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On the  Transition  Width 
of Finite  Impulse- 
Response  Digital  Filters 

THOMAS W. PARKS, LAWRENCE R. RABINER, and 
JAMES H. MC CLELLAN 

Abstract-Several properties of finite-duration  impulse-response 
(FIR) digital  filters  designed to have the maximum possible number 
of ripples are discussed and  illustrated with examples. Such filters 
have been called  extraripple filters. Among the properties of such 
filters are  as follows. 

1) Ertraripple low-pass filters with fixed passband ripple 61 and 
stopband ripple 6 2  achieve the local minimum of transition  width in 
the class of linear phase filters with fixed impulse-response  duration 
of N samples. 

2) For  the  case & = 6 2  the minimum  transition  width is roughly 
independent of F,, the passband cutoff frequency. 

3) For  the  case &<a1, the minimum  transition width decreases 
with increasing bandwidth. 

Several figures are included to show the relation between  the 
transition width and  bandwidth  for low-pass filters. 

Introduction 

The  problem of designing  finite  impulse-response 
(FIR) low-pass  digital  filters  with  linear  phase  has  re- 
cently  been  studied  from  several  points of view [1]-[6]. 
While  the  problem of obtaining  optimum  magnitude 
characteristics  has  been  solved,  several  questions  remain 
concerning  the  width of the  transition  band  (stopband 
edge  minus  passband  edge)  for  filters  with  optimum 
magnitude  response.  This  paper  attempts  to  answer 
these  questions. 

Fig. 1 shows  plots of the  frequency  response  and  the 
error  curve of a typical  equiripple  low-pass  filter. T h e  
passband  cutoff  frequency is F, and  the  stopband  cutoff 
frequency is F,. The  maximum  deviation  in  the  pass- 
band,  or  passband  ripple  is 61, and  the  stopband  ripple 
is &. The  width of the  transition  band is AF= Fa-  F,. 
If the  duration of the  filter  impulse  response is N 
samples ( N  odd)  then,  for  given F, and F,, a  filter  with 
optimum  magnitude  characteristics  can  have  either 
(n+2) or (n f3 )  maxima  in  the weighted error  curve 
[ S ]  where 

N - 1  
2 

a = -  (1) 

and  the  weighted  error  curve is defined  by 
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Fig. 1. Frequency  response and  error curve for  anbptimal 
low-pass filter defining the basic filter parameters. 

W ( f )  is a weight  function  specifying  the  relative  magni- 
tude of the  error  in  the  passband  and  stopband  and  is 
defined by 

i 1, F ,  i f 5 0 . 5  
and g(f) is the  actual  filter  amplitude  response  which is 
defined as 

g(f) = d(K) cos (27rfh) (5) 
k c 0  

where  the d(K)  are  related  to  the filter’s  impulse  response 
h ( k )  } by  the  relation 

d(n - h) = 2h(k ) ,  k = 0,  1, . * , n - 1 

d(o) = h(n). (6 )  

The h(h)  obey  the  symmetry  condition 

h(k)  = h(212 - K ) ,  K = 0,  1, . * - , n. (7) 

For  the  optimum  magnitude  filter,  the  maxima of the 
weighted  error  curve  must  alternate  in  sign  and  be  equal 
in  magnitude,  i.e., 

e ( F J  = - e(Fi ,J ,  i = 1, 2, . + I n + 1 (8 )  
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where Fi are  the  frequencies a t  which the  error  maxima 
occur. 

I t  has  been  conjectured  that  filters  with n+3 maxima 
(the so-called  extraripple  filters)  have  minimum  transi- 
tion  width [4]. This  question of transition  width  for 
extraripple  filters  was  more  fully  explored  in  a  paper  by 
Hofstetter et al. [ 7 ] ,  which has  motivated  this  paper. 
By  mapping  the  interval 0 sf< 3 t o  the  interval - 1 _<x 
5 1 by  the  transformation x=cos 27rf, these  authors 
converted (5) from  a  trigonometric  polynomial  in f 
to  a  standard  polynomial in x. They  obtained  the  fre- 
quency  response 

n 

P(.) = G(f) Ir=cos ( ~ r f )  akXIz- ( 9) 
k=O 

Using  this  formulation  Hofstetter et nl. were able  to 
design a filter  with (n+2) maxima  x-ith a smaller  transi- 
tion  bandwidth  than  the  same  length  extraripple filter 
(n+3 maxima).  Both  filters  had  the  same  values  for 61 
and 62.  This  “counterexample”  precluded  any  argu- 
ments for the  optimality of extraripple  filters  according 
to  the  authors. 

