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Design  Techniques for 
Two-Dimensional 
Digital  Filters 

JAMES V. HU  and LAWRENCE R. RABINER 

Abstract-The theory  for designing  finite-duration  impulse  re- 
sponse (FIR) digital filters  can  readily be  extended  to two or more 
dimensions.  Using linear programming  techniques,  both  frequency 
sampling and optimal (in the  sense of Chebyshev approximation 
over closed compact sets) two-dimensional filters have  been success- 
fully designed.  Computational  considerations have limited the filter 
impulse response  durations (in samples)  to 25 by 25 in the  frequency 
sampling  case, and  to 9 by 9 in  the optimal design case. However, 
within these restrictions, a large  number of filters have  been investi- 
gated. Several of the  issues involved in designing two-dimensional 
digital filters are discussed. 

Introduction 

Techniques  for  designing  one-dimensional  digital 
filters  have  been  investigated  for  several  years,  and  are 
fairly well established  in  the  literature [1]-[7]. Very 
few of these  techniques,  however,  have  been  extended  to 
two  or  more  dimensions.  Since  there  is  no  lack of interest 
in  two-dimensional  signal processing, i t  is  worth  in- 
vestigating  those  design  procedures  that  are  readily  ex- 
tendable  to  two  dimensions.  In  this  paper,  the  frequency 
sampling  technique  and  optimal  filter  design  procedures 
are discussed  in  the  case of the design of circularly  sym- 
metric  two-dimensional  low-pass  filters. 

Before  discussing  the  results  obtained,  it is worth 
reviewing  the  state of the  art  in  designing  two-dimen- 
sional  digital  filters.  Two of the  most  common classes 
of one-dimensional  digital  filters  are  usually called 
recursive  and  nonrecursive  filters.  (The  alternate  termi- 
nology  infinite  impulse  response (IIR)  and finite  im- 
pulse  response (FIR)  has  recently been  proposed [8] 
and will be  used  throughout  this  paper.) I IR  filters  can 
be  efficiently  realized by  factoring  their  z-transforms 
into a cascade of real or complex  pole-zero networks  and 
realizing  the  filter  using  these  simple  sections. In  two 
dimensions,  however,  the  two-dimensional  z-transforms 
cannot  generally  be  factored  into  lower  order  systems 
[9], [lo]. This  leads  to  many  design  problems,  such as 
the  difficulty in determining  the  stability of the  filter, 
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as well as in  finding an  efficient realization  where  the 
coefficients may be truncated to a reasonabIe  number of 
bits.  Because of these difficulties, very  little  work  has 
been  done on designing I IR  two-dimensional  digital 
filters. 

For  FIR  digital filters, the  problems of stability  do 
not  exist in one  dimension as the  z-transform is a finite 
polynomial. Thus design  techniques  in  one  dimension 
are  often  directly  extendable  to  two  or  more  dimensions 
by  appropriate  modifications  to  the  design  procedure. 
Huang [ill has  already  shown  how  the  windowing 
technique  may  be  extended to two  dimensions  by  form- 
ing  two-dimensional  circularly  symmetric  windows  from 
one-dimensional  windows. The  remainder of this  paper 
discusses  the  design of circularly  symmetric  frequency 
sampling  filters  and  optimal  (equiripple)  filters. 

Theory of Two-Dimensional FIR  Filters 

Let h ( n 1 ,  n2) be the  impulse  response of a two- 
dimensional  filter  where - 00 <nl, n2 < 00. The two- 
dimensional z transform of the filter is defined as 

H ( z 1 ,  z2) = 2 5 h ( n 1 ,  %2)%1-n12z-”Z. (1) 
n1-w nz=-co 

If the  resulting  filter is to  be  stable,  the  impulse  response 
must  satisfy  the  condition 

m m c c I A(%, nz> I < O0 * (2) 
nl-w n2a-m 

For  IIR  filters (when any one of the  four  limits  on  the 
summation  is  infinite),  it  is  generally  quite  difficult  to 
determine  whether  or  not a particular  filter  is  stable, 
i.e.,  whether (2) is satisfied.  For FIR filters,  on the 
other  hand,  stability  is  always  guaranteed  since all four 
limits on the  summation  are finite and I h ( n 1 ,  nz) I < 00. 

