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LAWRENCE R. RABINER 

Absfracf-A digital random number  generator  that  generates 
number  sequences with either uniform or Gaussian distributions has 
been constructed in  TTL digital hardware for use  as a  peripheral 
device to a DDP-516 computer. The  hardware design is  based on an 
algorithm described by Rader,  Rabiner,  and  Schafer [l]. Approxima- 
tions to the Gaussian  distribution are  generated by summing NA+ 1 
consecutive numbers  from  the uniform sequence,  where LVA (the 
number of additions) is specified by the  user  and  is  in  the  range 
0 5  NA 5213.  Measurements of its autocorrelation  function, power 
spectrum, and amplitude  histograms  indicate that  the  generator 
produces  uncorrelated  samples with amplitude  distributions that  are 
very close to  the desired uniform or Gaussian distributions.  For gen- 
erating  Gaussian  numbers,  the  hardware generator  operates at  least 
600 times  faster  than  an equivalent  software realization. 

Introduction 

Random  numbers  are used extensively in many  com- 
puter  simulations.  For  example,  a  random  signal is re- 
quired  for  unvoiced  excitation  in  speech  synthesizers 
and as a stimulus  in  many  psychoacoustic  experiments. 
Random  numbers  are  also  essential  for  Monte  Carlo 
simulations of perceptual  processes  and  neural  process- 
ing  models.  The  pseudorandom  number  sequences  that 
are  used  in  such  applications  are  typically  generated  by 
some  iterative  arithmetic  process  that is chosen  to 
guarantee a large  period of repetition  and  suitable  sta- 
tistical  properties. A major  disadvantage  with  such  se- 
quences is that  the  computations  required  for  their  gen- 
eration  are  generally  quite  time  consuming.  For  this 
reason, we have  constructed  a  hardware  digital  random 
number  generator  that  operates  as a peripheral  device 
to  a DDP-516  laboratory  computer.  This  device  pro- 
vides reproducible pseudorandom  number  sequences 
that  approximate  either  uniform  or  Gaussian  amplitude 
distributions. 

Description of the  Noise  Generator 

The basic  subsystem  in  the  hardware  design is a uni- 
form  number  generator  based  on  an  algorithm  de- 
scribed  by  Radar et al. [I].  Each  bit of an  L-bit  random 
number X ,  is derived  by  an  EXCLUSIVE-OR  operation  on 
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Fig. 1. Hardware configuration for  uniform generator algorithm. 

a pair of corresponding  bits of the  two  previous  numbers 
X,-1 and X,-2. These  bits  are  not  stored  in  the  bit posi- 
tions  from  which  they  were  produced, but  instead  each 
new bit is rotated  cyclically  to  the  right  by  P-bit posi- 
tions.  The  basic  hardware  configuration  that  realizes 
this  algorithm  is  shown  in  Fig. 1. Three  numbers  exist 
in  the  circuit;  the  present  number X ,  and  the  two 
previous  random  numbers X,-1 and X,-z. The  next 
random  number X, is generated  after  the  present X ,  is 
clocked into  the flip-flops  storing X,-1 and  the  present 
X,-1 is clocked into  the flip-flops storing X,-z. I n  Fig. 1 
the  outputs of the EXCLUSIVE-OR gates  are  rotated  one 
position to  the  right.  In  a  more  general case  they  may 
be  rotated P positions  to  the  right,  where,  for good sta- 
tistics, P must be  mutually  prime  to L [1]. 

Such  a  configuration  has  obvious  hardware  advan- 
tages  since  the  total  time  to  compute  a new number is 
the flip-flop settling  time  plus  the  delay  through  the 
EXCLUSIVE-OR  gate.  Furthermore,  for  L-bit  random 
numbers,  the  only  hardware  required is 2L flip-flops for 
storage of X,-1 and L EXCLUSIVE-OR  gates,  and 
the  necessary  control logic. 

