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Abstract-A  great  deal of  attention has been given recently 
to the theory of designing optimum, linear  phase, finite  im- 
pulse  response (FIR) low-pass digital filters where N ,  the filter 
impulse  response  duration,  was odd. Tn this paper it is shown 
that the inclusion of optimal filters with  even  values of N gives 
additional flexibility to the general filter design  problem.  In 
particular, it will be shown  that for certain  ranges of filter cut- 
off frequencies,  length N filters ( N  may be either  even  or odd) 
have  smaller  ripple  than  length ( N  + 1) filters. Finally,  the 
general  properti.es of optimal filters with  even  values of N are 
discussed.  These include: filter types, scaling  procedures, 
Chebyshev solutions, and  symmetry of the basic  design  curves. 
The  necessary modifications to existing  design  programs for 
filters with  odd values of N to give filters with  even  values of N 
are  also discussed.. 

Introduction 

There have  been a  number of papers recently [l] - 
[8] that discuss the  theory of optimal (in the  mini- 
max sense),  linear phase, finite impulse response 
(FIR) low-pass digital filters. These papers have, for 
the most part,  concentrated  on  filters  with impulse 
response durations ( N )  that are odd. There is one 
good reason for  this choice of odd values  of N, and 
that is that linear phase filters  with odd values  of N 
have a delay that is an integral  number of samples. 
Thus, one can create  an equivalent unrealizable im- 
pulse response with zero delay by advancing the im- 
pulse response the  appropriate  number of samples. 
Linear phase filters  with even  values of IV have a 
delay that is not  an integral  number of samples, and 
hence  cannot  be simply shifted to create  a zero-phase 
sequence.  The  consequences of this  nonintegral num- 
ber of samples de1a.y for N even are increased compu- 
tational comp1.exity in designing the  actual filters, as 
well  as difficulty in understanding the basic proper- 
ties of the  optimal solutions.  For  these reasons most 
investigators have chosen to neglect the case  of  even 

Manuscript  received  December 20, 1972. 
L. R. Rabiner i s  with Bell  Laboratories, Murray Hill, N.J. 

07974. 
0. Herrmann  was on leave  at  Bell  Laboratories, Murray Hill, 

N.J. 07974. He is now with  the  Technical Faculty, University 
of Ewlangen, Nuernberg,  Germany. 

impulse response durations, while gaining a  better 
understanding of the  odd impulse response duration 
cases. In this  paper we attempt  to discuss theoretical 
and  computational  considerations in the design of 
optimal low-pass filters  with even  values of N .  We 
show that, in many ways, the  optimal  solutions  for 
even and  odd values of N are similar; however,  they 
do differ considerably in  some ways. 

Before discussing the characteristics of optimal fil- 
ters  with even  values  of N, it is worthwhile  summariz- 
ing the  four possible cases  of FIR  filters  with “linear 
phase.” Let  the impulse response of the  filter be 
{h(n) ,  n = 0,1,  2, . . . , N - 1) where N may be  either 
odd  or even. The frequency  response of the  filter is 

To achieve a linear phase response, H ( e i w )  is required 
to  be of the  form 

H ( e J w )  = f I N ( e j w )  I e-.jaw (2) 

where a is a  real positive constant  with the physical 
significance of delay  in samples. The  factor f in (2) is 
necessary, since H(ejw)  is actually of the  form 

H(ejw) = H*(ejw ) -  e jaw (3) 
where H*(ejw) is a real function taking on  both posi- 
tive and negative values. To achieve the constraints 
of (2) or (3) it is necessary and  sufficient [9] that 

h(n)  = h ( N -  1 - n) ,  0 < n < N -  1 (4) 

in which  case it is easily shown that 

.=(y). 
When N is odd,  the delay is always an integral  number 
of samples. However,  when N is even, the delay is not 
an integsal number of samples, but instead has an 
extra delay of half a sample. In both cases, however, 
the frequency response is entirely  real, to within  a 
linear phase term. 

