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It is then seen that  the signal estimate remains con- 
stant with random  input frequency regardless of fre- 
quency redundancy whereas  noise with frequency 
redundancy is  decreased in accordance with a fre- 
quency sampling efficiency gain in Table I. This 
sampling efficiency is (FcK))/(F(w)) = (F(K))/(l.53). 
The effective number of integration samples with 
unity frequency redundancy is (1)/(1.53) provid.ing 
1.1 dB loss in post-detection integration gain  as 
shown  in  Fig. 5 of [ 11 . Table I can  also be converted 
to ripple loss  versus frequency redundancy  by  enter- 
ing the post  detection integration gain  curve  of  Fig. 3 
with the normalized effective number of independent 
Fourier transforms of Table  I. The results are shown 
in Fig. 6.  

Conclusion 

It has been  shown that time  redundancy can pro- 
vide 0.9 dB  gain  in  sensitivity  when  using the DFT. 
Further, frequency redundancy can  provide 3.92 dB 
improvement over the maximum and 1.1 dB over 
the average ripple sensitivity  loss experienced with 
the DFT. 
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analysis of roundoff noise and A-D noise for  the  direct  form is 
straightforward,  this  paper  concentrates on an analysis of the 
effects of quantized  coefficients  on  the resulting filter fre- 
quency response. Based on  this analysis, statistical  bounds  on 
the  error  incurred  in  the  frequency response of a  filter due to 
coefficient  quantization  are developed and verified by  exten- 
sive experimental  data. Using these  bounds, a procedure  for 
applying known  techniques  for  FIR  filter design to the design 
of filters  with  finite word length  coefficients is presented. On 
the whole, the  direct  form  is  shown to be a  very attractive 
structure  for realizing FIR filters. 

I. Introduction 

Important developments in research in recent years 
have  made it possible to  readily  design finite impulse 
response (FIR) digital filters with arbitrary frequency 
or  time response characteristics [ 1 3  - [ 61. However, 
little is as yet known concerning practical aspects in 
the implementation of these filters. In particular, al- 
though many structures [ 71, [ 81 have  been proposed 
for realizing FIR filters, differences in  the effects of 
quantization  on  these  different  structures axe still not 
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well understood. In two recent papers [ 91, [ 101 the 
problem of roundoff noise in cascade realizations of 
FIR filters has  been treated in depth. The subject of 
this paper is the implementation of FIR filters in the 
direct form . 

An  analysis  of  all  possible types of quantization ef- 
fects in the direct form is presented, together with a 
procedure for obtaining filters whose coefficients are 
represented by a given number of bits and which 
satisfy given specifications on  their frequency 
response. Although the method is not optimum, it 
is  simple to apply and yields  useful results. 

. The direct form is  usually  avoided in the implemen- 
tation of infinite impulse response (IIR) digital filters 
mainly  because  Kaiser [ 21 has shown that  the sensi- 
tivity of filter response to the accuracy of representa- 
tion of the denominator coefficients in the IIR direct 
form increases  very rapidly with increases in filter 
order compared to either  the cascade or the parallel 
form. However, in this paper it is shown that  the 
same  is not  true  for FIR digital filters. In  fact,  the 
direct form is shown to be a very attractive structure 
for  the realization of FIR filters. 

11. Quantization Effects in the FIR Direct Form 

There are three basic  ways in which quantization 
affects the performance of an FIR digital filter. 

1) Quantization of the results of arithmetic opera- 
tions within the filter causes errors in the filter out- 
put, referred to as roundoff noise. 

2) Quantization of input samples to  the filter 
causes inaccuracies known as A-D noise. 

3) Quantization of the filter coefficients alters the 
frequency response of ths filter. 

Overflows  can also occur within the filter. However, 
if proper scaling procedures are used, such overflows 
can be eliminated. In  addition,  limit cycles can occur 
in recursive realizations of FIR filters (such as the 
frequency-sampling structure [ 71). However, limit 
cycles cannot occur in  the  direct  form, which is a 
nonrecursive structure. In  the following, each of the 
three  types of quantization effects listed above  is  ana- 
lyzed for the direct  form. 

A. Roundoff Noise 

To analyze roundoff noise, the most important case 
of fixed-point  arithmetic with rounding is  assumed. 
Similar  analyses follow for all other cases. Further- 
more, the usual model  used for  the analysis  of round- 
off errors 191 is employed, viz., to each rounding 
point in  the filter is associated a zero-mean white 
noise source of  variance Q2 112 (Q = quantization  step 
size)  whose  samples are uniformly distributed random 
variables on the interval (-Q/2,  Q/2), and all noise 
sources are assumed to be uncorrelated with each 
other  and with the  input signal.  Using this model, the 

Fig. 1. Block diagram of linear phase direct  form FIR filter. 

mean and variance of roundoff noise at  the  output of 
a filter can  be  easily computed. 