Based  on  these  observations  a  more  detailed  evalua- 
tion of the  behavior of transition  handwidth as a func- 
tion of passband cutoff frequency  was  made.  This  paper 
describes  the  relation  between  transition  bandwidth 
A F  and  passband cutoff frequency F ,  for  linear  phase 
filters of fixed duration  with  optimum  magnitude  and 
fixed values  for 61 and 6 2 .  I t  will be  shown  that  the  extra- 
ripple  filters  are  local  minima  on  the  curve of A F  versus 
F ,  and  the influence of K = 81/62 mill be  described. 

local Minimum Property of Extraripple  Filfers 

Within  the  class of linear  phase  filters  with fixed 
duration N =  2n +1 samples,  and  with  optimum  magni- 
tude (6, and 6 2  fixed),  the  filters  with n+3 alternations 
in  the  error  curve locally have  minimum  transition 
width A F .  This  property  can  be  shown  by  first  noting 
that  by  the  results in [j], filters  with  optimum  magni- 
tude  must  have  either (n+2) or (n+3) alternations. 
Furthermore, if one of the  error  maxima is missing, i t  
can  only  be missing  from  one of the  endpoints ( f = O ,  
+, or  equivalently x = i l) ,  for  otherwise  more  than  one 
alternation  point would  be  lost  and  the  resulting  filter 
would not  have  optimum  magnitude.  Finally, if one of 
the  endpoint  maxima  are missing, the  same  scaling  argu- 
ment as used  in [ 7 ]  shows that  the  linear  compression 
to  give (nS.3) error  maximareduces A F .  Thus  the  extra- 
ripple  filters  represent  local  minima  on  the  curve of A F  
versus F,. 

The Relation Between AF and Fp 

In  order  to  better  illustrate  the  detailed  behavior of 
transition  width,  several  figures  are  included  for  various 
choices of filter  length,  and  weighting  factor K = 61/82. 
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Fig. 2. Transition  width as a function of passband cutoff 
frequency  for K = l ,  N=9, and N=ll. 

Fig. 2 shows a plot of A F  versus F,  for optimum 
filters of length N= 9 and of length N = 11. For  this 
example 81 = 6 2  = 0.1 (i.e., K = 1). Since  the  filter  design 
parameters  are F,, Fs,  and K ,  an  iterative  procedure  was 
used  to  adjust F, (or  equivalently A F )  to  achieve 
61 = 62 = 0.1 to  within  some desired  accuracy.  Generally, 
on  the  order of 10 iterations  were  required  to  achieve 
the  desired  resolution (81 = 82 = 0.1 within 0.01 percent). 
As seen  in  Fig. 2,  the  extraripple filters  1)oth  for N = 9  
and N = 11 correspond  to local minima of the  curves. 
(Table I gives  the  specifications of these  extraripple 
filters.) I n  between  these local minima  are  points  with 
greater  transition  width  corresponding  to  filters  with 
(n+2) alternations. I t  is  interesting to note  that  extra- 
ripple  length 9 filters are  essentially  optimum  length 11 
filters,  and  occur  between  the  local  minima  for  the 
N =  11  curve. I t  is  also  interesting  to  note  that  there  are 
optimum  length 9 filters  with smaller transition  widths 
than  optimum  length 11 filters.  However, for  a  given 
passband  edge  frequency, F,, length 9 optimum  filters 
always have  greater  transition  widths  than  optimum 
length 11 filters. 

To illustrate  several of the  above  points,  filters  cor- 
responding  to  four of the  points in the  curves of Fig. 2 
have been  examined  in  greater  detail.  These  points  are 
denoted  in  Fig. 2 by  the  letters A ,  B ,  C, and D. Fig. 3 
shows  the  magnitude  frequency  response  and  z-plane 
plots of the  zero  positions  for  these  four  filters.  Filter A 
is an  optimum  filter ( N =  11)  with 7 equiripple  alterna- 
tions (n+2) and  one  alternation which is not  equal in 
amplitude  to  the  other  ripple  peaks. T ~ U S  filter A is 
optimum,  but  not  equiripple.  Filter B is a  length 11 
extraripple  filter  with 8 equiripple  alternations (n+3). 
Filter C is an  optimum  length 11 filter  with 7 equiripple 
alternations.  Filter D is a length 9 extraripple  filter, 
which is also  an  optimum  length 11 filter. A Comparison of 
filters C and D shows  they  are  essentially  the  same  filter. 

The  z-plane  plots of Fig. 3 show how the  zeros  move 
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TABLE I 

Extraripple  Filters for N =9  and N = 11 (61 =62 = 0.1) 

nP Number of passband  ripples 
ns Number of stopband ripples 
Fp Passband cutoff  frequency 
F, Stopband cutoff frequency 
A F  Width of transition band 

N np n, FP F6 AF 

11 1 5  0.034406 0.096799 0.062393 
0 1 4 0.042644 0.119961 0.077317 

li  2 4 
9 2 3  0.150119  0.233909  0.083790 

0.121333 0.189137 0.067804 

11 3  3  0.215756  0.284244  0.068488 
9 3 2 0.266091  0.349881  0.083790 

11 4 2 0.310863 0.378667 0.067804 
9  4 1 0.380039 0.457356 0.077317 

11 5 1 0.403201 0.465594 0.062393 
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Fig. 3. Frequency response  and z-plane zero positions 
of four of the filters of Fig. 2, 
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Fig. 4. Construction for  demonstrating  the  symmetry of the curve of 
transition width versus  passband cutoff frequency for K = 1. 