The  requirements of (2) are that  the  filter has both 
constant  group delay and  constant phase delay.  In 
many cases  we are content with  only  constant  group 
delay-in  which case we can define [lo] a  second 
case  of a “linear phase”  filter in which the phase of 
H(ejW) is a piecewise linear function of a, i.e., 

q e i y  = I H(ejw) I ej(P-aw). (6 1 
It is easy to show that  the  only possible solutions  for 
p E [ - n ,   n ]  are p = f k r / 2 ,  k = 0, 1, 2. If p = 0, f ‘IT 

(6) is identical to (2). Thus  the  only new  cases are 
when p = f n/2. In these cases, it is readily shown 
that  the impulse response satisfies the  condition 

h(n) = - h ( N -  1 -  n) ,  O < n < N -  1 (7) 
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Fig. 1. Summary of  the impulse and frequency responses of 
the  four possible cases of a linear  phase filter. 

and a again is (N - 1)/2. Thus the frequency response 
for these  filters is seen to  be  purely imaginary, to  
within  a linear phase,  corresponding to a delay of 
(Y = (N - 1)/2 samples. Application of the  conditions 
of (6) and (7) has been made in the design  of wide- 
band  differentiators [ll] and Hilbert transformers 

In summary,  depending on  the value of N (odd  or 
even),  and the symmetry of the impulse response 
sequence  (symmetric or asymmetric)  there  are  four 
possibilities for  the frequency  response. Fig. 1 sum- 
marizes these four cases  by  showing the  four  types of 
impulse response,  and the corresponding  frequency 
responses (both magnitude and phase).  For the  de- 
sign  of low-pass filters, researchers have concentrated 
on  the case  of N odd,  and a symmetric impulse re- 
sponse. In this paper we discuss the case of N even, 
and a symmetric impulse response. The  remaining 
two cases are  not applicable to low-pass filters, since 
for these cases the frequency response is constrained 
to  be zero at w = 0-and this is clearly unacceptable 
for a low-pass filter. 

[=I.  

Frequency Response for N Even 

If  we impose the  symmetry  condition of (4) into 
(l), and  shift h(n)  to  the left by N/2 samples, we get 
a new sequence G(n) defined  from - (N/2) to N / 2  - 1 
with the  symmetry 

The resulting frequency  response is therefore 

( N / 2 ) - 1  a ( e j w )  = eiw/2 2G(n) cos [ o ( n  + + ) I  (9) 
n=O 

I 
I 
I 
I \ 

5 

FREQUENCY 

Fig. 2. Definition of optimal  filter parameters. 

which consists of a linear phase term (e jWl2 )  equiva- 
lent to one-half a sample advance, and a term which is 
purely  real. If  we define %f(ejw) as 

j j ( e i w )  = g ( e j w ) e - j a / 2  = ( N / 2 ) - 1  
2&n) cos [ w ( n  + +)I 

n =O 

(10) 

we see that H ( e j W )  is purely real and can  be used for 
design purposes since the term ejW12 does not  affect 
the magnitude response of the filter. It should  be 
noted  that one important characteristic of linear 
phase filters  with even  values of N is that 

H(ej") = 0 (11) 

independent of { h ( n ) } ,  i.e., the filter has a zero at 
z = -1. We will see later  that  the  constraint of (11) 
limits the range of  low-pass filters that can be 
designed. 

The  optimal low-pass filter  problem  can  be  stated 
as a weighted Chebyshev approximation  problem by 
defining Bp and  stopband Bs as 

Bp = { f ,  O <  f <  F p }  
B, = { f ,  F, < f < 0.5). (12) 

The desired frequency response of the low-pass fil- 
ter is 

The weighting function 
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allows the designer freedom to specify the relative 
magnitude of the  error  in  the passband and  stopband. 
Fig. 2 shows the frequency  response of a  typical  low- 
pass filter. 

Defining F as the union of the passband and stop- 
band, i.e., 

F = Bp U B, (15) 

the  optimal filter design problem becomes one of 
finding the set of $(n )  which minimizes 

max W(ejznf)  - I D(ejznf)  - I .  (16)  
f EF 

The problem  of (16)  can be  solved directly, using 
linear programming techniques [5] , or using a Remez 
multiple  exchange  algorithm [4]. For the linear  pro- 
gramming solution,  the  set of equations implied by 
(16)  is stated  explicitly as 

- 6 2  < 2&(n) cos [ a ( n  + +)] < s2 , 
W I 2 )  - 1 

n =O 

2nF, < w < n 
' 6  minimized (18 )  

where 82 is the maximum stopband  deviation,  and 
61 = K &  is the maximum passband deviation  (see 
Fig. 2). 

