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at an  odd  (namely  third)  multiple of the  first  formant 
[I1 1. The  effect of weighting  is t o  reduce  the effect of 
high-order  Walsh coefficients. 

Summary 

The recursive  relationship  between  arithmetic  and 
logical autocorrelation  functions of a  wide  sense  sta- 
tionary process is derived.  The  Fourier  (Walsh)  power 
spectra  are  computed from the weighted  arithmetic 
(logical) autocorrelation  function  by  means of the  fast 
Fourier  (Walsh)  transforms.  Examples  from  speech  and 
imagery  data  shows  that  the  discrete  Fourier  and  Walsh 
spectra closely  resemble the  spectral  representation of 
these processes in  terms of eigenvalues  and  eigenvectors 
of the  covariance  matrix. 
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Abstract-The use of optimization techniques  for  designing digi- 
tal  filters has become  widespread in  recent years. Among the tech- 
niques that have been  used include steepest  descent  methods, con- 
jugate gradient  techniques,  penalty  function  techniques, and poly- 
nomial interpolation  procedures. The theory of linear programming 
offers many  advantages  for designing digital filters. The programs 
are  easy  to implement and yield solutions that  are  guaranteed  to 
converge. There  are many areas of finite impulse response (FIR) 
filter design where linear programming can be  used conveniently. 
These include  design of the following: filters of the frequency  sam- 
pling type; optimal filters  where the  passband  and  stopband  edge 
frequencies of the filter may  be specified exactly; and filters  with 
simultaneous constraints on the  time  and frequency  response. The 
design method  is  illustrated by examples  from  each of these  areas. 
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Introduction 

Many  techniques  exist  for  designing  digital  filters 
using  optimization  procedures.  For  example,  Herrmann 
and Schuessler  have  designed  equiripple  error  approxi- 
mations  to finite  impulse  response (FIR),  low-pass, and 
bandpass filters  using  nonlinear  programming proce- 
dures [l 1, 121. This  work  has  been  extended  by  Hof- 
stetter et al. [3] and  by  Parks  and  McClellan [4] to  
solve  for  the  deisred  filters  using  polynomial  interpola- 
tion  techniques.  Rabiner et al. [5] used a steepest 
descent  technique  to  obtain  FIR  digital filters  with 
minimax  error  in  selected  bands  with  the  constraint  that 
only a few of the filter  coefficients  were variable. 
Steiglitz [6] and  Athanasopoulos  and  Kaiser [7] have 
used  nonlinear  optimization  techniques  to  obtain  re- 
cursive  filter  approximations  to  arbitrary  frequency 
response  specifications. 

Recently,  attention  has  been focused on  the use of 
linear  programming  techniques  for  the  design of digital 
filters [8]-[10]. Many  digital  filter  design  problems  are 
inherently  linear  in  the  design  parameters  and  hence,  are 
in a  sense,  natural  candidates  for  linear  programming 
optimization.  Furthermore,  linear  programs  are  easy  to 
implement  and  are  generally  guaranteed  to  converge  to 
a unique  solution.  The  rate of convergence of the pro- 
grams is  moderately  fast,  thus  making  this  technique 
practical  for  problems  with on the  order of 100 parame- 
ters. 

There  are  many  areas of an   F IR  filter  design  where 
linear  programming  can  be  used  conveniently.  These 
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include  the  design of the following:  frequency  sampling 
filters;  optimal  (minimax)  absolute  or  relative  error 
approximations  to  arbitrary  frequency  response  char- 
acteristics,  where  the  passband  and  stopband  edge  fre- 
quencies of the  filter  may  be specified exactly;  two- 
dimensional  filters of the  frequency  sampling  type  or 
with  optimal  error  approximation;  and  filters  with 
simultaneous  constraints  on  characteristics of both  the 
time  and  frequency  response of the filter.  Several of 
these  design  areas  have  been  examined  and  examples 
showing how to  apply  linear  programming  techniques  in 
specific  cases will be  presented. In  the  next  section  the 
general  framework of linear  programming  is  presented 
and  several  practical  aspects of linear  programs  are  dis- 
cussed. The following sections  show how the  general 
F I R  linear-phase  filter-design  problem is linear  in  either 
the filter  impulse-response  coefficients,  or  equivalently 
the   DFT coefficients, and how this problem  is  solved  in 
specific  cases. 

