 
Fig. 5(B) shows the recursive realization of  (21)  where  each 
of the individual resonators is of the form shown at the top 
of the figure. 

For realization of the filter of (21)  by direct convolution, 
(2) is used to give the  impulse response  coefficients h,. Be- 
cause of the symmetry of the impulse response of (15), the 
direct convolution realization is of the  form 

m=O 

Thus, because of  symmetry constraints, only N/2 multipli- 

which  can  be put in the  form 

The recursive realization corresponding to (21) is shown in cations are required to  compute  each sample of the  output 
Fig. 5 .  Fig. 5(A) shows  how the  kth resonator section is sequence. 
realized. The difference equation relatmg the  output of the N Odd: For  the case  when N is odd, the main  design  differ- 
resonator vn to its input u, is of the  form ence is  that there is no frequency  sample at half the sampling 

frequency. As seen from Fig. 3(B), the filter  delay  is the same 
as for N even. that is. f N -  1)/2 samdes. which  in this case 

3 It should be noted that in this case and  the corresponding Type 2 is an integer number of samples delay. Thus the derivation 
design, this constraint imposes a restriction on  the design of highpass 
filters. leading up to (21) is identical for N odd as for N even,  with 

~~ ~ ~ > - I \~ I ,  ~ - 1  ~ - ,  . .~ ~. ~~ 
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(6) Fig. 6. The frequency samples (heavy points) and the desired 

Fig. 5. The recursive realization of a Type 1, linear  phase FIR filter. (A) kth continuous frequency response (solid curves) far a Type 2 FIR filter. 
resonator section. (6) Total  realization. Magnitude  and  phase curves are shown. 

the exception that the upper index  in the  summation becomes where H(z) is the z transform of the FIR filter.  Since the fre- 
( N -  1)/2 instead of (N/2)- 1. All comments  about realiza- quency  samples do  not align  with the frequencies  required 
tion of the N even  case  apply to the N odd  case. The realiza- by the IDFT  to give the impulse  response, we must rotate 
tion by direct convolution is  given by the array of frequency  samples by an angle of - m / N  to 

use the IDFT. This frequency rotation is  equivalent to mul- 
~n = ~ ( W - - ~ ) / ~ G - ( N - I ) / Z  tiplying the impulse  response  coefficients by (e--iTn’nr). Thus 

(A‘-3)j2 the IDFT give the modulated  impulse  responses as + h k ( X n - k  f Zn-AT+l+k). (23) 
k=O h n e ( - j m / A r )   H k e j ( 2 ~ j N ) n k  

A- 1 

k=O 

Type 2 Frequency  Sampling  Designs n 0, 1, * . . , N - 1. (25) 

F~~ the filters discussed  above, the basic idea in design  is Multiplication Of both sides Of (25) by ei(sn’N) yields the im- 
that N zeros are spaced uniformly around the unit circle pulse coefficients as 
(the comb filter does this),  beginning at the point z= 1, and 1 N-1 

each of these zeros may be  cancelled by a pole. The ampli- hm - 
tude of the frequency  response at each of the uniformly 
spaced  frequencies  is  determined by the value of the fre- n = 0, 1, * . . , N - 1.. (26) 

k e f ( 2 r / N ) ~ ( k f I 1 2 )  

lv k=O 

quency  sample H k .  A second  type of frequency  sampling 
filter can be  designed  where the frequency  response is speci- 
fied at uniformly  spaced points around  the unit circle,  be- 
ginning at the pointz= ej(?r/N).  This corresponds to afrequency 
of 1/(2NT) Hz, where Tis the sampling period. These  designs 
were  Iabeled as Type 2 designs, in contrast to the Type 1 de- 
signs  discussed  earlier 1141. 

Fig. 6 shows an arbitrary set of frequency  response  speci- 
fications for Type 2 designs. The solid  curves  show the de- 
sired continuous frequency  response (magnitude  and phase) 
and  the circles  show the set of frequency  samples Hk which 
can  be represented as 

Using the definition of the z transform (3a), we  get 

which, by interchanging summations and performing the 
summation over the n index,  can  be put in the  form 

Without making additional constraints on the frequency 
samples, or equivalently on  the impulse  response, (28) repre- 
sents the most  general  case of the z transform for Type 2 de- 
signs. Realization techniques are similar to those discussed 
earlier for Type 1 designs. The only unusual point to keep  in 
mind  is that for direct convolution realization of the filter of 
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(28),  (26) must be  used to obtain the filter  impulse  response 
coefficients. 