For  solution of (16 )  by the Remez  technique,  the 
trigonometric  polynomial of (10) is generally con- 
verted to a  real  polynomial by the  substitution 
[31 , ~ 4 1  

x = cos 0 (19) 

which,  after  considerable  manipulation (see the Ap- 
pendix), gives 

The  sequence b(n)  is straightforwardly  related to  the 
sequence &(n) through  trigonometric  identities. 
Equation (20)  shows R(x) to be the  product of a 
polynomial in x, weighted by the  function d m -  
hence g(x) is not a  polynomial in x. Therefore, many 
of the simple properties of the  solution by Remez 
techniques  cannot be used. There is a  straightforward 
way  of handling  this  difficulty. If we define P(x),  the 
polynomial  part of (20) ,  as 

we can express the design constraints [ (16) converted 
to x] as 

1 -  K62 < P ( x ) ~ <  1 + K 6 2 ,  X ,  < X <  1 

- 8 2  < P ( x )  .\/l?.x < 82 , - 1 < X < X ,  

(22) 

where X,  = cos (2nFP), and X ,  = cos (2nl7,). If we 
divide all parts of the inequalities of (22) by d m  
we  get the revised equations 

This revised set of equations may be thought of as 
having changed the desired frequency  response (13)  
to 

and the desired weighting function 

Ldl +cos 2 r f  , 

f EBP 

The polynomial  constraint  equations (23) can be 
solved  by Remez procedures  in much the same way as 
they were in the case of odd values of N [3] , [4] . 
The procedure  of Parks and McClellan [4] is pres- 
ently being modified  for  these cases. The  results  pre- 
sented in the following  sections  were derived using 
the linear  programming  approach. 

Optimality Criteria 

The basic optimality  criteria given  by Parks  and 
McClellan [4] must  be  modified to include even  val- 
ues of N .  In  this case (N even) their  first  theorem can 
be stated as follows. 

Theorem I: Let F be any closed subset of [0 ,  
- e ]  where E can be made arbitrarily small.' In 

order that 

n=O . 

be the unique  best  approximation on F to D(ejZnf) ,  it 
is necessary and  sufficient that  the  error  function 

E ( e j 2 n f )  = W ( e j 2 r f )  . [D(,iZnf) - H ( e j 2 n f  11 

'The closed  subset  cannot  include  the  point f = 0.5 because 
at this point  the  set of vectors {cos[27if(n + %I},  0 < n < 
( N / 2 )  - 1 is not independent and thus  does not satisfy the 
Haar condition. 
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exhibit  on F at least ( N / 2  + 1) alternations.  Thus 
E(ejzxFJ = - E(ejZvFi+I ) = * I l E I I  

with 

and 
Fi E F .  

Here 

For N even, the second  theorem of Parks and McClel- 
lan can be  stated as follows. 

Theorem 2: For  a  filter of length N samples (the 
approximation is being done with N/2 functions) the 
resulting  error curve must  exhibit (N/2 + 1) or 
(N/2 + 2) peaks. Two of the peaks are  located at 
Fp and F,. The  point f = 0 is guaranteed to  be  a  peak 
if there are (N/2 + 2) peaks;  otherwise it may or may 
not be a  peak.  The  point f = 0.5 is never a peak. 

The  proofs of the above theorems  are given by 
trivial extensions of those of Parks and McClellan, 
and  hence will not be reiterated.  Instead,  the impli- 
cations of these  theorems will be discussed. An im- 
portant result of the above theorems is that  the  opti- 
mal filter  for N even  may be an extraripple  filter  with 
(N /2  + 2) peaks in the error  curve),  or  an  equiripple 
filter  with N/2 + 1 equal  magnitude peaks in the error 
function. We will see later  that a  restricted  form of 
scaled extraripple  filters also exists as an optimal  solu- 
tion. Fig. 3(a) shows the magnitude response of a 
typical  extraripple  filter (N = 10) with K = 1, 
Fp = 0.3426, F, = 0.41623. As predicted  by the 
theorems,  there  are (10/2 + 2) = 7 points at which the 
error  function is a  maximum.  In  contrast, Fig. 3(b) 
shows the magnitude response of an equiripple  filter 
(N = 10, K = 1, Fp = 0.155, F, = 0.2445) where there 
are six points at which the  error  function is a 
maximum. 