linear Programming 

The  general  linear  programming  problem  can  be 
mathematically  stated  in  the following form: find 
{ x & = l ,  2,  * * * , N subject  to  the  constraints 

X j 2 0 ,  j = 1 , 2 ; . * , N  (1) 

cijx3 = bi, i = 1, 2)  . . . ) M ( M  < N )  (2) 
N 

j=1 

such  that 
N c %Xi 

j =  1 

is minimized. 
The  above problem is referred  to  as  the  “primal 

problem”  and,  by a duality  principle,  can  be  shown  to  be 
mathematically  equivalent  to  the  “dual  problem:”  find 
{y$= l ,  2,  . . * , M subject  to  the  constraints 

M 

cijyi I ai, j = 1, 2, * * - ) A T  (4) 
i= 1 

such  that 
M 

biys 
i= 1 

is maximized. 
The  remainder of this  paper  refers  to  the  dual  problem 

as  this  is  the  most  natural  form  for  the  digital filter 
design  problems  being  considered. 

One  characteristic of linear  programs  is  that  given 
there is  a  solution, i t  is  guaranteed  to  be a  unique  solu- 
tion,  and  these  are  several well-defined procedures  for 
arriving at this  solution  within ( M + N )  iterations. 
There  are  also  straightforward  techniques  for  de- 
termining if the  solution  is  unconstrained  or  poorly  con- 
strained. 

I 

X1 

Fig. 1. Graphical  explanation of the  dual  linear program. 

A simple  graphical  interpretation of the  linear  pro- 
gram  with  two  variables is shown  in  Fig. 1. Each  con- 
straint line (Cl-C5) is  a  linear  inequality  in x1 and x2. 
Therefore, a straight line  can  be  drawn  representing  the 
equivalent  linear  equality,  and half of the  solution  space 
(shown by  shaded lines)  is eliminated  as a possible  solu- 
tion.  When all the  constraint lines have been drawn, 
only a small  region of the XI,  xz plane  is  still  admissible 
as  a solution  to  the  minimization  phase.  The  linear 
equation  for  finding  the  minimum  is  then  plotted  in  the 
XI, x2 plane. By successively  reducing  the  value  for  the 
minimum,  the  point  where  two of the  constraint  lines 
intersect  becomes  the  solution, i.e., the  absolute mini- 
mum  consistent  with  the  constraints. In  the  example of 
Fig. 1, the  minimum  occurs  where  constraint  lines C3 
and C4 interesect. 

An important  general  property of the  linear  pro- 
gramming  problem  is  that  the  constraint  equations 
form  a  convex  polyhedron,  and that  the  minimum  value 
of the desired  linear  function  occurs at  an  extreme  point 
of the  polyhedron,  i.e.,  where M of the  inequalities  at- 
tain  equality. 

The  next  section  shows  that  linear-phase FIR filters 
are  linear in the design parameters,  and hence, can  be 
optimally  designed  using  linear  programming  tech- 
niques. 

linear-Phase FIR Filters 

Let { h , f , n = ~ ,  I ,  . . , N -  1 be  the  impulse  response 
of a  causal F IR  digital  filter.  The  requirement of linear 
phase  implies 

hn = hN-n-1. ( 6 )  

The filter  frequency  response  can be determined  in  terms 
of the (h,)  as  

N-1 
H ( e j @ )  = ,$,e-juTn. (7) 

n=O 
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For t h e  case  where N is odd, (7) can  be  combined  with peak  out-of-band  ripple  when  several DFT coefficients 
(6) to  give in a transition  band  between  the  passband  and  stopband 