as  we proceed  from  filter A to  filter D. Filter A has 3 
complex  conjugate  sets of zeros on the  unit  circle  and 
one  quadrouplet of zeros off the  unit circle.  Filter B has 
essentially  the  same  zero  position  plot as filter A since 
their  frequency  characteristics  are  very  close. In filter C, 
the  pair of zeros on the  unit circle  closest to a = - 1 has 
become a mirror-image  real  pair of zeros on the  negative 
real  axis  in  the z plane.  One  zero is approximately a t  
z = O ;  its  mirror-image  partner is almost at z =  - 00 

(actually  the  magnitudes of these  zeros  are 0.002 and 
495.5,  respectively). In filter D, the  zeros  on  the  real 
axis  are  gone  having  been cancelled by poles at z=O.  
T h u s  a filter  with a 9 point  impulse  response  and  essen- 
tially  identical  frequency-response  characteristics is the 
result,  as seen  earlier. 

Fig. 2 also  shows  that  for K =  1 the  plot of A F  versus 
F, is symmetrical  around F,=0.21576. (In this  case 
F, = 0.28424--i.e., (F,+ F , ) /2  = 0.25.) An explanation 
of this  symmetry is given  with  the  help of Fig. 4. Par t  
(a) of this figure  shows the frequency  response of a n  
optimum filter gcf) with  parameters F,, F,, 61, and 6,. 
Part  (b) of this figure  shows the  frequency  response of 
g(0.5 -f), which  is  essentially a high-pass  filter.  Finally, 
par t  (c)  shows  the  frequency  response of 1 -g(O.5 -f) 
which  is  again an  optimum  low-pass filter  with the  same 
61, 8 2 ,  and  transition  width as the  filter of (a), but  with 
passband  cutoff  frequency 0.5 - Fs, and  stopband cutoff 
frequency 0.5 - F,. Thus  the  curves of Fig. 2 are  sym- 
metrical. 

A d o t  of transition  width  as a  function of Dassband 
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Fig. 5. Transition  width versus  passband cutoff frequency 
for K=100, N=19, and N=21. 

cutoff  frequency  is  greatly  different  for K > 1 than  for 
K = 1. The  differences are  illustrated  in  Fig. 5. In  this 
figure  are  plotted  curves of A F  versus F, for  optimum 
filters  with N=19 and N = 2 1 ,  and 6,=0.01, K=100. 
(The  data  for  these  curves  were  obtained  in a way  sim- 
ilar  to  the  data  for  Fig. 2.) This  figure  shows  that as F,  
is increased,  transition  width  decreases  quite  dramati- 
cally.  For  the  widest  bandwidth  filters  the  transition 
width  is  on  the  order of one-half  the  size  required  for  the 
narrowest  bandwidth  filters. An intuitive  explanation of 
this  behavior  is  that as F ,  is increased,  and  stopband 
ripples  are  moved  into  the  passband,  they  are  allowed  to 
grow  by  a  factor of K (100 in  this  case),  thus  allowing a 
smaller AF.  For K < 1, A F  increases  with  increasing F,. 
This  figure  also  shows  that  the  symmetry  evident in 
Fig. 2 is  lost. The  argument used  to  justify  the  symme- 
try of Fig. 2 is invalid  when K # 1. 

Finally,  with  the  aid of Fig. 6 the  counterexample 
presented  by  Hofstetter et al. can  be  readily  explained. 
The  two local  minima  in  this  figure  correspond  to  extra- 
ripple  filters  with nP, the  number of passband  ripples, 
equal to 8, n,, the  number of stopband  ripples,  equaI  to 
3, and np=9, n,=2 (N=21,  &=0.01, K=100). The 
transition  widths  for  these  filters a t   t he  local  minima 
are 0.130 and 0.114, respectively.  Hofstetter et aZ. found 
an  optimum  filter,  (denoted as point A in  Fig. 6) which 
was not  extraripple,  with a transition  bandwidth of 
0.115. Since  the  transition  bandwidth of this  filter  is 
smaller  than’  that of the  extraripple  filter (n, = 9, n, = 2).  
Hofstetter et al. concluded that  the  optimum  filter  is  not 
necessarily  an  extraripple  design. As seen  in  Fig. 5 they 
could also have  used  an N =  19 extraripple  filter  with 
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Fig. 6. An explanation of Hofstetter’s  counter example. 

F,=O.358, AF=0.1266 as  a counterexample.  This  filter 
also  has a smaller AF than  their N = 2 l  extraripple 
filter. 

Conelusions 

This  paper has attempted  to  explain  several of the 
properties of the  transition  bandwidth of optimum 
linear-phase  low-pass  filters. The  behavior of transition 
bandwidth  as a function of passband  cutoff  frequency, 
and  the  ratio of passband  to  stopband  ripple has been 
illustrated  using  several  examples.  Finally,  the  counter- 
example of Hofstetter et al. is  explained in terms of the 
above  theory. 
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