The periods of sequences  generated  by  this  algorithm 
depend  on L and P. P should  be  mutually  prime  to L 
and  long  periods  are  obtained  only  for  certain  values of 
L [l] .   In  the  system  that we have  constructed,  the  word 
length is 19  bits  and  the  outputs of the  EXCLUSIVE-OR 
gates  are  rotated  eight  positions  to  the  right.  For  these 
conditions,  the  period is 14 942 265.  As shown  in  the 
next  section,  the  sequence  values  obtained  using  the 
above  algorithm  are  nearly  uniformly  distributed. 

An  approximation  to a Gaussian  distribution of am- 
plitudes  can  be  obtained by summing  a  finite  number of 
uniformly  distributed  numbers.  Using  this  principle, we 
have  designed  and  built a flexible hardware  random 
number  generator  that  approximates  pseudorandom 
number  sequences  with  either  uniform  or  Gaussian  am- 
plitude  distributions.  Fig. 2 shows  a  block  diagram of 
the  hardware,  which  operates as a peripheral  device  to a 
DDP-516  computer.  The  19-bit  uniform  generator 
described  previously is the  basic  subsystem.  The  uni- 
form  generator  can  be  reset  to its initial  statel  by  an 
output  instruction  from  the  computer,  thus  enabling 
the  user  to  obtain  reproducible  pseudorandom se- 
quences. The  computer  commands  the  generator  to  pro- 

1 The initial state of the system is (in binary form) X,+, 
=0000000000000000000andX,-~=1000000000000000000. 
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Fig. 2. Block diagram of hardware  number generator. 

duce  either  uniform  or  approximately  Gaussian  number 
sequences  by  outputting  to  the  generator  a  constant 
N A ,  as  shown at   the   bot tom of Fig. 2. If N A  is zero,  a 
uniformly  distributed  sequence  is  produced,  while if 
N A  is  in  the  range 1-213, an  approximation  to  a  Gaus- 
sian  distribution  is  produced as a result of accumulating 
2-214 samples of the  basic  19-bit  sequence. 

This  is  accomplished  in  the  hardware  by  connecting 
the  output of the  uniform  generator  and  the  output of 
an  accumulator  register  to  the  inputs of a carry-save 
adder.  The  output of the  adder  is  connected  to  the  input 
of an  accumulator  register  that  accumulates  from 2 to  
214 uniformly  distributed  numbers.  The size of the  ac- 
cumulator  register is 26 bits,  which is the  maximum size 
of any  result  obtained  by  summing 214 consecutive  19- 
bit  uniform  numbers  starting at the  beginning of the 
uniform  sequence.  When  fewer  uniform  numbers  are 
summed,  the size of the  result  held  in  the  accumulator is 
equal  to  or less than 26 bits.  For  any  size  result  the 
multiplexer  selects  the 16 most  significant  bits  and 
transfers  them  from  the  accumulator  to  the  computer 
upon computer  request. 

The  transaction  between  the  computer  and  the  ac- 
cumulator is handled  through  a  computer  data  channel 
and is  completed  in  1.92 ps. However,  the  hardware, 
which is constructed  out of high-speed TTL logic cir- 
cuits  and  uses  the  carry-save  adder  technique,  is  capable 
of generating  numbers at a  much  faster  rate.  The  time 
required  by  the  hardware  to  generate a number  depends 
on the  number of additions i t  has  to  perform.  This  time 
is approximated  by 

T = 0.075(5 4- N A )  p s ,  

where N A  is the  number of additions.  Thus,  the  gen- 
erator  can  produce  one  uniform  number  every 0.375 ps 
and  one  Gaussian  number,  obtained  with  15  additions, 
every 1.5 ps. 

These  times  are  significantly  faster  than  software 
realizations of the  same  algorithm.  Table I shows  com- 
parisons  for  the  hardware  and DDP-516 machine 

Uniform 0.375 62.4 166 
Gaussian (Nd = 15) 1.5 920 613 

Fig. 3. Hardware  random  number  generator. 

language  programs  that  produce  the  same  sequence. 
With  a  slight  modification  the  hardware  could  be 

made  into a stand-alone  device  or  could  be  used  as a 
component of a larger  system. As a  stand-alone  device, 
the  initializing  parameters  could  be  entered  manually 
and,  with a D/A converter at the  output,  the  generator 
could  serve as an  analog  random noise generator. 