Equation (8) shows H(e jwT)  to consist of a purely were  optimized.  Another  limitation of the  technique  was 
linear-phase  term  corresponding  to a delay of ( N -  1 ) / 2  that  the  amount of computation  it  took  to  optimize  the 
samples  and  a  term  that is purely  real  and  linear  in  the variable D F T  coefficients  grew exponentially  with  the 
impulse-response  coefficients. I t  is the second term in number of unconstrained  variables.  Thus  the  largest 
(8) that  is used  for approximating  arbitrary  magnitude problems  attempted  had  four coefficients variable.  This 
response  characteristics.  For  the  case  where N is even, problem  is  readily  solved  in  a  much  more  general  form 
the  result of (8) is  modified to  using  linear  programming  techniques.  Furthermore,  the 

L n=O 
> -  

(linear-phase term) (purely real, linear in { h,) ) 

Equation (9) shows  that for N even,  the  linear-phase 
term  corresponds  to a delay of an integer  plus  one half 
the  number of samples.  The  center of symmetry of 
{ hn is midway  between  samples ( N / 2 )  and (A7/2) - 1. 
The  remainder Qf (9) is again a real  term, which is 
linear  in  the  impulse-response Coefficients. 

T h e   D F T  relation  can  be  used  to  show  that  the  filter 
frequency  response is also a linear  function of the   DFT 
coefficients { H k } .  I t  is derived  elsewhere [11] that  the 
frequency  response of linear-phase F I R  filters  can  be 
written  as 

w N T  
sin ~ 

2 

N 
H ( e j " T )  = e - j w T ( ( A - l ) / 2 )  

5 
k=l 

r k  w T  
(- 1)"h4 cos - sin -- 

N 2 

COS WT - COS-- 

where 

K =  { (A' - 1)/2,  i\i odd 

iV/2 - 1, N even. 

The significance of (10) is that  the  frequency response 
of a linear-phase F I R  filter  is  linear  in  the { H h }  as well 
as in the {h,}  ; hence  linear  programming  techniques 
can  be  used  to  optimize  the  values of all  or a  selected 
set of D F T  or impulse-response  coefficients. In  the  next 
sections we show how linear  programming  has  been 
applied  in  several  general  cases. 

Design of Frequency  Sampling  Filters 

Previously,  design of frequency  sampling  filters  was 
accomplished  using a steepest  descent  minimization 
[SI. This  technique was capable only of minimizing the 

computation  time  to  get  the  more  general  solutions is 
considerably less than  for  the  steepest  descent algo- 
rithm used  previously. 

A typical  specification  for a low-pass  filter  to  be ap- 
proximated by a frequency  sampling  design  is  shown  in 
Fig. 2. The  heavy  points show the   DFT coefficients, 
and  the solid curve  shows  the  interpolated  frequency 
response. The  passband-edge  frequency is F1, and  the 
stopband-edge  frequency  is F2. Since  the  length of the 
filter  impulse  response  is N samples,  there  are N D F T  
coefficients  (called frequency  samples)  to  be specified. 
Those DFT coefficients that   are in the  passband  are 
arbitrarily assigned the  value 1.0, and  those  that fall in 
the  stopband  are assigned the  value 0.0. The   DFT 
coefficients  in the  transition  band  are free  variables  and 
are labeled T I ,  T2 in  Fig. 2. The  approximation  problem 
can  be  set  up as a linear  program  in  the following man- 
ner.  Let Ta equal  the  peak  stopband  ripple,  then  the 
design  problem  consists of finding  values of ( T I ,  T2) to 
satisfy  the following constraints. 

1) The  in-band  ripple is less than or  equal to some 
prescribed  tolerance E .  

2) The  peak  out-of-band  ripple Ta is to  be  minimized. 
Mathematically  this  problem  can  be  stated as follows: 
find (TI, Tz, T3) subject  to  the  constraints 

2 

1 - E I F ( o )  + TiD(U, i) I 1 + €, 
i= 1 

0 5 w I 2aF1 (11) 
2 

- Ta I F ( w )  + TiD(w, i) I Ta, 
i=l 

2 r F z  5 w _< aF,  (12) 

where F(w)  is the  contribution of the fixed DFT CO- 

efficients (the 1.0's in  band), D(wl i> is  the  contribution 
of the  ith  variable  transition coefficient and is of the 
form  shown  in (101, and F, is  the  sampling  frequency. 