If we restrict  ourselves  to  the  case  when h(n1, TJZ) is 
a finite  sequence  defined  from O<nl< N1- 1, 05922 
IN2- 1, then (1) becomes 

N1-1 Nz-1 

H ( z 1 ,  22)  = h(n1, nz)%1-”’Zz-n*. (3) 
nl=0 nz=O 

The  “frequency  response” of the filter  is  obtained  by 
evaluating (3) for z1 = ej‘l and zz = d u e ,  giving 

N - I  Nz-1 

~ ( e ~ 1 ,  e i u z )  = h(nl, nz) exp [ - j (w1~z1+wzn2)  1. (4) 
ni=0 n2=0 

The two-dimensional F I R  filter  may be realized in 
several  ways. The  simplest  technique is a  direct-convo- 
lution  realization  using  the  relation 

NI-I Nz-1 

y ( n 1 ,  n2) = c c h(m1, m z ) x ( n 1  - m 1 ,  n2 - mz) ( 5 )  
m1=0 mp=o 



250 IEEE TRANSACTIONS ON AUDIO AND ELECTROACOUSTICS, OCTOBER 1972 

where x(n1, nz) is the  input  to  the filter  and  y(nl, f l 2 )  

is the filter output. 
The  discrete  Fourier  transform  (DFT)  relations for 

the filter may  be  obtained  by  evaluating (4) at the 
discrete  set of values 

giving] 

The  inverse  DFT is readily  obtained as 

g(%, kz )  

and realizing that  the  inner  summation is a one-dimen- 
sional DFT where nl is held fixed;  once all the  inner 
summation  DFT's  have been  calculated  (calling  the 
results  g(nl, k 2 ) ,  the  outer  summation  is a D F T  where 
ka is held  fixed. 

A frequency  interpolation  formula  from  the DFT co- 
efficients may be derived  by  inserting (9) into (4), giving 

Interchanging  orders of summation,  and  summing  over 
the  nl  and n2 indices,  gives 

1 The terminology H ( k L ,  kz )  rather  than H(ei%, ejwkz) is used for 
notational convenience. 

where 

Equation (12) serves as the basis  for  designing  fre- 
quency  sampling  two-dimensional  filters. As seen  from 
(12) )  the  continuous  frequency  response of the filter is a 
linear  combination of shifted  interpolating  functions 
(A(k1, k2,  w1, w z ) )  weighted by  the DFT coefficients 
I?T(kl, k2).  The DFT coefficients are called frequency 
samples as they  exactly  specify  the  value of the fre- 
quency-  response a t  uniformly  spaced  frequencies.  For 
designing  frequency  sampling  filters,  the  majority of 
the  frequency  samples  are  given specific values  depend- 
ing  on  the  frequency  response  being  approximated.  The 
remaining unspecified frequency  samples  are  left as free 
variables  to  be  optimized  according  to  some  rninimiza- 
tion  criterion. The  details of frequency  sampling  design 
of two-dimensional  low-pass  filters will be  left  for  the 
next  section. 

For  designing  optimal  (equiripple)  filters  whose  peak 
error of approximation,  over  several closed areas in the 
wl, we plane, is minimized, (4) can  be  applied  directly.% 
In  this  case,  the filter  coefficients are  the  impulse re- 
sponse  samples that  are chosen to  minimize the  ap- 
proximation  error  using  an  optimization  procedure. 
Since  the  filter  frequency  response of (4) is still  linear 
in  the  filter coefficients (h(n1, E ? ) ) ,  optimization  proce- 
dures  similar to  those used to design  frequency sam- 
pling  filters  may  be  applied.  The  details of this  method 
are discussed in a later  section. 