The transfer function  for an FIR  filter can be writ- 
tenin  the form 

hT- 1 

H ( 2 )  = -2 h(n)z-" 
n=O 

where {h(n)}  i s  the impulse response of the filter. The 
direct  form is simply defined to be a straightforward 
implementation of (1). If the filter has linear phase,' 
then {h(n)} satisfies [9] 

h ( n ) = h ( N -  1 -  n),  O d n d N -  1. (2) 

In this case, a slightly different version of the direct 
form, requiring fewer multipliers, can be  derived. For 
simplicity only, the case of odd N'is considered. By 
(1) and (21, 

n= 0 

Equation (3) is the defining equation  for the linear 
phase direct form. It is seen that, given the filter 
order, the direct  form  for a linear phase filter requires 
approximately half  as many multipliers as that re- 
quired for an arbitrary phase filter. A block diagram 
of the linear phase direct  form is shown in Fig. 1. 

The statistics of the roundoff noise at  the  output of 
a direct form FIR filter depend, as expected, on the 
location of points  in the filter where rounding is per- 
formed. Two  possibilities are considered. First of  all, 

straightforward  manner to the case where the  filter impulse  re- 
1 The results presented in  this paper can be extended in a 

nse is  antisymmetric, i.e., h(n) = -h(N - 1 - n), 0 < n s 
1. For  convenience we shall neglect  this case here. 
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if all multiplication products are represented exactly 
and rounding is performed only after  they are 
summed, i.e., at the filter output, then only one noise 
source is present in the filter, and it superimposes 
noise directly onto  the  output signaL2 Thus, inde- 
pendent of filter order and type of direct form (i.e., 
linear phase or arbitrary phase), the  output roundoff 
noise is uniformly distributed between - Q/2 and Q/2, 
with zero mean and variance Q2/12, where Q is the 
quantization step size. 

On the  other hand, if all multiplication products are 
rounded before they are summed, then  the  arbitrary 
phase direct form and the linear phase direct form 
yield different results for  a given N .  Specifically,  de- 
noting by {ei(n>} the noise sequence produced by the 
ith noise source, and by {E(n)}  the noise sequence at 
the filter output,  for  the  arbitrary phase direct form 

but  for  the linear phase direct form 

pendence assumption on the noise sources may not 
be valid, the output noise distribution can still be 
expected to resemble a Gaussian distribution. 

B. A-D Noise 
Next, A-D noise  is considered. Again, the quantiza- 

tion process is modeled  as a white noise source whose 
samples are uniformly distributed on (-Q/2,  Q/2). 
Since this quantization noise  is added to the  input 
signal, its  effect on the  output signal of a filter is in- 
dependent of the  type of structure used to realize the 
filter. In particular, if {e(n)} denotes the A-D noise 
sequence on input to an FIR filter as defined by ( l ) ,  
and { & ( n ) }  denotes the  output noise sequence, then 

G(n)  = h(h)e(n  - a). ( 9) 
N- 1 

k= 0 

Thus the  output A-D noise  has zero mean and vari- 
(4) ance given  by 

(5) or using  Parseval’s theorem for discrete signals, 

The mean  of the  output noise  is zero in either case, 
but  the variance for the arbitrary phase direct form is 

Q 2  1 2n 

O& = 12 * g I, IH(ejW ) l2 d o .  (11) 

U; = N -  , (6) It is shown next  that when the gain of a filter is  de- Q2 

12 termined by sum  scaling,  peak  scaling, or L,-norm 

whereas for the linear phase direct form it is 
scaling  where p 2 2,  viz., the practically important 
scaling methods [SI, then 

12 ’ 

Thus for all the possible variations of the FIR direct 
form mentioned, the output roundoff noise  variance 
always  satisfies 

Q 2  
U i 0  z - 

12 

Note at this point  that if the noise  sources  were 
statistically independent  rather  than merely uncorre- 
lated,  then by the central limit theorem of proba- 
bility theory, in both (4) and (5) E(n)  would  be  es- 
sentially Gaussian distributed  for all n and sufficiently 
large N since it would be a sum  of independent, 
identically distributed random variables. In  fact,  the 
convergence as N is made  large would be  very rapid 
since the ei(n)’s are uniformly distributed. Thus, for 
all  values  of N of practical interest, the  output noise 
would be  essentially  Gaussian.  Even though an inde- 

2 We are assuming throughout  this discussion that all the fil- 
ter  coefficients  are nontrivial, e.g., an impulse  response  consist- 
ing of * 1’s would have no  roundoff noise. Although such 
cases do occur  in  practice,  they  are trivial to analyze, and 
hence will not be considered  here. 

Consider first sum  scaling,  which requires 

where {h(n)}  is the scaled filter impulse response. 
Clearly, (13) implies Ih(n)l < 1 for all n; hence 
h2 ( n )  < I h(n) I for all n;  thus 

N- 1 
hZ(n)< Ih(n)l= 1. 

N- 1 

n= 0 n= 0 

Next (see [ 91 ), for any p > 2, 

1 /P 

< [& izn IH(ejW)IP d m ]  < max lfI(ejw)l. (15) 

Henceif either [1/2n IH(eiW)f‘ dml’lP = 1, which 
defines Lp-norm scaling, for some p 2 2, or 

W 
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max IH(ejW ) I = 1, which defines peak scaling, then 

Equations ( lo) ,  (ll), (14), and (16) show that 
u&, < Q2 /12  for all these scaling methods; hence 
(12) is established. 

Thus it is shown that for all practical filters realized 
in direct  form,  the A-D noise at  the filter output has a 
variance that is  smaller than  or equal to  that of the 
roundoff noise. In  fact,  for the often more economi- 
cal  scheme  of rounding before summation, A-D noise 
is  negligible compared to roundoff noise for filter 
orders greater than  about 10. 