A suitable reshuffling of terms  in (11) and (12) puts 
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FREQUENCY .--) 
2 

Fig. 2. Typical specification for a  frequency  sampling low-pass 
fiilter with  transition coefficients TI, T?. 

the  set of equations  in  the  form of the  dual  problem of 
linear  programming.  The  final  equations  are of the 
following form: find (T I ,  T2, Ts)  subject  to  the  con- 
straints 

5 Ti+, i) I 1 + E - F ( w )  
i=l 

> 0 5 w 5 Zap1 (13) 
9 

- TiD(W, i) 5 - 1 + E + F ( w )  
i=l 

2 

TiD(w, i )  - Ta 5 - F ( w )  
i=l 

2 I 2aFz 5 w 5 T F ,  (14) 

- TiD(w, i) - T3 5 F(w) 
i=l J 

where (- T3) is maximized. 
The  inequalities of (13) and (14) are  evaluated a t  a 

suitably  dense  set of frequencies  in  the  appropriate 
range of interest  (an  eight to one  interpolation  between 
D F T  coefficients seems  to be sufficient) to yield the 
necessary  set of equations for the  linear  program. 

Results of Frequency Sampling low-Pass Filters 

A wide  variety of frequency  sampling  low-pass  filters 
have  been  designed  using  the  results of (13) and (14). 
Previously,  using  the  steepest  descent  algorithm,  con- 
straints on the  in-band  ripple E could  not  be  maintained 
[ 5 ] .  With  the  linear  programming  design, tradeoff rela- 
tions  between  in-band  and  out-of-band  ripple  can  be 
obtained  for fixed number of transition  samples  or 
equivalently fixed width of transition  band.  Typical 
tradeoff relations  are  illustrated in Fig. 3 for  the  case of 
three  transition  samples.  In  this  figure  the log of out-of- 

3 TRANSITION  SAMPLES 3 TRANSITION  SAMPLES 

VARIATION 

L I I I I I I I 
-80 -70 -60 -50 -40  -30 -20 -10 

20 LOGIOSI 

Fig. 3. Tradeoff relations  between 61 and 8? for low-pass frequency 
sampling  filters with three variable  transition coefficients. 

,s,=s2=s 
L FREOUENCY 

SAMPLING DESIGNS 

Fig. 4. Comparison between  the curves of normalized transition 
bandwidth versus 6 for equiripple filters and frequency  sampling 
aters. 

band  ripple 6 2  versus  the log of in-band  ripple 61 is 
plotted. 

The  varying  nature of the  curves of Fig.  3  is  due  to 
the  variance  in  the  measured  points  (heavy  dots)  as a 
function of filter  bandwidth.  The solid curves  in  Fig.  3 
show an estimated  underbound  and  overbound  on  the 
typical  behavior of the tradeoff relations. I t  is  seen  from 
Fig.  3 that  the  in-band-out-of-band  ripple tradeoff is a 
highly  nonlinear  function for the  frequency  sampling 
filter. 

Fig. 4 shows a comparison  between  equiripple  filters 
and  frequency  sampling  designs  for  the specialized case 
where the  in-band  ripple  and  out-of-band  ripple  are 
equaI. In  this figure the  normalized  width of the  transi- 
tion  band' is plotted  as  a  function of log 6, where 6 is the 
ripple.  For  the  frequency  sampling  designs  the  data  are 
at normalized  transition  widths of 4, 3,  and 2 ,  cor- 
responding  to  3, 2 ,  and 1 transition  samples.  At  these 
normalized  transition  bandwidths  the  ripple  is -666, 

1 The normalized width of transition  band is defined as D = N. 
is the sampling  frequency and F1 and FZ are  the passband and stop- 
( R -  F,j/F,, where N is the impulse-response duration in samples, F, 

band edge frequencies. 
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-50, and -32 dB,  respectively. The  equiripple designs 
attain  the  same  ripple  values at transition  bandwidths 
of approximately 3.7, 2.6, and 1.4. The  percentage dif- 
ference  in  bandwidth  for  the 3 cases  is  8,1,  15.4,  and 
42.9. Thus,  except  for  the 1 transition-point  case,  the 
transition  bandwidths  for  frequency  sampling  designs 
are  reasonably close to  the  bandwidths of equiripple 
filters. 