Finally, i t  can be observed  from (4) that  if certain 
symmetries  are  maintained  in  the  filter  impulse  re- 
sponse  coefficients  (similar statements  can be made 
about  the DFT coefficients), the filter's  frequency  re- 
sponse  becomes  purely  real, to  within a linear  phase 
shift  in  each of the two dimensions.  The  necessary  sym- 
metries  are 

The  application of (14) to (4) gives  (assuming N1, N 2  
even) 

can be applied  directly  for designing optimal  (equiripple) filters. 
Equivalently, by making all the DFT coefficients variable, (12) 
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N(k1,  N2/2) = N ( N 1 / 2 ,  kz) = 0 (24) 

must  be  maintained. 
Applying  these  constaints  into (12) and (13) yields 

the  following  equations  (after  considerable  arithmetic 
manipulations) : 

which is purely  real,  except for the  linear  phase  terms 
outside  the  summation. 

Design of Frequency Sampling Filters 

For  the specific  case of linear  phase  frequency sam- 
pling  filters, (12) and (13) can  be  modified  through use 
of the  symmetry  relations  on  the  DFT coefficients 
which are of the form 

H ( k l ,  k2) = I H(k1, kz) 1 ejs(kl ,k2)  (16) 

where 

1 H(k1, Kz) 1 = I w 1 ,  Na - k2) I 
= J H(NI  - k1, K z )  I ( 1  7) 

O(kl, k 2 )  = + e ( ~ ~ )  (18) 

and 

k,=l  Lz=l 

where 
w N 

sin 
2 

AT) = 

sin - 
2 

w 

2 5) 

N V =  { N 2 / 2  - 1, N z  even 
(29) (AT, - 1)/2, Nz odd. 

Although  cumbersome  in  appearance, (25) is seen to 
consist  basically of a sum of simple  interpolating  func- 
tions  that  are  shifted  (up  or  down)  in  frequency  de- 
pending  on k1 and k2. As such,  (25)-without  the  lead- 
ing  linear  phase terms-is the  basic  design  equation for 
frequency  sampling  filters. 

To apply (25) to  the  design of a circularly  symmetric 
low-pass  filter,  consider  Fig. 1 in  which the filter  re- 
sponse  regions  are  plotted  in  the ut, w2 plane. The pass- 
band is the region  where 
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I (0,-7fI 

Fig. 1. Regions in the (WI, w2) plane  over  which the filter 
response is specified for a low-pass filter. 

p(w1, L I Z )  = (w12 + w22)1 '2  5 Rl. (30) 

The  transition  band is the region  where 

R1 < p(w1, wz) < R2 (3  1) 

and  the  stopband is the region where 

p(w1, wz) 2 R2. (32) 

With  respect  to Fig. 1, the DFT points,  or  frequency 
samples,  are  located  on  an Nl by N z  grid of points  in  the 
wl, wz plane  as  shown  in  Fig. 2 for N1= 9, N 2 =  9. T o  
design a frequency  sampling  approximation to  the ideal 
circularly  symmetric  response 

the  DFT  values  that occur  inside the  passband  are 
given  a  value of 1.0;  those  that occur  in the  stopband 
are  given  a  value  0.0;  those  that lie in the  transition 
band  are free  variables whose value will be  chosen by a 
minimization  criterion. 

TO simplify both  the  equations  and  the  computation 
involved  in  performing  the  desired  minimizations,  the 
following assumptions will be  used  in  the  remainder of 
this  paper.  First, we assume N I  = Nz = odd  integer.  Next, 
we assume 

W K 1 ,  K z )  = H(R2, K1) (34) 

i.e., there is symmetry  across  the 45" diagonals  in  the 
w1, we plane. This is a  reasonable  assumption  for  design- 
ing  circularly  symmetric  filters  as (34) is  valid  in  the 
ideal  case of zero  approximation  error.  Finally,  we 
assume  the  linear  phase  term  in (25) can be disregarded 
in  terms of the design  procedure. 

With  these  assumptions  in  mind, (25) can  be  simpli- 

Fig. 2. 

. 

-t c- 

. 
. . . .  

Locations of frequency samples (DFT  points) for a 9 by 9 grid. 