It is instructive to point out  that  the  output A-D 
noise  is also essentially Gaussian for sufficiently large 
N if different samples  of the quantization error se- 
quence were statistically independent of each other 
because, although the random variables that make up 
the sum  in (9) are not identically distributed, they  are 
all uniformly distributed with zero probability den- 
sity outside a  finite interval; hence they satisfy the 
Lindeberg condition [ll] of the central limit 
theorem. 

C. Filter Response Errors 

The effect of coefficient quantization  on  the fre- 
quency response of an FIR filter  in direct form is 
now analyzed. The linear phase direct form is con- 
sidered first. Again, N is  assumed to be odd,  and 
rounding is used as the quantization process. From 
(3)  the frequency response of a linear phase FIR filter 
is  given  by 

n= 0 

The factor e-iw(N-1)/2 in (17) simply represents a pure 
delay of an integer number of  samples that is unaf- 
fected by quantization of the coefficients {h(n)}. 
Hence this factor need not be considered, and only 
the change in the real function R(eiw ) = H(ejW ) X 
e jw(N-1) /2  due to coefficient quantization is studied. 

Following the approach of Knowles and Olcayto 
[12],  let (h*(n)} be the sequence that results when 
{h(n)} is rounded to a  quantization  step size of Q. 

the z-transform of {h*(n)} and  let H*(ejw ) = 
H*(eiw)  e jw(N-1)/2 . Finally, define an error  function 
bY 

E,  (e jw)  = Jj*(ejw 1- R(e jw) .  (18) 

Thus 

From (19) i t  is  seen that E L  ( e iw)  is simply the fre- 
quency response of a linear phase filter that has 
{e (n)}  as the first half  of its impulse response (the 
other half  by symmetry).  The  function E, ( e jw)  has 
the physical  significance that a filter which  has quan- 
tized coefficients can  be represented as the parallel 
connection of the “infinite-precision” version of that 
filter with a  filter whose frequency response is 

Since le(n)l < Q/2, a  bound  on EL(ejw) that is in- 
EL(ejW) e - j w ( N - 1 ) / 2 .  

dependent of the e(n)’s can be  derived  as follows: 

Or,  independent of o , 

Now let us consider the arbitrary phase direct form. 
From (1) the .frequency response of an arbitrary 
phase FIR  filter is  given by 

H(ejw) = h(n)e- jwn.  (22) 
n=O 

If H*(ejw) = h*(n) e-jwn is the frequency re- 
sponse of the filter with quantized coefficients, where 
h*(n) = h(n) + e (n)  and 1 e (n)  1 < Q/2 for 0 < n < N - 1, 
then define an error function  by 

EA (ejw ) = H*(ejw ) - H(ejw)  
N-  1 

= e (n)   e - jwn .  (23) 
n= 0 

Again, the error  function is the frequency response of 
an FIR filter that has impulse response { e ( n ) } .  How- 
ever, note  that EA (ejw ) is a complex function. The 
same bound as (21) also applies to EA (ejw ) since 

Then h*(n) = h(n) + e (n)  and h*(N - 1 - n )  = h*(n) for 
0 < n < (N - 1)/2, where e ( n )  for each n is a number IEA(eiw)I < le(n)lle-jwn I < N - . (24) 
that satisfies I e ( n )  I < &/2. Furthermore,  let H*(z) be n= 0 

N- 1 Q 
2 
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Furthermore, the error  in  the magnitude of the fre- 
quency response due to coefficient quantization also 
satisfies the  bound  in ( 2 4 )  because of the well-known 
inequality for complex numbers: 

IIH*(ejw)l - lH(eju)ll < lH*(ejw) - H(ej”)I. ( 2 5 )  

Unfortunately, all of the bounds derived thus far 
are overly  pessimistic, and thus are of little practical 
usefulness.  In the  next section, far more useful sta- 
tistical bounds are derived. 

111. Statistical Analysis of Filter Response Errors 

Because  of the inherently hard-to-predict nature of 
quantization errors, a statistical analysis of the effect 
of coefficient quantization on  filter response is ap- 
propriate, even though for  a given filter the quantiza- 
tion process is performed only once,  after which the 
filter response is exactly determined. The  aim of such 
an analysis  is to provide the filter designer with some 
means  of predicting, without knowing the values  of 
the coefficients of a  filter, how much accuracy for 
the coefficients is required to obtain  a desired filter 
response. In the following, such an analysis  is pre- 
sented for the case  of coefficient rounding. 

The statistical model [12]  to be  used  is a very 
reasonable one that assumes that errors due to the 
quantization of different coefficients are statistically 
independent,  and that each error is uniformly dis- 
tributed between -Q/2  and Q/2 ,  and thus has zero 
mean and variance Q2 /12 ,  where Q is the quantiza- 
tion  step size. 