Design of Optimal Filters 

Just as a few of the   DFT coefficients in a transition 
band could  be  varied to  design  reasonably efficient 
frequency  sampling  filters  all of the   DFT coefficients,  or 
equivalently, all the  impulse-response coefficients  could 
be  varied  to  give  an  optimal2  approximation  to  any  de- 
sired  frequency  response.  Such  optimal  approximations 
have  been  designed  previously using  nonlinear  optimiza- 
tion  procedures [l], [2]  and  by polynomial  interpolation 
methods [ 3 ] ,  [4]. However,  the use of linear  program- 
ming  techniques,  although  significantly slower  in run- 
ning,  offers many  advantages  over  other existing  design 
procedures.  The design  procedure is guaranteed  to 
converge  within  a fixed number of iterations.  Critical 
frequencies of the  desired  response  can  be specified 
exactly.  The  programs  converge  over a very wide  range 
of parameter  values.  Finally,  with  the  existence  and 
increased  understanding of integer  linear  programming 
techniques,  one  can  combine  the  design  problem  with 
the coefficient quantization  problem  to  design  optimum 
filters  with  a  prescribed  word  length. 

T o  see  how the design of optimal  filters  can be ac- 
complished  using  linear  programming  techniques, i t  is 
simplest  to use as  an  example  the design of a  low-pass 
filter.  Consider the following set of specifications: 

stopband ripple I 62 

passband  ripple I 61 
minimized or  specified 

passband edge F 1  specified 

stopband edge F z  specified. 

In  this  example  either 61, az or  some  linear  combination 
is minimized.  One  can  also  consider  the  situation  where 
61 and 6z are  proportionally  related,  i.e., 61=K16, 
& = & 6  where K1 and R z  are  constants,  and 6 is mini- 
mized.  In  this  manner a constant  ratio  between  passband 
and  stopband  ripple is maintained. By- way of example 
we will consider the case  where 61 is specified, and a2 
is minimized. The  linear  program  that realizes  these 

specifications  can  be  stated  as follows:  find { h, 1 ,  6 2  sub- 
ject  to  the  constraints3 

n=l I 

where (- 6,) is  maximized. 
Before  proceeding to  some  typical  designs, i t  is im- 

portant  to  note some  properties of linear  programming 
problems  and  show how they affect the  optimal  filter 
design  problem. The  solution  to  a  linear  programming 
problem of the  type  shown  above  with L variables  and 
M inequality  constraints  occurs  when a t  least L of the 
M equations  are solved  with  equality  (instead of in- 
equality),  the  remaining  inequalities  being  met  with 
inequality.  For  the  optimal  filter  design  problem  this 
implies that  there  are at least L frequencies a t  which the 
ripple  obtains  a  maximum.  The  practical  implications 
of the  result  are  best  illustrated  with  respect  to  Fig. 5, 
which  shows  the  frequency  response of an  equiripple 
optimal  filter  with  passband  ripple &, stopband  ripple 6 2 ,  

passband-edge  frequency F,, and  stopband-edge  fre- 
quency Fz.  The  length of the filter  impulse  response  is N 
samples. If N ,  is the  number of ripples  in  the  passband 
and N ,  is the  number of ripples  in  the  stopband  then 