The  hardware  random  number  generator is shown  in 
Fig. 3. The device  was  built  with  the  following  basic 
components:  four-wire  wrap  circuit  boards  that  plug 
into  a  holding  case;  about 200 T T L  dual-in-line  inte- 
grated  circuit  packages;  and a power  supply. I t  should 
be  noted,  however,  that  this  device  was  designed  to 
operate a t  high  speed  and  to  have  more  flexibility  than 
might  normally  be  required. A generator  designed  for 
slower  speeds and using a carry-ripple  adder  would  re- 
quire  fewer  integrated  circuits. If the  number of addi- 
tions  used to  produce  a  Gaussian  approximation is fixed, 
the  multiplexer  and  some  control logic could  be  elimi- 
nated. If a  Gaussian  approximation is not  required,  the 
basic  hardware  reduces  to  little  more  that  what is 
shown  in  Fig. 1. 

Statistical  Properties 

The  period of the  19-bit  uniform  generator  is  satis- 
factory  for  speech  and  auditory  simulations.  However, 
a long  period  alone  does  not  insure a useful  digital  ran- 
dom  number  generator.  Given a sequence  with a long 
period,  the  main  concern  is  how well the  statistical  prop- 
erties of the  sequence  match  those of a desired  random 
process. In  particular, we are  generally  concerned  with 
the  autocorrelation  function,  the  power  spectrum,  and 
the  amplitude  distribution of the  numbers in the se- 
quence.  Fig.  4  shows an  estimate of the  autocorrelation 
function  and  the  power  spectrum  for  the  uniform  gen- 



238 IEEE TRANSACTIONS ON AUDIO AND ELECTROACOUSTICS, OCTOBER 1972 

‘ O r  ~ ~ 

AUTOCORRELATION  FUNCTlON~- . __ 
1 

-.04 
0 

LAG ( SAMPLES1 

POWER SPECTRUM 

256 512 

27--------- 

I 

-_ _J 
0 0 25 0 5  

NORMALIZED FREQUENCY 

Fig. 4. Autocorrelation function and power 
spectrum for uniform  generator. 

2500k 

NUMBER 

Fig. 5. Histogram of uniform generator. 

erator [2]. The  value of &(O) is normalized to 1.0, while 
the  maximum  value  obtained  for  any  other  lag is 0.016. 
I t  is clear  from  this  figure  that  there  are  no  irregularities 
present  in  the  autocorrelation  function.  Statistical  tests 
showed no  reason  to  reject  the  hypothesis  that  the  se- 
quence  approximates  uncorrelated  or  white noise. The  
amplitude  distribution of the  uniform  generator  was 
measured  and a typical  result is shown  in  Fig. 5. The  
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Fig. 6.  Histogram of triangular  generator ( N 2 A  = 1). 

most  significant 16 bits of the  19-bit  word  were  selected 
and  the  result  interpreted  as  a  two’s  complement  nunl- 
her.  Therefore,  the  numbers  range  from  -32768  to 
+32767. The  histogram in  this  figure mas constructed 
from a sample of 49984 values of the  sequence.  The 
dashed  line  indicates  the  expected  number of occur- 
rences  in  each cell for the  assumption  that  the  numbers 
are  uniformly  distributed.2 A x2 test  was performed to 
test  the goodness of fit of this  uniform  distribution,  and 
at the 5 percent level of significance, there is no  reason 
to  reject  the  hypothesis  that  the  distribution is uniform 
as  shown.  Thus,  measurements of the  autocorrelation 
function  and  the  amplitude  distribution  indicate  that 
good approximations  to  uniformly  distributed  white 
noise sequences  are  produced  by  the  hardware  operating 
in the  uniform  mode. 