The linear  phase direct form is considered first. 
From ( 1 9 )  and the statistical model it is  clear that for 
each w ,  the error in the frequency response due to 
coefficient rounding has  zero mean and  a variance 
given  by 

EL = x 4 e(n)2 cos2 [ (2 - n )  a] 
(N-3)/2 - N -  1 

n=O 

Thus, defining a weighting function by 

the standard deviation of the  error is given by 

o,, (a) = E ,  ( e j w ) 2 ) 1 / 2  

WN (a ) may  be  expressed in closed form by  summing 
the series in (27) ,  thus giving 

WN (0 ) 

- [ “ - ( N . P c o s ( Y ) w )  - sin y+) w ]  ‘ I 2  

2 N -  1 sin o ? 

or following some arithmetic manipulation, 

Equation (30 )  shows WN (0) = W N ( n )  = 1, and 0 < 
W N  (w ) < 1 for all N .  Thus 

The  behavior of WN ( w )  in the limit of large N is 
readily seen from (30) .  In the range 0 < w < T ,  

whereas for w = 0, fn, +271,. - 
W N  ( 0 )  = 1, all N .   ( 3 3 )  

The convergence of ( 3 2 )  is not uniform on ( 0 , ~ ) .  
However, on [ E ,  n - E ]  for any E > 0 the convergence 
is uniform. Fig. 2 shows W N ( 2 n f )  versus f for  N = 7 
and N = 67. The significance of these plots  and (32 )  
is that they show uEL (w ) to be well described by its 
bound  in (32) ,  viz., o E L ( o )  is  given to better  than  a 
factor of 2 by  its bound for all w . 

From ( 1 9 )  it is  seen that  for any w ,  EL (e’” ) is 
a sum of independent random variables  whose proba- 
bility density functions vanish outside some finite 
interval, and hence satisfy the Lindeberg condition 
[ll] of the central limit theorem. Thus EL (e’”) is 
essentially  Gaussian for sufficiently large N .  Further- 
more, the convergence to Gaussian distribution is 
expected to be quite rapid since the individual terms 
in the summation are all uniformly distributed ran- 
dom variables.  Because  of this tendency of the errors 
to be  Gaussian, their mean and variance alone con- 
stitute an excellent description of their statistical 
behavior. 

A bound similar to (31 )  is derived next  for  the arbi- 
trary phase direct form. The complex error incurred 
in this case in the frequency response due to coeffi- 
cient  quantization is  given in (23) .  Note that EA (ej”) 
is a two-dimensional random variable. Clearly, its 
mean is zero for all w . Furthermore,  its probability 
density function is symmetric about  the origin in the 
complex plane. Thus the second moment of the 
magnitude of EA (e jw)  about  the origin  is a good  mea- 
sure of its deviation from the mean. Now 
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I I  I I I I l I l l  
0 0.1 0.2 0.3 0.4 0.5 

NORMALIZED FREOUENCY 

0.61 I I I I I I I I I J  
0 0.1 0.2 0.3 0.4 0.5 

NORMALIZED FREOUENCY 

Fig. 2. Weighting function  defined  in (27) for N = 7 and N = 67. 

Therefore 
N-1 - Q 2  I ( e j w  ) l Z  = e ( n ) 2  = N - 

12 (35) 
n=O 

using the independence assumption. Thus a measure 
of the deviation of 1 E A ( e j W I )  from zero can  be  de- 
fined as 

Since, as shown in (25),  the error incurred in the 
magnitude of the frequency response is bounded by 
IE, (eiw )I, oEA is a useful bound on  its expected 
amount of deviation from zero. 

IV. Implications of Analysis for Design 

Considerable insight into  the problem of imple- 
menting FIR filters in direct  form can  be  gained from 
the analysis of the previous section if the results are 
phrased in terms of the usual filter design parameters. 
In this section, useful relationships between different 
parameters are derived for the linear phase direct 
form. 

Most filter design problems of interest involve find- 
ing a filter with a  'frequency response that approxi- 
mates some ideal response to within a specified 
amount of error. In general, the specified bound  on 
the error is a  function of frequency. However, for 
the  important case, of band-select filters, a single 
bound on  the error is  usually specified for each fre- 
quency band of interest, where bounds for  different 
frequency bands may  be different. For simplicity, 
the discussions  of this paper are restricted to band- 
select filters. However, this is only a  matter of con- 
venience, and the ideas developed can be  easily 
generalized. 

Let L(o) be some real, ideal band-select function 
that is desired to be approximated by the frequency 
response of a linear phase FIR filter. The usual de- 
sign specifications consist of a  set of disjoint fre- 
quency bands a k  C [O, n], k = 1, - . . , M and  a  set of 
error bounds t i k  > 0,  k = 1, * * , M such that  for each 
k, L ( w )  is to be approximated to within an error of 
6 k for all w E 52 k . The frequency bands a k  are 
separated by transition bands where the filter fre- 
quency response is unconstrained. Quantizing the 
coefficients of a filter designed to meet these specifi- 
cations can increase the approximation  error  for 
w E Ufs1 , i-2 k beyond their specified bounds. A sta- 
tistical bound  on the effect of such error increases  is 
first developed. 