Equation (18) is  due  to  the  fact  that  an  Nth degree 
polynomial  (the z transform of the filter  impulse 
response)  has a t  most  (N+1)/2  points of zero  deriva- 
tive  in  the  frequency  range  from 0 to  Fs /2  Hz. In  addi- 
tion  to  attaining a maximum  value at each of the  ripple 
frequencies, the  error  attains a maximum  value a t  
f= Fl and at f= Fz,  i.e., at the  edges of the  transition 
band. (In fact,  this  is how we define the  transition-band 
edges.) Thus  the  number of error  maxima N, satisfied 
the  inequality 

sense of the  theory of Chebyshev  approximation on compact sets, defined from - ( ~ - l ) / 2 ~ n ~ ( ~ ~ - l . ) / 2 ,  and is symmetric around 
2 The filters being discussed in this section are  optimal in the From this point or for convenience we are assuming {hn} is 

Le., the error of approximation  exhibits a t  least (N+1) /2+1 alterna- 
tions (of equal amplitude) over the frequency ranges of interest.  In n =O. Since Ai is odd (8) can be slmpllfied to the form 
most cases, all the peaks of the  error function are of the  same ampli- 
tude. Therefore,  these filters are often referred to  as equiripple H(eiar) = ho + 2h, cos ( w n ~ ) .  
filters. 

(A'-l)/Z 

S=l 
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Fig. 5. Typical frequency response  for  an optimal filter, defining 
N,, as  the  number of passband maxima and N ,  as  the  number of 
stopband maxima. 
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Fig. 6. Impulse  and  step response for an optimal digital 
Mter  with 99-point impulse response. 

where (N+1)/2 coefficients of the  impulse  response  are 
variable,  and  one  ripple coefficient  is variable.  Thus (20) 
shows  that  the  minimum  number of error  maxima  from 
the  linear  program  solution,  although  optimal, is one 
less than  the  maximum  number of error  maxima  obtain- 
able.4 A discussion of the effects of the  extra  ripple  peak 
on the  width of the  transition  band is given by  Hofstet- 
ter et al. [12]. For all practical  purposes  the loss of the 

Parks  and McClellan [4] have labeled the cases where all the 
ripples are present as "extra  ripple" designs. 

-1001 I ' i  
-110 I I I I I J 

0 1000 2000 3000 4000 5000 
FREOUENCY IN Hz 

Fig. 7. Frequency  response of an optimal digital fLlter 
with 99-point impulse  response. 

extra  ripple  is negligible  in terms of normalized  transi- 
tion  bandwidth,  etc.  At  this  point  it is worthwhile  show- 
ing  some  results of the design  procedure. 

Optimal Filter  Designs-low-Pass  Filter  Examples 

Using the  linear  program of (16) and (1 7) we have 
designed  filters  with  impulse  response  durations of up  to 
99 samples.  Figs. 6 and 7 show plots of impulse  and 
step responses and  the log magnitude  response of a 
low-pass  filter  designed  from the following  specifica- 
tions: 

in-band  ripple 6, 
out-of-band  ripple 6, 
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Fig. 8. Comparison between  the curves of normalized  transition - r I I I I I 1 
bandwidth versus 6 for eauiripple a t e r s  with  maximum number 

0 0.25 0.50 0.75 1.00 
NORMALIZED FREQUENCY 

of ripples and optimal lilte-rs with one ripple omitted. Normalized 
bandwidth is defined as D = I!. (F-F,)/ F,. Fig. 9. Impulse  response, irequency response, and  error curve for 

a 32-point differentiator  with optimal equiripple error. 

passband-edge  frequency 808 Hz, 
stopband-edge  frequency 11 11 Hz, 
sampling  frequency 10 000 Hz. 

The  minimum  value of 6, as chosen by  the  linear  pro- 
gram  was  6=0.001724  or -55.3 dB. 

Fig. 8 shows a comparison of the normalized  transi- 
tion  bandwidth  versus  log 6 2  for  Herrmann-Schuessler 
equiripple  filters  with  the  maximum  number of ripples 
and  the  optimal  linear  program  filters  with  one  ripple 
omitted.  The solid  line in  this figure  shows  the  Herr- 
mann-Schuessler data  for &= 6 2 ,  and  the  data  points 
show  the  linear  program  data  for  several  values of N ,  
the impulse-response  duration.  Clearly,  the  differences 
between  the  data are insignificant as stated earlier. (The 
data  points  that fall  below the solid line  in  Fig. 8 are  due 
to  the  error  in  representing  the  equiripple data by a 
straight line on  these  coordinates.) 