Real Impulse Response  Coefficients 

The necessary and sufficient conditions on the frequency 
samples  required to obtain a real  impulse  response for Type 
2 designs are 

I HI, 1 = I HN-1--L I (29) 
ek = - eNVlwI,. (30) 

Assuming that  the value of N is even  (we  will discuss the 
changes  when N is odd later), and applying the constraints 
of (29) and (30),  (28) becomes 

Making the substitution k‘= N -  1 - k in the second sums- 
tion, and using (29) and (30), we obtain 

(1 + 2 - N )  [ “ V f l  I HTc 1 e f 8 k  

H(x)  = 
N /i= 0 1 - x - l e j ( Z ~ / A ’ ) ( k + I / Z )  

Combining terms in the first and second summations gives 
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which represents the contribution of the frequency  sample at 
half the sampling  frequency to  the impulse  response. 

linear Phase Type 2 Filters 

As discussed earlier for Type 1 designs, the additional con- 
straints of linear phase  on the frequency  response  implies 
that  the filter  impulse  response  be a real, symmetric  sequence. 
However, the impulse responses of Fig. 3 for Type 1 designs 
for N even or- odd  cannot be obtained for Type 2 designs. 
This is  because for N even,  Type 1 designs, there was a fre- 
quency  sample at half the sampling  frequency that was  al- 
ways zero. This meant a phase discontinuity of T rad was 
necessary at half the sampling  frequency,  implying a non- 
integer  delay  in the impulse  response. For Type 2 designs 
with N even, there is no frequency  sample at half the  sampl- 
ing  frequency. Thus for linear phase response,  only  integer 
delays are allowable for this case.  Similarly for N odd, Type 
1 designs, there was nc frequency sample at half the sampling 
frequency,  which  implied an integer number of samples de- 
lay in  the impulse  response.  However for N odd, Type 2 de- 
signs, the presence of a frequency sample at half the sampling 
frequency  implies a half-integer number of samples  delay in 
the impulse  response. From (36) it is  clear that when N is 
odd, H ( N - ~ ) , ~ = O  to maintain symmetry. This means that  the 
number of nonzero frequency  samples  will  be  even regardless 
of whether N is even or odd. This is opposite to the case of 
Type 1 designs  where the number of nonzero frequency 
samples  was  always odd. By substitution of an  appropriate 
linear phase in the right  side of (26), it can be  shown that  the 
above constraint (i.e., there is always an even number  of 

1 \ \  11 

H(x)  = 

1 - 2x-’ cos 

The filter  described by (33) can  be  realized  recursively as 
before, or by convolutional techniques after obtaining the 
filter  impulse  response  coefficients.  Because of the symmetry 
constraints on the frequency response, the impulse  response 
coefficients can be  solved for directly as 

For  the case  where N is odd, (33 )  is  modified  slightly. The 
upper index  in the  summation becomes (N-3)/2 instead of 
(N/2)  - 1, and the term 

H (N-1)12 

1 + 2-1 
representing a frequency  sample at (z= - l), is  included  in- 
side the brackets. The impulse  response  coefficient  expres- 
sion (34) is also modified  by  changing the  upper  summation 
limit to (N-3)/2,  and by the addition of the term 

, (35) 

1 
- ( - 1 ) n H ( ~ - 1 ) , 2 ,  n = 0, 1 ,  - . , N - 1, (36) 
N 

frequency  samples)  implies that one value of the impulse re- 
sponse h, will  be  zero.  Specifically, if the filter  delay is set 
to r = N/2,  then the first  impulse  response sample ho is zero, 
whereas if r=(N/2) -  1, then the last impulse  response  sam- 
ple h N - l  is  zero. 

Fig. 7 summarizes the possible  impulse response shapes 
for Type 2 designs. When N is even, as shown in Fig.  7(A), 
the impulse  response has  the following properties. 

1) There  are (N-1)  nonzero values of the impulse re- 

2) The impulse  response is symmetric,  i.e., 
sponse,  i.e., hNv1= 0. 

h, = h ~ - , - ~ ,  n = 0, 1, . + , (N/2)  - 1.  (37) 

3 )  The delay  of the filter  is (N/2) -  1 samples, an integer 
number of samples  delay. 

When N is odd, as shown  in  Fig.  7(B), the  impulse response 
has the following properties. 

1) There  are (N- 1) nonzero values  of the  impulse re- 
sponse,  i.e., hN-l= 0. 



206 IEEE TRANSACTIONS ON AUDIO AND ELECTROACOUSTICS SEPTEMBER 1971 

CENTER OF N  EVEN 
SYMMETRY  TYPE  2 

\ 

SYMMETRY 
CENTER OF 

hn \ 
0 1  0 

I 
0 1 °  

I 
I 
I 
I 
I 

N ODD 
TYPE  2 

VALUE OF 
IMPULSE 

le) RESPONSE 

P P 
0 1 6  N-3 N-l - _  N-2 NI n 

2 2  

Fig. 7. The shape of  the impulse response for  Type 2, linear  phase 
FIR filters. (AI Resulting impulse response when N is even. (6) Impulse 
response when N is  odd. 