Define,asin Section l l - C , f 7 ( e j w )  and p * ( e j w )  tobe 
the frequency response, less the pure delay factor, of 
a linear  phase FIR filter in direct  form that has un- 
quantized and quantized coefficients, respectively. 
Suppose f 7 ( e j w  ))has been designed to approximate 
L ( w )  so that 

Thus for all w E a k ,  

where E,  (.I" ) is as defined in (18). With  high proba- 
bility E ,  ( e J w  ) ought to be bounded by two to three 
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times its  standard deviation; thus  for all ~3 

I E ,  (ejw ) I  2 20, (40) 

where 2 denotes “is with high probability less than or 
equal to” and ue is defined as 

with uEL (w) defined in (28). Consequently, 

IR*(ejW ) - ~ ( o ) l  Z 2+ i ? + g k , w  -__ E a k  (42) 
\ v 1 

where t is the number of bits to  which the coeffi- 
cients of a*(e jw  ) are rounded, so that Q = 2-t (sign 
bit  not  included). 

Equation (42) says that, with high probability, 
L(w) can be approximated  on a ,  by the frequency 
response of an  N-point linear  phase filter, with t-bit 
coefficients, to an error bounded by Ek if the fre- 
quency response of the filter with  infinite-precision 
coefficients H(eiw ) can be designed so that  for all 
(.d E a k  

Equations (42) and (43) are investigated further  by 
rephrasing them in terms of in-band “reje~t ion”~ in 
decibels.  Define the in-band rejection on ak of the 
quantized and  unquantized  filter, respectively,  as 

DL; = - 20  log,, ( max IB*(ejw ) - ~ ( w ) l )  (44) 
U E R k  

and 

DL, = - 20  log,, ( max lH(ejw ) - L(O)I.  (45) 
W E a k  

Then from (37)  and  (42), 

(46) 

The  lower  bound  in (46) is plotted  in Fig. 3 as a 
function of DL, for N = 129 and several  values  of t. 
It is  seen that for each t ,  there is a maximum  value of 
in-band rejection that can be statistically guaranteed 
(i.e., with high probability) as a lower bound to  the 
attainable in-band rejection of an N-point filter if its 
coefficients are  rounded to t-bits, no  matter how  high 

110 , , l , l , I l l , \  
NO. BITS 

100 N.129 : 140 

INITIAL  INBAND REJECTION IN dB 

Fig. 3. Lower  bounds  on in-band rejection  obtained  after 
coefficient  quantization  as a function of initial rejection. 
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quency regions where  the  filter is designed to pass the signal, 
3The use of the  term  “rejection”  is  not meaningful in fre- 

i.e., the  filter passbands. It is used here for consistency  in  de- 
scribing the characteristics of the filter  in any frequency band. 
I t  should also be noted  that  the  rejection  in  any band is not 
referenced to a peak filter gain. Thus if all the  filter coeffi- 
cients  are multiplied  by  a constant,  the  rejection in each band 
changes even though  the  filter is substantially  the same. 

A L L O W E D  CHANGE IN REJECTION 

(b) 

Fig. 4. (a)  Lower  bound to number of bits required to realize 
a filter of given minimum  in-band rejection. (b)  Additional 
number of bits  required  in excess of lower  bound in (a) if 
change in  rejection  due to quantization is constrained. 
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a value  of in-band rejection the unquantized filter 
has. Thus if the significance  level  chosen in (40) is 
used for design purposes, a minimum number of bits 
is required to implement any filter of a given order 
and  a given  minimum in-band rejection for the most 
tightly specified band if design specifications are to 
be met with as much probability as there exists for 
(40) to be satisfied. To find this lower bound for t ,  
let DL*???, equal the right-hand side  of (46), so that 
DL$  DL*m, , and solve for t to give 

Defining t ,  to be the limit of tmin as DL, + =,viz., 

(47) can be written as 

t > tmin = t ,  - log, (1 - 10 1 (49) 

where A, = DLk - DL*m, is the maximum  allowable 
change  in in-band rejection on S2, due to coefficient 
quantization, 

Thus tm is a lower bound  (statistical)  for t given N 
and DL*mm, (desired minimum rejection on of 
quantized filter),  but tmin is a  tighter, more practical 
bound that is a  function of A, . Equations (48) and 
(49) show that, for fixed N and A, , t is bounded to 
increase linearly with DL*mk at a  rate of 1 bit per 6 
dB  of increase in the in-band rejection desired for the 
quantized filter. Fig. 4(a) and (b) show plots of t ,  and 
(tmin - t ,  ), respectively. It is of interest to  note  that, 
from Fig. 4(b), approximately 1  bit above the number 
given by t ,  is required to realize any filter if (DL, - 
DL:) for that filter is to be bounded by 6 dB, i.e., if 
the in-band approximation error on is not to in- 
crease by more than double due to quantization. 

A useful formula needed in the  next section is de- 
rived from (46) as follows: 

-(Ak/ZO) 

taking 20 log,, 2 = 6.02. 
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Fig. 5. Bounds on the change of in-band rejection due to 
coefficient quantization. 

Equation (50) gives a statistical bound on the loss 
of in-band rejection due to coefficient quantization. 
This bound is plotted in Fig. 5 as a  function  of N for 
D L ,  = 60 dB and t = 10  to 16 bits. 