Optimal Filter  Designs-Other  Examples 

As stated  earlier,  the  linear  programming  technique 
can design  optimal  approximations  to  any  desired  fre- 
quency  response. T o  illustrate  this  feature we have  de- 
signed several  full-band  differentiators [ 131. 

T o  design a full-band  differentiator  we  require 
N(eiwr) to  approximate  the  normalized  response 

where ( w s / 2 )  is half the  radian  sampling  frequency. T o  
get  an  optimal  error  approximation we require 

0.5 1 IMPULSE  RESPONSE 1 N =  32 

1.2, 
TIME IN SAMPLES 

I I I I I I I 1 

o , 8 e  

0.4 

0 
0 0.25 0.50 0.75 1.00 

NORMALIZED  FREQUENCY 

- 0.008 r I I I I I I I 1 
0 0.25 0.50 0.75 1.00 

NORMALIZED FREQUENCY 

Fig. 10. Impulse response,  frequency  response, and  error curve for 
a 32-point differentiator  with optimal equiripple relative  error. 

where N is  even to  take  advantage of the half-sample 
delay [13]. An  illustrative  example of an N =  32-sample 
differentiator is shown  in  Fig. 9. In  this figure is shown 
the  impulse  response,  magnitude  response,  and  the  error 
curve.  The  peak  error 6 is  approximately 0.0057. 

One could also  consider  designing  optimal  relative 
error  filters  by  changing  the  design  equations  slightly. 
For  example,  to design an  optimal  relative-error  dif- 
ferentiator we require 

-6 < I H ( e j u T )  - & ( e j w T )  1 5 6 
i.e., the  envelope of the  error  in  approximation is linear 

( 2 3 )  with  frequency  because  the  desired  frequency  response 
\.yhere is minimized. To get a purely  imaginary fie- is linear  in  frequency. An example of an  N=32-point 
quency response as in  (22), we require the impulse re- differentiator  designed  in  this  manner  is  shown  in  Fig. 

sponse  to  satisfy  the  symmetry  condition 10. The  peak  error 6 is now 0.0062, only  slightly  higher 
than 6 in  the  optimal  solution.  The  linearity Qf the  error 

- 

lz, = - h ~ - ~ - - l ,  n = 0, 1, - . . , N / 2  - 1 (24) envelope is evident  in  Fig. 10. 
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Fig. 11. Plot of step  response  and  frequency  response 
of an optimal  equiripple low-pass  filter. 

Design of Filters with Simultaneous  Constraints  on  the 
l ime and Frequency  Response 

We have discussed  design of digital  filters  that  ap- 
proximate  characteristics of a specified frequency  re- 
sponse  only.  Quite  often  one would  like to  impose 
simultaneous  restrictions  on  both  the  time  and  fre- 
quency  response of the filter. For  example,  in  the  design 
of low-pass  filters,  one  would  often  like to  limit  the  step 
response  overshoot  or  ripple; at the  same  time  main- 
taining  some  reasonable  control  over  the  frequency 
response of the filter.  Since  the  step  response  is a linear 
function of the impulse-response  coefficients, a linear 
program  is  capable of setting  up  constraints of the  type 
discussed  above. By  way of example, we consider the 
design of a  low-pass  filter  with  the following  specifica- 
tions. 

Passband: 

( N - 1 )  I2 
1 - 81 5 ho + 2h, cos wnT 5 1 + &. (26) 

n=l 

Slopband: 

(N-1) / 2  

- 8 2  I ho -I- 2h, cosonT 5 8 2 .  (27)  
n=l 

- 0.4 , I I I I I I 
0 3 6 9 12 15 18 21 24 

SAMPLE  NUMBER 

- 2 0  I 
U m t  

N.25 

62=0.00582 
61=0.145 

\ 

0 

-80  

I I 
0 1000 2 0 0 0  3000 4000 5C 

FREQUENCY, H Z  

Fig. 12. Plot of the step  response  and  frequency  response  for a low- 
pass filter  with  simultaneous  constraints  on both time  and fre- 
quency  response. 