Comparisons  Between  Even  and Odd N 

It is relatively easy to show that, if we restrict  our- 
selves to either  odd  or even  values  of N ,  an optimal 
filter  with impulse response duration of (N - 2) sam- 
ples cannot achieve better specifications (i.e., smaller 
peak error)  than an optimal  filter  with impulse re- 
sponse duration of N samples. This is clear since the 
set of filters  with impulse response duration of 
(N - 2) samples is a subset of the  set of filters  with 
impulse response duration of N samples. Thus  an 
optimal member of the subset of a larger set  cannot 
be better  than  the optimal member of the larger set. 
However, the above argument is not valid  when one 
compares optimal  filters  with impulse response dura- 
tion of N samples, with  filters  with impulse response 
durations of (N - 1) samples. A priori one cannot 
predict which filter can achieve better specifications. 

To illustrate the above argument, Fig. 4 shows a 
plot of the curves of transition  width ( A F  = F, - Fp ) 

FREQUENCY 

Fig. 3. (a) The magnitude response of an extraripple filter 
( N  = 10). (b) The magnitude response of an equiripple filter 
with one less than the maximum number of ripples. 

PASSBAND CUTOFF FREQUENCY (Fpl 

Fig. 4. Transition width versus  passband cutoff frequency for 
even  and odd values of N for optimal filters  with X = 1. 

versus Fp for lengths 9, 10, and 11 filters where 
a 1  = a2 = 0.1 in all cases. From  this figure several ob- 
servations can be made. 

Observation I: The transition  width for N = 10 fil- 
ters is sometimes smaller than  for N = 11 filters,  and 
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Fig. 5. The magnitude response of an extraripple filter  with Fig. 6. Tkansition width versus  passband cutoff frequency for 
one ripple in  the  stopband. even and odd values of N for  optimal  filters  with K = 100. 

is sometimes larger than  for N = 9 filters  with the 
same values of Fp . 

observation 2: There is no  symmetry  in the curve 
of AF versus Fp for N = 10, although the curves for 
N = 9 and N = 11 are  symmetrical  in that  for every 
point  on the curve  of F versus Fp with  coordinates 
(PP, A? = ps - PP) there is  a  symmetrical point with 
coordinates (0.5 - i?,, A P ) .  

Observation 3: The curve of AF versus Fp for 
N = 10 ends at an  extraripple  solution. 

The explanation  for  Observations 2 and 3 is related 
to  the behavior of the optimal  solutions at f = 0.5 
for N even. At this  point if(ej*) = 0, i.e., the  error 
function  does not have a peak as it does in the case of 
N odd.  Thus  a  simple  transformation of variables [6] 
does not yield an  optimal  filter  from  an  optimal  fil- 
ter, as for N odd.  Therefote,  no  simple  symmetry  in 
the durve  of AF versus Fp is maintained.  The  expla- 
nation  for Observation 3 is  given in Fig. 5, which 
shows the magnitude  response of the last  extraiipple 
filter. Because of the constraint of a  zero at f = 0.5, 
one  cannot  obtain  filters  with values  of F, arbitrarily 
close to 0.5, as for N odd. 

The  importance of Observation 1 should not be 
underestimated. It is an  unexpected  and  surprising 
result that  a filter  with N = 10 (i.e., approximation 
using  five functions) can achieve given ripple Specifi- 
cations  with  a smaller transition  width  than  a  filter 
with N = 11 (i.e., approximation using six  functions). 
Stated in a slightly different way, given fixed values 
of Fp , F, , and K ,  a  length 10 filter can achieve smaller 
ripple than  a length 11 filter.  For  example,  for the 
case Fp = 0.3426, F, = 0.41623, K = 1 ,  the length 11 
filter achieves = F 2  = 0.128215, whereas the length 
10 filter achieves 6 = a 2  = 0.1. Expressed as a loga- 
rithm,  the  stopband  attenuation of the length 10 fil- 

ter is approximately 2.2 dB better  than for the equiv- 
alent  length 11 filter. 

Fig. 6 shows a  plot of AF versus Fp for N = 9,10, 
and 11 with K = 100 (6, = 0.1, F 2  = 0.001). This fig- 
ure shows Fp in the range 0.15 < Fp < 0.35. The  be- 
havior of the curve of transition  width versus Fp is 
similar to  that of Fig. 4 in that  the N = 10 solutions 
sometimes have smaller transition  widths  than the 
N = 11 solutions,  and  sometimes have larger transition 
widths than  the N = 9 solutions. 