2) The impulse  response  is  symmetric,  i.e., 

hn = h.v-Q-2, n 0, 1, . . . , ( N  - 3)/2. (38) 

3) The delay of the filter  is (N/2)  - 1 samples,  a  noninteger 
number  of  samples  delay. 

Next we derive  expressions for the z transforms of  linear 
phase filters  for  Type 2 designs for even and odd  values of N.  

N Euen, Type 2 Designs: Fig. 8 shows the frequency re- 
sponse specifications for a  linear phase filter  Type 2 design 
when N is  even. The constraints on phase are of the  form 

N 
2 

k = - >  . . . ,  N-1. (39) 

Substitution of the constraint of (39) into (33)  gives the z 
transform as 

Fig. 8. The frequency samples (heavy points) and the desired 
continuous frequency response (solid curves) for a Type 2, linear 
phase FIR filter. Magnitude  and  phase curves are shown. 

The recursive  realization  corresponding to (41) is shown  in 
Fig. 9. Fig.  9(A)  shows how the  kth resonator section is 
realized. The difference equation of the resonator is of the 
form 

zrn = un + 2r cos ( k  + l/2) vnP1 - r % ~ , _ ~  (42) 1 
and requires  only two multiplications  per iteration. The full 
realization of  (41)  is  shown  in Fig. 9(B). 

For direct convolution  realization of the filter of  (41), the 
realization  is of the form 

( N / 2 ) - - 1  

yn = hm[xnHn + xn-N+m+2] + hN/2-1Xn-N/2--1 (43) 
m=o 

where the impulse  response  coefficients are 

as seen by using the phase function of (39)  in  (34). It can be 
seen from (44) that h , ~ - ,  is  indeed  zero. 

L I -  

which can be put in the form 

r 
1 - 2x-' cos - ( k  + l j2) + x-2 (; ) I  I 
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Fig. 9. The recursive realization of a Type 2, linear  phase FIR filter. (A) 
kth  resonator section. (8) Total  realization. 

N Odd, Type 2 Designs: The derivation leading up  to (4 1)- 
(44) is identical for N odd as for N even,  except that the upper 
index  in the  summations is (N-3)/2 in  (41) and (44) and 
(N- 1)/2 in (43), and  the second term in  (43)  is absent. All 
comments  about realization of the N even  case  apply  equally 
well to the N odd case. 

Conclusion 

We  have  discussed  recursive realizations of finite duration 
impulse response digital filters,  focusing  primarily on linear 
phase filters.  Such  filters  can  also  be  realized by direct con- 
volution or by fast convolution [SI, [9] techniques. The 
choice of which realization to use depends on many factors; 
however, the basic concern is generally computation speed. 
Since computation speed  is  determined  largely by the number 
of multiplications and additions required in the realization, 
it is  useful to compare the different realizations on this basis. 
Restricting ourselves to linear phase filters, (22), (23) and (43) 
indicate that direct convolution requires  approximately N 
additions and N/2 multiplications for each output sample. 
In the recursive realization, if there are K nonzero complex 
conjugate pairs of frequency  samples, then approximately 3K 
additions and 3K multiplications are required per output 
sample.  Assuming that  the multiplications require the most 
time, we see that the recursive  realization will be faster as 
long as K<N/6. 

207 

This analysis, although  not precise, indicates the circum- 
stances in which the recursive  realization  may  be  preferred 
over direct convolution. Clearly, if N is large and K is  small, 
as would  be the case for narrowband lowpass, bandpass, or 
highpass  filters  designed by the frequency  sampling tech- 
nique, the recursive realization can be faster than direct 
convolution. 

A third method of realizing FIR filters  utilizes a fast 
Fourier transform  (FFT) algorithm to achieve  increased 
efficiency  over direct convolution [SI, [9]. Stockham [SI 
states that this technique is faster than direct convolution 
for values of N greater than 32. This implies that recursive 
realizations will be more efficient than the FFT method for 
values  of K less than approximately 5 or 6. 

In the high-speed convolution technique, the  impulse re- 
sponse is augmented  with a number of zero samples to  ob- 
tain a sequence of length L which is a highly composite 
number.  The DFT of this sequence is then computed with an 
appropriate FFT algorithm. It is interesting to note  that 
when the impulse  response has a unique peak, as for N odd, 
Type 1 design or N even,  Type 2 design,  then the augmented 
impulse  response  sequence can be rotated so that its discrete 
Fourier transform will be  purely  real. This results in con- 
siderable  saving  when the DFT of the impulse response is 
multiplied by the DFT of a segment of the input sequence. 
This comment, of course, applles to any FIR filter. 

It is  clear from the preceding  discussion that there are 
numerous details to be  concerned  with  in  realizing  finite im- 
pulse response digital filters. We have presented in consider- 
able detail the case of linear phase  frequency  sampling de- 
signs;  however,  much of what  was  discussed  applies to  FIR 
filters designed by  windowing or other optimization tech- 
niques. 
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