M 
N(&L.'I , j 02 )  = a F ( W ,  4 + T m f L ( w 1 ,  4 (35)  

m=1 

where Hp(w1 ,  WZ) represents  the  contribution of the 
fixed D F T  coefficients (the  1.0's), T, represents  the 
amplitude of the  mth  DFT coefficient in  the  transition 
band, H,(wl, wz) represents  the  interpolation  function 
appropriate  to  the  mth  transition coefficient, and LV is 
the  total  number of transition coefficients. The  perti- 
nent design  equations  can now be put  in  the form 

1 - a6 5 H(ej"1, ej"2) I 1 + a6, 

for d o l ,  w J  I X1 (36) 

for P ( W ,  WZ) 2 RP (37)  
-6 5 H(ejwl, d o 2 )  5 6 ,  

where 6 represents  the  peak  approximation  error  in  the 
stopband,  and a6 (a any  constant)  represents  the  peak 
approximation  error  in  the  passband.  The  design goal is 
to  choose the  transition  samples so as  to minimize 8. 

The  above problem is readily seen to  be  a  linear  pro- 
gramming [ 7 ]  problem by  evaluating (36) and ( 3 7 )  at a 
dense  set of points  in  the  passband  and  stopband  and  by 
writing  the  equations  explicitly  as  linear  inequalities 
in  the  form 

M 

T m H m ( w 1 ,  w2) - a6 5 1 - H F ( W 1 ,  w2) 
m=l 

M 

- c T m H m ( w l , a 2 )  - a6 I - 1 + f I F ( W 1 ,  4 1 
m=l i 

for all points  with p(w1 ,  wa) 5 R1 (38)  
fir 

T m H m ( U l ,  wZ> - 6 I - ~ F ( w 1 ,  ~ 2 )  
m=1 1 

fied to  the form  choosing (T I ,   Tz ,  . . . , T M )  to minimize 6. 
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TABLE I 
Stopband Attenuation for Low-Pass Filters 

(Filter Attenuation in Decibels) 

(RZ-RI) * (12.5,'~) 
1 1.5 . 2  2 .5  3 

0 
1 
2 
3 
4 
5 

R1. ( 1 2 . 5 / ~ )  6 
7 
8 
8.5 
9 

-42.8 -69.28 
-37.37 -65.08 
-42.06 

-67.92 AF 
-38.56 

9.5 I -31.85 NC 

-21.87 -33.72 
-14.42 N C - ~  -48.35 

11 I -11.25 

A F  = algorithm failed for  undetermined reasons. 
NC =conyergence was not  attained within  a specified number of 

iterations. 

A I  = 5TT/ l2.5 
Re= 7 T / 1 2 . 5  
N i  = N 2  = 25 

AMPLITUDE  RESPONSE 

LOG MAGNITUDE  RESPONSE 

PEAK  ATTENUATION = -41 8 d B  LOG  MAGNITUDE  RESPONSE 
PEAK  ATTENUATION = -69.9dB 

Fig. 3. Amplitude and log magnitude response of a typical low-pass 
filter for a  transition  width of Rz- RI  =2~/12.5. 

Results of low-Pass Filter Design 

The  linear  programming problem of (38) and (39) 
was  solved  on a large  central  computer  (GE-635)  using 
the scientific  subroutine APlVIM [12]. A 64-1 interpola- 
tion  was  used  throughout  the  stopband  and  passband 
to  evaluate H(ejwl ,  ej'2) over a fine grid.  Table 1 pre- 
sents a summary of results3  obtained  for  the  case  where 
N1= N2 = N =  25 and a>>l, i.e.,  in-band  ripple  was  not 
constrained.  The  entries  in  this  table  give  values  for 20 
loglo 6 as a function of RI,  the  in-band  radius,  and 
R2-Rlr  the  width of the  transition  band.  For  many of 
the  entries  in  the  table,  the  linear  program  subroutine 
did  not  converge  within a specified number of itera- 
tions (on the  order of 200) and  the  run was  terminated. 
Each  filter  that  was designed  required  on  the  order of 
6-min computation  time  to  determine  the  transition 

I are available in [13]. 
The exact filter coefficients corresponding to  the  entries  in  Table 

Fig. 4. Amplitude and log magnitude response of a typical low-pass 
filter for a transition  width of Rz- R1 =3~/12.5. 

coefficients. This  was  due  to  the  large  number of con- 
straint  equations (on the  order of several  thousand), 
even  though  the  number of variable coefficients was 
small (on the  order of 10). 