Scaled Extraripple Filters 

It has been  shown previously [7] that one can use a 
simple scaling procedure to obtain  certain  optimal 
solutions  from the extraripple  solutions when N is 
odd. These scaling procedures  only  partially  extend 
to  the N even case. Consider the filter  response G ( x )  
of (20), which was defined as 

B(x)  = P(x ) ,  - 1 < X < 1 (26) 

where P ( x )  is a  polynomial in x of the  form 

If  we make the  substitution 

x = a x r  + p  (27) 
into (26) we get 
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Since we require the resulting filter to be of the  cor- 
rect  form, i.e., 

R(x') = dG-7 c (n ) (x ' ) " ,  (30) 
( N / 2 ) - 1  

n =o 

this imposes the  constraint 

01 = 1 + p .  (31) 

Using this  result  either CY, or equivalently 0, is  as yet 
unspecified. The  constraint of (31) guarantees that  at 
x' = - 1, fi(x') = 0. One is now  free to map the  arbi- 
trary  point x = X 1  to x' = + 1. If X 1  is between 
X ,  (the  point nearest to x = 1 where B(x) = 1 k a 1  ) 
and + 1, the resulting filter is an  optimal  filter. If we 
impose the  constraint  that  the  point x = X 1  (arbi- 
trary) is mapped to  x' = 1 then 

x1 - 1 p = -  
n *  
L 

Optimal  filters  obtained  by the mapping of (27) have 
been shown to  have an error peak at f = 0 that  (ex- 
cept in the extremes of scaling) is not equal to  the 
error peaks at all other  error  extrema. These filters 
have  been called scaled extraripple  filters [7] . Addi- 
tional  details on these  solutions  are available in [7] . 

Although (27) shows how to  scale in the vicinity of 
f = 0, there is no readily obvious way to scale in the 
vicinity of f = 0.5 since R ( e i r )  is constrained to be 0 
at this  point.  Thus  a simple linear scaling cannot be 
applied.  The  experimental evidence is that  there is 
some  form of scaling which  is occurring, but  no  in- 
sight into  its  exact  form has been attained. 

The  sequence of filters in Fig. 7(a)-(e) shows the 
magnitude response of five of the filters of Fig. 4. 
Fig. 7(a) shows a scaled extraripple  filter response 
where the  error  at f = 0 is about  0.02, whereas the 
error at all other peaks is 0.1. Fig. 7(b) shows the 
extraripple  filter response from which the response 
of Fig. 7(a) was obtained. Fig. 7(c) shows an optimal 
filter response where the  error in the last  extremum 
is much smaller than  the  other error  extrema. A scal- 
ing procedure to account  for  how  this  type of filter 
response is obtained is not  yet  known. Fig. 7(d) 
shows a  filter response where the error curve at 
f = 0.5 has a  triple  zero due  to  the unexplained  be- 
havior noted above. Fig. 7(e) shows the magnitude 
response of a  filter  with a larger value of Fp than  the 
one of Fig. 7(d). This filter is an  equiripple  filter 
with (N/2 + 1) peaks in the error  function. 

Chevyshev Solutions 

As noted previously [ 8 ] ,  an analytical  solution for 
the  optimal filter  coefficients  can  be  obtained in the 
special case of one  ripple  in  either the passband,  or 
stopband when N is odd. When N is even, analytical 
expressions can be obtained only for  the case of one 

N = i O  
Fp 0.125 
Fs = 0.204 

0.6 
0.5 
0.4 
0.3 
0.2 1 \ 

0.9 N =  IO 
0.6 Fo 0.1342 

'0 0.1 0.2 0.3 0.4 C 
FREQUENCY 

5 

Fig. 7 .  The magnitude  responses of five optimal filters show- 
ing  various amounts of scaling. 

passband ripple.  In  this  section we outline  the  pro- 
cedure necessary to obtain  this  solution. 