V. Experimental Verification and  Discussion 

To verify the validity of (40),  the values  of DL, - 
DL$ for L2, equal to both  the passband and  stopband 
were found  for  a large number of low-pass extra- 
ripple [5] filters with equal number of ripples in their 
passband and  stopband and values of N ranging from 
15 to  127, Fig. 6(a) shows a  plot of these values for 
filters with passband and stopband rejection of 40 
and 60 dB, respectively, and coefficients quantized to 
11 bits, together with the bound in (50) (solid curves) 
for these values of in-band rejection. Also, the  bound 
of (50) derived using u, rather  than 20, in (40) 
[equivalent to replacing t by ( t  + 1) in (50)] is plot- 
ted  for  both passband and  stopband as dashed curves 
in Fig. 6(a). Similar results, except with 16-bit coeffi- 
cients, are shown in Fig. 6(b). Clearly, (40) is  well 
supported by these results. 

It is important to point out  that, contrary to claims 
by Herrmann and Schuessler [SI, E131 , the analysis 
presented in previous sections shows that  the pass- 
band of a linear phase direct  form filter is  in no way 
favored over the stopband to have lower sensitivity to 
coefficient accuracy. It is only a difference in in-band 
rejection that makes one band more sensitive than 
another. For instance, in the example given  by Herr- 
mann and Schuessler [13], the absolute errors due to 
quantization added to  the passband and  stopband re- 
sponses of the filter are actually comparable. How- 
ever, since the ripples in the passband are 100 times 
larger than  those  in  the  stopband, percentagewise the 
errors in the passband are not seen. 
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To illustrate this  point, the results of quantizing 
filters with values  of  passband and  stopband rejection 
exactly reversed from  those of the filters of  Fig. 6(a), 
(b), viz., with 60  and  40 dB, respectively, are shown 
in Fig. 6(c). As can  be seen, the roles of the passband 
and  stopband are simply exactly interchanged. In 
many  cases  of interest, filters often do require greater 
rejection in the stopband  than in the passband; thus 
in such cases it is true  that  the passband  is  less 
sensitive. 

It is also a consequence of the presented analysis 
that  the sensitivity of the response of a filter in any 
frequency band to coefficient quantization should 
not depend strongly on  the width of the band. In 
Fig. 7(a), the results of coefficient quantization for 
low-pass extraripple 67-point filters of passband and 
stopband rejection of 40  and  60 dB, respectively, and 
all  possible bandwidths (except the  two extremes) are 
shown, together with the statistical bounds. It is seen 
that, indeed, the  data points do  not have any  strong 
average dependence on bandwidth. Finally, Fig. 7(b) 
shows the statistical bound (50) and measured data 
points  for the stopband of  several 67-point filters, 
with 40-dB passband rejection, as a  function of stop- 
band rejection. All the results shown in Figs. 6  and  7 
clearly demonstrate the validity and usefulness of (40). 

VI. Application to Design of Filters with Finite Word 
Length  Coefficients 

In Section V, the usefulness of the bound (40)  for 
filter design  has been discussed. Specifically, it en- 
ables a set of specifications for a filter with coeffi- 
cients of a given  word length to be converted to a set 
of specifications for  the design  of an “infinite word 
length” filter in  such a way that when the coefficients 
of a filter designed to meet the new specifications are 
quantized, the filter meets the original specifications. 
In general, this process  involves converting a given set 
of minimum in-band (i.e., referring to both passbands 
and  stopbands) rejections {DL*rn,} into  a new set 
(DL,}. Clearly,  in any given problem, a filter with 
the minimum N that will satisfy the given specifica- 
tions is desired, since both complexity and sensitivity 
increase with N. If N can be determined a priori, the 
rule for conversion implied by the previous  analysis is 
immediate from (46) as 

taking log,, 2 = 0.301. However,  in general, for  a 
given set of a,, k = 1 , .  * , M, the minimum N is a 
function Of DL,, h = 1, . * - , M. Thus, {DL,} is the 

solution of a  set of M simultaneous nonlinear equa- 
tions when a solution exists. Unfortunately, the 
exact functional relationship among N, (DL,}, and 
{a,} is not known for  any of the available  design 
methods. However, a useful approximate relation has 
been found [14]  for  the case  of low-pass optimal 
filters [ 41-[6]. 

Let DL,, DL,, F, , and F, denote  the passband and 
stopband rejection, and passband and stopband  cut- 
off frequency (with sampling frequency normalized 
to unity), respectively, of any low-pass filter. Using 
data from over 1500 extraripple filters with equal 
number of ripples in their passband and stopband  and 
various  values  of N, DL,, and DL,, viz., 3 < N < 127 
and  6 < DL, < DL, < 100 dB, it has been shown that 
for fixedDL, andDL,,  the  product (N- 1)(F, - F,)& 
DN  (DL,,  DL,) is essentially a  constant  independent 
of N for sufficiently large N. Denoting this limiting 
value  of the product  by Dm  (DL,,  DL,), it is found to 
be  given to an excellent approximation by 

D ,  (DL,, DL,) = [- 6.64 x 10-7 (DL, )z 

+ 1.78 X DL, + O.O238]DL, 
+ [- 6.65 X (DL, )z 

+ 0.0297 DL, - 0.42781. (52) 

A correction function is then added to improve the 
approximation for small  values  of N, with the result 
that DN (DL,,  DL,) can  be  well approximated for all 
N by 

~ ( D L ,  , DL, , F, - F~ ) = D ,  (DL, , DL, ) 
- f (DL ,  7 DL,) (F,  - Fp l2 (53) 

where 

f(DL,,  DL,) = 0.0256 (DL, - DL, ) + 11.012. (54) 

Thus, since DN (DL,,  DL,) = (N - 1) (F, - F p ) ,  the 
minimum N required for  a filter with cutoff frequen- 
cies F, and F, and in-band rejections at least DL, 
and DL, can  be found as 

m m L ,  , DL:, F, - F p )  + 1. 
(55) 

F, - F P  

The error in Nmin incurred by substituting  the  ap- 
proximate value of Nmin given above in place of its 
actual value  was found to be  less than 1 for all N ,  
3 < N < 127, and 20 < DL, < DL, < 100 dB. 