If the  passband  ripple is unconstrained,  the  results of 
Table I indicate  that a transition  width of 2(~/12 .5)  
gives about  40-dB  stopband  attenuation,  whereas a 
width of 3(~/12.5)  gives  about 60-dB attenuation. Figs. 
3 and  4  show two-dimensional  perspectives  [14] of the 
frequency  response of two of the filters in  Table I .  Fig. 
3  shows  linear  and log magnitude  responses  for a filter 
with  Rl=5n/l2.5,  R2-R1=2r/12.5. Fig. 4 shows  linear 
and log magnitude  responses  for a filter  with R1 
= 3~/12 .5 ,   Rz-  R1 = 3n/12.5. These figures  clearly  show 
that  the  peak  in-band  ripple  occurs at the  edges of the 
passband,  and  the  peak  out-of-band  ripple  occurs at the 
edges of the  stopband.  (The filter  response  only  in  the 
region O j w l ,  w 2 < a  is shown  in  these  figures as the 
response in  the  rest of the w1, w2 plane  is  determined 
from  symmetry  considerations.) 
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R~GIONS OVER WHICH' 
FREQUENCY  RESPONSE 
IS OPTIMIZED 

Fig. 5. Modified regions in  the (WI, wt) plane over which the filter 
response i s  optimized for a circularly symmetric low-pass filter. 

- 30 

- 3 5  

-40 

0. .05 . IO .I5 .20 .25 a8 

PASSBAND RIPPLE 

Fig. 6.  Plot of tradeoffs  obtainable  between  passband ripple and 
peak stopband attenuation for  a fixed transition width. 

Since the  worst  ripples  occurred  near  the  edges of the 
transition  band,  a new set of filters  was designed  using 
the  constraint  on  passband  ripple.  In  an  effort  to  save 
computation,  the filter  response was optimized  over  the 
region  shown i n  Fig. 5. The regions O<p(wl,  up) 5 Rs 
and ul>wp> Rp were  unconstrained  because  the  ripple 
in  the  passband  and  stopband  becomes  quite  small  far 
from  the  hand edges. A filter was designed with 
R3=r/S2.5,  R1=27r/12.5, R2=4r/S2.5,  and with N 1  

= N z =  25. Values of a of 50, 10, 5 ,  and 1 were  used. 
Fig.16 gives a plot of the  measured  tradeoffs  between  the 
stopband  ripple 20 loglo 6 and  the  passband  ripple a6. 

'This curve  shows  that  considerable  improvement  can 
he made  in  passband  ripple  (a  reduction  from 0.24 to 
0.04) with  hardly  any  change  in  stopband  attenuation 
(0.8 dB). On the basis of these  results, i t  would  seem 
worth  the  computational  effort  to  constrain  the  in-band 
ripple at   the edges of the  passband.  Figs. 7-10 show the 
frequency  responses  for  the  cases a = 50 and a = 1, as 
well as magnitude  contour  plots  (magnitude>0.75)  for 
these  two cases. In  the  contour  plots, a dotted  contour 
is drawn  each 0.05. The  passband  and  the  transition 
region  for the a = 1 case are significantly  more  circularly 
symmetric  than for the a=50 case,  because the a= 50 
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RI =27T/12.5 

R 3 ’  7T/  12 5 
R2 = 4 T /  12.5 

a = 50 

N I  = N 2 =  25 

AMPLITUDE RESPONSE 

LOG MAGNITUDE  RESPONSE 
IN-BAND  RIPPLE = 0 . 2 4  

PEAK  ATTENUATION = - 4 2 d 8  

Fig. 7. Amplitude and log magnitude  response of a 
low-pass filter with LY = 50. 