Consider the scaled Chebyshev polynomial 

@(X) = 6 2 T M  ( X ) ,  -X0 < X < X0 , M odd (33) 

where TM(x) is a  standard Chebyshev polynomial, 
defined  by 

cos [M cos-1 x], - l < x < l  
T M ( x )  = { cosh [M cosh-' x ] ,  1x1 > 1 (34) 

and X ,  is the  point where TM(Xo)  = 1 + 6 J S 2 .  When 
M is odd,  the Chebyshev polynomials are  asymmetric 
around x = 0 (see Fig. 8) and  thus may be written  in 
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- (+ 
1+6, 

Fig. 8. The Chebyshev polynomial as a function of x. 

the  form 

M 
T&f(x) = b(rn)x" (35) 

m =o 

where b ( m )  = 0, rn = 0, 2, 4 , .  . . ,M - 1. The values 
of b(m) for rn odd  specify the  exact polynomial.  If 
we  use the  substitution 

x = x0 cos (0/2) (36) 

in (35), it is readily  shown (see Appendix) that 

( M -  1 )/2 

= d(rn)cos ( o ( m  +*))  (37) 
m=O 

which is essentially the frequency  response of a  linear 
phase filter  with N even (10) if we set N = M + 1. 
Since the interval 0 < x < X .  is mapped via (36) to 
the interval 71 2 w 2 0, the resulting  filter is an  extra- 
ripple  filter that has one passband ripple,  and all the 
remaining  ripples  are in the  stopband. The  deviation 
of the magnitude  response is 61 in the passband and 
62 in the  stopband. Such filters have been called the 

Chebyshev solution to the  optimal filter design 
problem [8]. 

It should be noted  that  no equivalent  procedure has 
been found  for  obtaining  optimum  filters  with  only 
one  stopband  ripple, as in the case of odd values  of N .  
This difficulty is again related to  the lack of sym- 
metry in the points o = 0 and w = 71. 

Summary 

This paper has presented  a discussion of several of 
the properties of optimal,  linear  phase,  FIR, low-pass 
filters designed with the  constraint  that  the impulse 
duration N was even. This constraint  on N led to 
optimality  criteria  on the  approximation  error  func- 
tion, similar to those  in  the case of odd values of N .  
However, the properties of the various types of solu- 
tion  for even N differed,  in many cases, from  those of 
odd N .  One striking  and  unexpected  result was that, 
in  certain cases, optimal  filters of duration N samples 
could achieve better  approximations  than the equiva- 
lent  optimal  filters of duration (N + 1) samples.  An- 
other interesting  property of  even length  filters was 
that  the curve of transition  width versus passband 
cutoff  frequency was not symmetrical.  Furthermore, 
scaling procedures  on the extraripple  solutions were 
obtained  only  for values  of passband cutoff  fre- 
quency  below the passband cutoff  frequency of the 
extraripple solutions-but no simple scaling procedure 
could be found  for values above the passband cutoff 
frequency.  Finally,  analytical  solutions for  the 
Chebyshev case  were obtained,  only  in  the case  of 
one passband ripple. 

Appendix 

We wish to show that  the trigonometric  polynomial 

is obtained  from the ordinary  polynomial 

' H ( x )  = y b(n)x" (A-2) 
n=O 

(where b(n)  = 0, n even) by the  substitution 

x = x 0  cos (0/2).  (-4-3) 

This is easiest to show by expanding (A-1) into  the 
form 

fi(eju) = 2h(n) [cos ( w n )  cos ( 0 / 2 )  
(N/2)-1 

n=o 

- sin (an) sin ( w / 2 ) ]  (A-4) 

and  substituting  a  function of x for  each  trigonomet- 
ric  function of a. For  simplicity we let X .  = 1. (In 



the  end result we can replace x by x / X o  if desired.) 
From (A-3) we can show that 

sin w = 2x  

cos nu = 2 LY’(C0S w)’  = 5 a’(x2 - 1)’ 
i=O i=o 

sin n u  = sin w pj(cos a)’ 
E - 1  

i = O  

Substituting (A-3) (with X.  = l)? and (A-5) to (A-9) 
into (A-4) gives 

x @ ‘ ( X 2  - 1)’ 
i=O 

’ a(n )  (x2 - 1)” 
)-I  

0 

n=o 

By substituting rn = 2 n  + 1 into (A-10) we get 

& x )  = d (rn)xrn 
N - 1  

m =O 
m odd 

(A-10) 

(A-i l  j 

If we define b ( m )  as 

b(m)  = t 0 m even 
d ( m )  i l z  odd 

then (A-11 j can be written as 

which  is the desired result, 
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