It has  also  been shown [14] [ 151 that given DL,, 
DL,, and N, for all optimal filters, (Fs - F p  ) is fairly 
independent of F, or F, if they are not  too close to 0 
or half the sampling frequency. Thus D,  (DL,  DL, ) 
should be fairly independent of the filter cutoff  fre- 
quencies, so that  the approximate equation for Nmin 
given  in (54) found  for the case  of extraripple filters 
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Fig. 8. Design  curves  for  conversion of specifications on 
in-band  rejection. 
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with an equal number of passband and stopband rip- 
ples should still be fairly good for  other values  of 
F p  or F,. 

Although an expression explicit in DL, and DL, 
has been found  for Nmin, substituting it into  (51) still 
leaves that set of equations too complex to be  solved 
in closed form. However, letting DL; and DL: be the 
desired minimum. passband and stopband rejection 
for a t-bit filter, also denoting the right-hand side of 
(51) by gt (DL*rnk , N ) ,  and writing Nmin as Nmin ( D L p ,  
DL,, F,  - F, ), the following simple iterative proce- 
dure can be  used to find  the specifications DL, and 
DL, for a t-bit filter. 

Step 1 :  
Set No + Nmin (DL;, DL:, F, - Fp ) 

DL, +- gt (DL: Y No 1 
DL, +- gt (DL:, No 1. 

Step 2: 

Set N 1  +- Nmin (DL,,  DL,, F, - Fp ) 
DL, +- gt (DL; , N1) 
DL, +- gt (DL: 7 N1). 

Step 3: 
If Imp - DL, I > E or Im ,  - DL, I > E ,  then set 

DL, +. DL,, DL, + DL,, and  return to Step 2; other- 
wise stop. 

The number E is some tolerance level to be chosen. 
The  functiong,(x, N )  - x for t = 16 bits is plotted for 

several  values  of N in Fig. 8. It is  seen that  the func- 
tion is rather insensitive to N for  a given x if the com- 
bination of x and N is not  too large. Thus the algo- 
rithm described above  will  converge rapidly in  this 
region.  On the other  hand,  for  a given x, there is a 
maximum  value for N ,  however large, above  which 
the algorithm cannot converge.  This  value of N can 
be found  from  (51) as 

Nmax - 2 2 ( -1+3 1 - 1 0  -(A/20))2 . 22 ( t - (DL*mk/6.02))  

(56) 
where A is the maximum  allowable  change  in in-band 
rejection due to quantization. Equation (56) is plot- 
ted  in Fig. 9(a) for several  values of A and t = 16 bits. 
The  curve for A = 03 is the upper bound  on N required 
for convergence of the algorithm described. Clearly, 
the smaller N is compared to this bound,  the faster 
the convergence  will be. The  curves for  other values 
of A are bounds on N that must be  satisfied if coeffi- 
cient quantization is required to incur no more than  a 
change of A dB in in-band rejection. Note that both 
the  function g,(DL*mk, N )  - DL%, and N,,, de- 
pend on t and DL*rn, only through ( t  - (DL*rn, / 
6.02)). Thus the labels for the horizontal axes of 
Figs. 8 and  9(a) simply need to be shifted if plots of 
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the functions  for values of t other  than  16 bits are 
desired. 

To further illustrate the procedure described, the 
important case  of a low-pass filter whose stopband 
rejection is significantly higher than  its passband re- 
jection is considered. As an example, DL: = 40 dB 
and t = 16 bits is chosen. As can  be concluded from 
Fig. 8,  40 dB  of rejection is hardly affected by quan- 
tization to 16 bits for  at least all N < 129.  Thus  the 
passband need not be considered. In Fig. 9(b), (54) 
is plotted  for DL, = 40 dB  and various  values of 
(F, - F, ), the transition bandwidth [denoted by T W  
in Fig. 9(b)]. Also plotted are curves that describe 
the  functional relationship between N and DL, for 
various  values  of the bound A on in-band rejection 
change due to quantization to   16 bits. Note that as op- 
posed to Fig. 8 or  9(a),  the horizontal coordinate of 
Fig. 9(b) is the rejection for  the infinite-bit filter 
(DL,) rather  than the minimum rejection obtainable 
after  quantization (DL,*). For a given  DL, and T W  or 
N ,  the  latter is equal to DL, - A ,  where A is found by 
observing  which  curve of constant A the given point 
(DL, , N )  falls on. 