The  central  limit  theorem  provides a theoretical  basis 
for  obtaining a Gaussian  distribution  by  summing a 
finite  number of values of the  uniformly  distributed se- 
quence. If N random  variables  are  summed,  the  result- 
ing  amplitude  distribution is the  (N-1)-fold convolu- 
tion of the original  probability  distribution  with  itself. 
As N increases,  the  distribution  approaches  Gaussian. 
For  example, if two  identically  distributed  uniform 
random  variables  are  summed  the  resulting  amplitude 
distribution is triangular.  Fig. 6 shows the  amplitude 
distribution  measured  for  the  sequence  resulting  from 
summing  two  uniformly  distributed  variables.  The 
straight lines  indicate  the  expected  number of occur- 
rences  for the  assumption  that  the  numbers  are  tri- 
angularly  distributed. 

As the  number of uniform  variables  that  are  summed 
increases,  the  distribution  more  nearly  approximates  a 

the  others have  width 3000. Thus,  the end cells have  proportionally 
The cells on each end of the histogram are of width 2768 while 

fewer occurrences. 
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Gaussian  distribution.  An  example  is  shown  in  Fig. 7. In  
this  example,  16  consecutive  19-bit  numbers  from  the 
uniform  generator  were  summed  to  produce  each  value 
of  a new sequence. The  distribution of sequence  values 
shown  in  Fig. 7 was  based  on  49 984 samples of this  se- 
quence. The  smooth  curve is a  Gaussian  distribution 
with  mean  and  variance  equal  to  the  sample  mean  and 
variance. Fig. 8 shows  an  estimate of the  autocorrelation 
function  and  the  power  spectrum  for  this  generator.  The 
value of R,(O) is  normalized to  1.0 while  the  maximum 
value  obtained  for  any  other  lag  is 0.016. A x2 good- 
ness-of-fit test  indicates  that  there  is  no  reason  to  reject 
the  hypothesis  that  the  distribution  is  Gaussian at the 
5 percent  level of significance. 

The  amplitudes of the  uniform  generator  are  very 
close t o  being  uniformly  distributed  with  numbers 
between -32 768 and +32 767. Also,  computed  esti- 
mates of the  mean  and  variance of the  uniform  number 
sequences  are  very close to  the  theoretically  determined 
mean  and  variance of such  a  uniform  distribution.  When 
N A  +l numbers  are  added to obtain a Gaussian  ap- 
proximation,  the  theoretical  mean  and  variance  increase 
in  proportion  to N A  + 1. However,  since  only  the  most 
significant  16  bits  are  returned  to  the  computer,  each 
number is effectively  divided  by a power of 2, which 
depends  on N A .  The effect on  the  mean  and  variance  is 
given  by  the  equations 

( N - 4  + 1)po 
P N A  = __ 

[ D ( N A ) ] i  (1) 

and 

( N A  + 1 ) d  
U N A 2  = - > 

D ( N A )  (2) 

where ~ N A  and UNA> are  the  mean  and  variance for N A  
additions, po and  the  mean  and  variance of the  uni- 
form  distribution,  and D ( N A )  is determined  by  hard- 
ware  considerations.  Table TI shows D ( N A )  as  a  func- 
tion of N A .  

The  theoretical  standard  deviation  for  the  uniform 
generator is ( T O =  18 919. A computed  estimate of the 
standard  deviation is 18 910 as seen  in  Fig. 5 .  Using 
Table I1 and (2),  the  theoretical  standard  deviations for 
the  examples of Figs. 6 and 7 are ~ l =  13 378 and 
~15=4730  as  compared  to  the  computed  estimates of 
13 446 and 4759, respectively. As seen  from  these  exam- 
ples,  there  is a close  agreement  between  the  theoretical 
and  computed  estimates of variance  for  the  samples 
shown. In  fact, we have  found  that ( 2 )  and  Table I1 can 
be  used  to  reliably  predict  the  variance  for  any  number 
of  addition^.^ 

The  uniformly  distributed  sequence  has  a  period 
Nu= 14 942 265. Since  the  Gaussian  sequence  is  ob- 

Note  that some control  over the variance is offered by the choice 
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tained  by  summing N A  +1 values of the  uniform  se- 
quence,  the period of the  Gaussian  sequence is 

1ITG = N o / M  

where M is the  greatest  common  divisor of N u  and 
N A  f l .  The  period of the  uniform  generator  can  be 
expressed as 

N U  = (3)(5)(13)(19)(37)(109). 