1.02 \ \\v 

Fig. 9. Contour plot of passband  and transition 
band response for  the filter of Fig. 7. 

R,: 2 ? 7 / 1 2 5  

R 2 = 4 T T / 1 2 . 5  
R = lT/ 12.5 
a = I  

N l  = N 2 = 2 5  

AMPLITUDE RESPONSE 

LOG MAGNITUDE  RESPONSE 
IN-BAND  RIPPLE ~ 0 . 0 3  
PEAK  ATTENUATION = - 30d8 

Fig. 8. Amplitude and log magnitude response of a 
low-pass filter with LY = 1. 

R 1 ’ 2 ? 7 / 1 2 5  

R 2 = 4 ? 7 /  12.5 

R 3 =  l T /  12.5 

N I =  N 2 = 2 5  

Fig. 10. Contour plot of passband  and transition 
band response for  the filters of Fig. 8. 

case  essentially  has  an  unconstrained  passband  and  thus 
the  requirements  for  maintaining a good approxima- 
tion  to  circular  symmetry  in  the  passband  are  not  met. 

Design of Optimal (Equiripple) Filters 

By allowing  all the  impulse  response coefficients to 
vary, or  equivalently all the DFT coefficients,  filters can 
be  designed  which are  optimal  in  the sense of Chebyshev 
approximation  over closed  regions. For  the case  when 
all the   DFT coefficients are  varied, as was  done  here,  the 
filter  frequency  response is evaluated  using (25) and 
treating  all  the  filter coefficients H(rZ.1, rZ.2) as  unknowns. 

Optimal  approximations  to  circularly  synlmctric  filters 
may be  designed  (using  linear  programming  techniques) 
by  evaluating (25) a t  a dense  set of points  in  both  the 
passband  and  the  stopband  and  minimizing  both  the 
stopband  ripple 6 and  the  passband  ripple a6. 

Because of the increased amount of computation, 
necessitated both  by  the need to  evaluate H(e”1, 
e ju2)  over  the  entire w1, w2 plane  (except, of course,  the 
transition  band)  and  by  the  increased  number of vari- 
ables,  the size of the  impulse  responses  considered  was 
reduced  to Nl=Nz=9. Within  these  limitations,  four 
optimal  (equiripple)  filters  were  designed. A summary of 
the  results  for  these  four  cases  is  given  in  Table 11. 
Figs. 11 and 12 show  the  frequency response of the 
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TABLE I1 
Optimal Filters 

Filter 1 R1=2~/4 .5 ,  Rp=3~/4.5,  a = l  
in-band ripple =0.0867 
out-of-band attenuation = -21.24 dB 

Filter 2 RI = rr/4.5, R2 = 2 ~ / 4 . 5 ,  CY = 10 
in-band ripple =0.287 
out-of-band attenuation = -30.84 dB 

Filter 3 RI = 1.5rr/4.5, R2 =3~/4.5, cy = 10 
in-band ripple =0.079 
out-of-band attenuation = -41.97 dB 

Filter 4 RI = 21r/4.S, R2 = 3~/4 .5 ,  cy = 10 
in-band ripple =0.235 
out-of-band attenuation = -32.51 dB 

R 1  = 157T/4.5 
R 2 = 3 7 T / 4 5  
N l   z N 2 . 9  

AMPLITUDE RESPONSE 

LOG MAGNITUDE RESPONSE 
IN-BAND  RIPPLE = 0.08 

PEAK  ATTENUATION = 32 5 dB 

Fig. 11.  Amplitude and log magnitude response 
of an optimal low-pass filter. 