Step  Response: 

-83 I gn I 8 3  

n = - (117 - 1)/2, . . . , - (IV - 1)/2 + N (28) 

where h, is  the  symmetric  impulse  response of the filter 
(h,=h-,, where n=O, 1, . . . , (lV--1)/2), g, is the 
filter step response  defined by 

2 hm, - ( A 7  - 1)/2 5 n 5 m 
gn = m = - ( ~ - 1 ) / 2  I 0, n < - ( A 7  - 1)/2 

and is the  number of samples of the  step response 
being  constrained.  For  optimization  there  are  several 
alternatives  that  are possible. One  could fix any  one or 
two of the  parameters 81, 82,  or 8 3  and minimize the 
other(s).  Alternatively  one  could set 81=a18, &=a28, 
and &=a38, where al, o ( 2 ,  and a3 are  constants,  and 
simultaneously  minimize  all  three  deltas. 

To demonstrate  this  technique we  have  designed a 
low-pass  filter  with N = 25 and  no  constraint  on 83. This 
design is an  optimal  equiripple  filter as discussed 
earlier and is shown  in  Fig. 11. In  this case we have  set 
61=25 8 2  and we obtain 83=0.12, a1=0.06,  and 6, 
=0.00237. The  results of setting 8 ~ = 0 . 0 3  and  then 
minimizing the  frequency  ripple  are  shown  in  Fig. 12. 
The  equiripple  character of the  frequency  response  has 
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been  sacrificed in  order  to  constrain  the  peak  step Conclusions 
response  ripple. The  ripple  values for  this new  design 
are 61=0.145 and 62=0.00582. Using  this  linear  pro- 
gramming  technique  one  can  obtain  tradeoffs  between 
any of the  deltas  to  get  a  design  best  suited  to  the  par- 
ticular  application.  The  filter of Fig. 12  was  designed 
for  smoothing  characteristic  speech  parameters  where 

The design of linear-phase F IR  digital  filters is 
shown  to  be a linear  programming  problem,  and  many 
useful problems  can be  solved  using  this  technique. 
Examples  have  illustrated  several  design  areas  that  are 
reasonable  candidates  for  linear  program  designs. 

step-response  overshoot  is a very  important  perceptual 
parameter. Acknowledgment 
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Computational  Considerations 

Since  one of the  major  aspects of digital  filter  design 
by  optimization  procedures  is  the  amount of computa- 
tion  necessary  to  produce  a  desired  result, i t  is  worth- 
while  discussing  some of the  details of our  simultations. 

The  programs we  have used throughout  this  study  are 
APMM  [15], an  IBM scientific  subroutine that  com- 
putes  a  Chebyshev  approximation of a given  real  func- 
tion  over  a  discrete  range,  and MINLIN, a program  written 
at Bell Laboratories  by  Mrs. W .  Mammel.  The  running 
time of these  programs  is  highly  dependent  on  the  num- 
ber of variables L, the  number of inequalities P, and 
the  “complexity” of the  results,  which  determines  the 
number of iterations  required  to  attain a solution. We 
have  found  that  the  time  per  iteration is  proportional 
to L2P. Our  typical  experience  is that   i t   takes  on  the 
order of 10 s to design the  frequency  sampling  filters 
discussed  earlier  (i.e., L 5 3 ,  P on  the  order of 1000). 
The  total  range of times  to design  optimal  filters  using 
APMM is shown below. 

N Kumber of Iterations  Total  Time(s) 

25 
49 
99 

2 7-58 

128 
53-82 117-194 

14-47 

1200 

Thus,  although  the  computation  time  is  reasonably 
high, i t  is  not  impractical  to design  high-order  filters  with 
this  technique.  The  argument  can  also  be  made  that  the 
most  important  application of these  techniques is in  the 
designs of F I R  filters  with  small  values of N (i.e., 
N1.50) in  which  case  the  computation  time  starts be- 
coming  more  reasonable. 
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