Thus,  to  insure  that  the  greatest period is achieved, 
N A + 1  must  not  have a factor of 3, 5, 13, 19, 37, or 
109.4 All other choices  produce  a  period N G =  14 942 265. 
Thus  in  our  example,  the  Gaussian  generator of N A  = 15 
has  the full  period N n .  

Summary 

A flexible pseudorandom  number  generator  that  pro- 
vides  reproducible  uniform  or  Gaussian  sequences  has 

related  for lags greater  than N u / ( N A + ~ ) .  
4 Note  that in all cases, the Gaussian  samples will not be uncor- 

Digital  Ladder 
Structures and 

oefficient  Sensitivity 

RONALD E. CROCHIERE 

Abstract-Recently, there  has  been a great  deal of interest  in  the 
implementation of digital filter structures with low-coefficient word 
length. A conjecture has  been  made by Fettweis that if digital filter 
structures  are modeled after analog ladder  structures, which are 
known to have  desirable coefficient sensitivity  properties, then  the 
digital ladder  structures will also have  these properties and could be 
implemented with low-coefficient word lengths. 

TQ investigate this conjecture, a seventh-order  Chebyshev low- 
pass filter was realized as a digital ladder  structure  and  the coeffi- 
cfent sensitivity was analyzed  experimentally under coefficient 
rounding  in floating-point representation. To  serve  as a comparison 
similar  examples of cascade  structures of direct and coupled form 
sections  were also analyzed in  the  same  manner.  The conclusions 
drawn are  that,  indeed,  the digital ladder  structures  in  many  cases 
can be implemented with lower coefficient word lengths  than  the con- 
ventional structures. 
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been  constructed  using TTL logic circuits.  This  device 
provides  uniformly  distributed  numbers  about 166 times 
faster  than a  machine  language  program of the  identical 
generator  and  numbers  with  Gaussian  distributions 
( N A = l j )   a b o u t  613 times  faster  than a  machine  lan- 
guage  program.  This  increase  in  speed  over  software 
random  number  generators  makes i t  possible to  signifi- 
cantly  reduce  computation  time  in  simulations  that 
require  many  random  numbers. 
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1. Introduction 

Recent  studies  (Fettweis [I9 p. 79 ff], [2]) show that 
digital  filter  structures  can  be modeled after classical LC 
ladder  structures.  Since  doubly  terminated L C  ladder 
structures  are  noted  for  the  relative  insensitivity of their 
frequency response to  the  element  values,  it  has been 
conjectured  that  the digital structures  should  also  have 
this  desirable  insensitivity. 

In  digital  signal processing,  recursive  filters are  often 
implemented as cascade or parallel  structures of first- 
and  second-order  filters.  One  reason for this choice is to  
achieve  relative  coefficient  insensitivity. In  order  to com- 
pare  the  coefficient-sensitivity  properties of digital  lad- 
der  structures  with  those of the  conventional  cascade 
structures, a seventh-order  Chebyshev low-pass  filter 
was  realized as a  ladder  structure,  a  cascade  structure of 
direct  form  filters,  and  a  cascade  structure of coupled 
form  filters. The  degeneration  in  the  frequency responses 
of the  three realizations  are  compared  as  the coefficients 
are  quantized. 

Essentially  two  alternatives  are  available for the  de- 
sign of the  digital  ladder  structure.  The  first  method 
utilizes an existing  design of a lumped-element  analog 
ladder  structure  and  from  this  design a digital  ladder 
structure is derived  with  the  use of Richards’  transforma- 
tions,  Kuroda’s  identities,  and  the  “digitization”  methods 
of Fettweis [l,  p. 79 ff], [2]. The  second  alternative is 
to  utilize the  theory of unit-element  filters  directly in a 
synthesis  procedure [3], [9] and  synthesize a unit- 
element  ladder  structure, which can  then be  converted 
to a digital ladder structure,  again by the “digitization9’ 