third  filter in Table 11 and a contour  plot of the log 
magnitude  response,  respectively. As the  contour lines 
in the  passband  and  transition region show,  the  pass- 
band  response is a good approximation to a circularly 
symmetric  response.  Fig. 11 also shows  the  interesting 
phenomenon  that  there  are  equiripple  ridges,  as well as 
peaks. Thus  the  ripple of the  frequency  response  may 
attain a maximum  or  minimum  in a continuous region 
of the w l ,  w2 plane  (corresponding to  the  equiripple 
ridge), as well as a t  isolated  unconnected  values.  This 
is  an  added  complexity to the one-dimensional  design 
case  where,  because of the well-ordered frequency scale, 
the ripple  peaks  alternate  between  maxima  and  minima. 
This  phenomenon  suggests  that  simply  counting  points 
a t  which H ( e j W I ,  e j W 2 )  attains a maximum  value  can  lead 
to significant  errors  in  designing  equiripple filters. For 
this  reason  several of the one-dimensional  design  algo- 
rithms 131, [ S I ,  [6] are  not readily  extended  to  two 
dimensions. 

Fig. 12. Contour plot of the response of the filter of Fig. 11. 

Conclusions 

This  paper  represents  preliminary work on  tech- 
niques for  designing  two-dimensional  digital  filters. I t  
shows  that  the  frequency  sampling  and  optimal 
(equiripple)  design  methods  can  be  carried  over  to  the 
two-dimensional  design  problem  directly,  although a t  
considerable  computational  cost.  Future  efforts  along 
these  lines  should be aimed a t  lowering  these  costs. 
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Synthesis of Recursive as  follows [14]. LetJ(x) be a given  real-valued  function 

Digital  Filters  Using 
the Minimum p-Error termine  the n parameters A*EP such  that 

defined on a set X ,  and  let F ( A ,  x) be a real-valued ap- 
proximating  function.  depending  continuously on x E X  
and  on n parameters A .  Given a distance  function p ,  de- 

Criterion 

ANDREW G. DECZKY 

Abstract-The problem of designing a stable recursive  digital 
filter to  have  an arbitrarily  prescribed  frequency response  may  be 
considered as  an approximation problem. Using the minimum p-  
error criterion, a  new problem of minimizing a  function of n variables 
results, which is successfully  solved using  the Fletcher-Powell 
algorithm. An important theorem  guaranteeing  the existence of a 
stable optimum for a large  class of synthesis problems is  stated,  and 
necessary modifications to  the Fletcher-Powell algorithm to  assure 
stability are considered. Finally a number of results of the applica- 
tion of this  method  are given. 

P W ” ,  X > , - m l  5 P l W ,  x),”f(x>l, for all A E p. (1) 

The  solution  to  this problem is said  to be a best  approxi- 
mation  with  respect  to  the  distance  function p chosen. 

For recursive  digital  filter  synthesis we have  the fol- 
lowing identification.  Let  the  transfer  function H ( z )  be  a 
function of n parameters (e.g., the filter  coefficients) and 
order  these  in a vector A .  The  independent  variable x is 
now the  digital  frequency +=UT, and  the  set X is 
(4:  O < # ~ T ) .  Then  the  frequency  response of the filter 
(such as magnitude  or  group  delay)  may be  expressed as 
a real-valued  function of A a n d 4 ,  i.e., F(A, q5), while the 
desired  frequency  response becomes f (+). 

Having defined the problem  in  these  general  terms, 
we must now make specific  choices for  the  distance  func- 
tion p, the form of the filter  transfer  function H ( z ) ,  the 
parameter  vector A ,  and  the  method of solution  (this 
depending on the  distance  function p chosen). 

II. The Distance Function 
1. The Approximation Problem 

The  distance  function we  have  chosen  is  one of the 
The problem  of  designing a recursive  digital  filter to  most  often used, namely weighted L,  

have  an  arbitrarily prescribed  frequency  response  may 
be  regarded as a classical approximation  problem.  The 
advantage of this  approach is that  many  methods of 

1 /P 

- 

solution  for  such  problems  exist. 
~~ 

The classical approximation  problem  may be stated 
where w(+) is a positive  weighting  function. The  reason 
for this choice is that  L p  approximations  have  been ex- 
tensivelv  studied,  and  their DroDerties are well known. 
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