Thus to design a  filter with t = 16 bits, DL: = 40 dB, 
and given Fp , F, , and DL,*,  Fig. 9(b) is  used  as fol- 
lows.  Choose a value of A that is desired not'to be 
exceeded and find the bound on N ,  NA from' Fig. 
9(a). Find the point with DL, =DL$ on the curve 
T W  = (F,  - F, ) in Fig. 9(b). Move to  the right on 
that curve until either N exceeds NA , in which  case 
the method will not converge to a  solution,  or else a 
value  of A is attained such that DL, - A =DL$. The 
value  of  DL, at this  point is the desired  value.  This 
method is reasonably accurate as long as F, and F, 
are not  too close to 0 or half the sampling frequency. 
Since the T W  curves are only approximate,  it may  be 
necessary to try one or more adjacent values  of the 
N obtained if a satisfactory filter is not  found. 

To conclude this section, two examples are given to 
enlighten the procedures described. 

Example I :  Find a low-pass transfer function with 
14-bit coefficients in the direct form and DL: = 40 rt 
0.5 dB, DL,* > 56.5 dB, F, = 0.246, and F, = 0.272. 

First of all, by  evaluating Nmin (DL: , DL:, F, - F, ), 
N = 95 is obtained as a first estimate of the minimum 
N required. Clearly,  even if the final N becomes  as 
high  as 129, 40-dB rejection is not decreased by more 
than 0.5 dB by quantizing to  14 bits (see  Fig. 8, noting 
that x-axis labels must be shifted 12 dB to the right 
to correspond to 14-bit coefficients). Thus one can set 
DL, = 40 dB without  further calculation. To find 
DL,, the three-step algorithm is followed. Using 
DL,* = 56.5 dB, Step 1 gives N o  = 94.7 and DL, = 
59.9 dB. Step 2 then gives N 1  = 98.4 and DL, = 60 
dB.  Using E = 0.1 dB in  Step  3,  the algorithm has 
already converged. The specifications N = 99, DL, = 

40 dB, DL, = 60 dB, Fp = 0.246, and F, = 0.272 are 
used to design an  optimal infinite-precision transfer 
function. After quantizing the coefficients of this 
transfer function in direct form to  14 bits, the pass- 
band and  stopband rejections are measured to be 
DL: = 39.8 dB and DL,* = 56.7  dB. 

Example 2: Find a low-pass transfer  function with 
16-bit coefficients in the  direct form and DL: = 40 
dB k 0.1 dB, DL: Z 74 dB, F, = 0.2480,  and F, = 
0.2955. 

Clearly, DL, = 40 dB can  be specified u priori with 
very little possible error. Following the three-step 
algorithm yields in the end DL, = 80 dB and N = 67. 
An infinite-precision optimal transfer function satis- 
fying these specifications yields, when  qu.&tized to 
16 bits (direct form), DL$ = 40.0 dB and DL? = 75.0 
dB. 

In both of the above examples, the final transfer 
function meets specifications quite tightly. In gen- 
eral, however, much  leeway  may still be left  for pos- 
sible improvement; In that case, lower values of N 
can  be attempted. However, whether or  not  any 
improvement (or how much) is  possible cannot, in 
general, be foreseen. 

VI I I .  Conclusions 

A thorough statistical analysis of all three  types of 
quantization effects in the direct form FIR filter has 
been presented. Resulting from the analysis  of filter 
response emors due to coefficient  quantization,  a 
procedure for designing filters with finite word length 
coefficients has  been proposed and tested using on 
the order of 500 filter examples.  The direct  form has 
been shown to be a very attractive structure  for real- 
izing FIR filters because it exhibits very  low A-D and 
roundoff noise, and although its response is rather 
sensitive to  the accuracy of its coefficients, this factor 
is more than adequately compensated for by the 
minimal number of multipliers it requires. For in- 
stance, for  a given filter order, the linear phase direct 
form uses approximately only one-third as  many  mul- 
tipliers as required for  the cascade form 191 , [lo].  
Thus a linear phase direct  structure using 18-bit coeffi- 
cients is comparable in complexity to a cascade struc- 
ture using 6-bit coefficients. Clearly,  an 18-bit  direct 
form filter can  realize a far greater range of transfer 
functions than can a  6-bit cascade form filter. It re- 
mains to be  seen exactly how the direct  structure 
compares with other  types of structures  for realizing 
FIR filters. 
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where the quantities ajj and b, are real constants. The 
filter is stable if and only if (see [I] -[3] ) 

l z , K  1 n lzZ l  < 1. (2) 

The object of this paper is to present a procedure 
for checking the stability condition;  the procedure is 
believed to be  simpler than  those of [ 21 and [3]. 
In fact,  the procedure of [2] is not  finite in the sense 
that  the procedure requires the construction of a 
theoretically infinite number of mappings. The pro- 
cedure of [3] , though finite, requires application of 
two bilinear transformations to pose the problem in a 
form solved  by  Ansell [4] . In essence,  Ansell’s  main 
contribution is to couple the use of a Hermite test for 
checking stability [ 51 with a series of Sturm tests [6] 
checking positivity. 

Our procedure, like that of [3], is finite. We re- 
quire no bilinear transformation and we replace the 
Hermite test  component of the main part of Ansell’s 
procedure by a Schur-Cohn matrix test [7] -[9] . 
Then we allow either a series of Sturm tests, or, what 
turns out  to be equivalent, a series of tests for estab- 
lishing the  root distribution of a polynomial. 


