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Abstract-This paper  presents a  general-purpose computer 
program  which is capable of designing a  large class of optimum 
(in  the  minimax  sense)  FIR  linear phase  digital  filters. The 
program has  options  for designing such  standard  filters  as low- 
pass,  high-pass,  bandpass, and  bandstop filters, as well as 
multipassband-stopband  filters,  differentiators,  and Hilbert 
transformers.  The program can also be used to design filters 
which approximate  arbitrary  frequency  specifications which 
are provided  by  the user. The program is written in Fortran, 
and is carefully documented  both  by  comments  and  by de- 
tailed flowcharts.  The filter design algorithm is shown to be 
exceedingly efficient, e.g., it  is capable of designing a filter 
with a 100-point impulse response  in  about 20 s .  

I .  Introduction 

This  paper  presents  a general algorithm for  the de- 
sign  of a large class of finite  impulse response (FIR) 
linear phase digital filters. Emphasis  is placed on a 
description of how  the  algorithm  works,  and several 
examples are included which illustrate specific ap- 
plications. A unified treatment of the  theory behind 
this  approach is available in [ 11. 

The algorithm uses the Remez exchange method 
[2] , [3] to design filters  with minimum weighted 
Chebyshev error  in  approximating  a desired ideal fre- 
quency response D( f ) .  Several authors have studied 
the  FIR design problem for special filter  types using 
several different  algorithms [4] -[ 131. The advantage 
of the  present approach is that  it combines the speed 
of the Remez procedure  with  a  capability  for design- 
ing a large class of general filter  types. While the algo- 
rithm to be described has a special section for  the 
more  common  filter  types (e.g., bandpass filters  with 
multiple bands, Hilbert  transform  filters,  and  differ- 
entiators), an arbitrary  frequency response can also 
be approximated. 
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II. Formulation of the Approximation Problem 

The  frequency  response of an FIR digital filter  with 
an N-point impulse response { h ( h ) }  is the  z-transform 
of the sequence evaluated on  the  unit circle, Le., 

The  frequency response of a linear phase filter  can be 
written as 

where G ( f )  is a real valued function  and L = 0 or 1. 
It is possible to show that  there are  exactly four cases 
of linear phase FIR  filters to consider [l] . These 
four cases differ in  the length of the impulse response 
(even or  odd)  and  the  symmetry of the impulse re- 
sponse  [positive ( L  = 0) or negative (L  = l)] . By 
positive symmetry we mean h ( k )  = h(N - 1 - h) ,  and 
by negative symmetry h(h)  = - h(N - 1 - h) .  

In all cases, the real function G ( f )  will be used to 
approximate  the desired ideal magnitude specifica- 
tions since the linear phase term  in (2) has no effect 
on the magnitude  response of the filter.  The  form of 
G ( f )  depends on which of the  four cases  is being 
used. Using the  appropriate  symmetry  relations, 
G( f )  can be expressed as follows. 

Case 1 :  Positive symmetry,  odd  length: 

G( f )  = 2 a ( k )  cos (27rhf) (3) 

where n = (N  - 1)/2, a(0) = h(rz), and a(h)  = 2h(n - k )  
for h = 1, 2,. . . , n. 

k = O  

Case 2: Positive symmetry, even length: 

G ( f )  = 5 b(h)  COS [27r(h - $ ) f ]  (4) 

where n = N / 2  and b ( k )  = 2h(n - h )  for h = 1, * * . , n. 
k = l  

Case 3: Negative symmetry,  odd  length: 
n 

G ( f )  = c(h)  sin (27rkf) (5) 

where n = (N - 1)/2 and c(h)  = 2h(n - h )  for 12 = 1, 
2, . . . , rz and h(n) = 0. 

k = l  

Case 4: Negative symmetry, even length: 

n 
~ ( f )  = d ( h )  sin [271(12 - + ) f ]  (6) 

where n = N / 2  and d ( h )  = 2h(n - h )  for 12 = 1, - . , n. 
Earlier efforts at designing FIR  filters  concentrated 

on Case 1 designs, but  it is now possible to combine 

k = l  

For convenience, throughout  this  paper  the  notation H( f )  
rather  than H ( e j z n f )  is used to  denote  the  frequency response 
of the digital  filter. 
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all four cases into one  algorithm.  This is accom- 
plished by noting that G( f )  can be rewritten as G( f )  = 
&( f ) P (  f )  where P( f )  is a  linear  combination of cosine 
functions.  Thus,  results that have been worked out 
for ,Case 1 can be applied to  the  other  three cases as 
well. For  these  purposes, it is convenient to express 
the summations  in (4)-(6) as a sum of cosines di- 
rectly. Simple manipulations of (4)-(6) yield the 
expressions. 

Case 2: 

n 

b(h)  cos [2n(h - + ) f ]  
k = l  

= cos ( n f )  b(h)  cos ( 2 n k f ) .  (7) 
n-1 ~ 

k = O  

Case 3: 

Case 4: 

i d ( h )  = +[; i (k  - 1) - &.)I, 
Case 4: 

h = 2 , 3 , . . . , n -  1 

The  motivation  for  rewriting the  four cases  in a 
common  form is that  a single central  computation 
routine  (based  on  the Remez exchange method) can 
be used to calculate the best approximation in each 
of the  four cases. This is accomplished by modifying 
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ing function to formulate  a  new  equivalent  approxi- 
mation  problem. 

The original approximation  problem  can be stated 
as follows: given a  desired  magnitude  response D ( f )  
and  a  positive weight function W( f ) ,  both  continuous 
on  a  compact  subset F C [0, + ] (note  that  the sam- 
pling rate is 1.0) and  one of the  four cases of linear 
phase filters  [i.e., the  forms of G( f ) ]  , then  one wishes 
to minimize the  maximum  absolute weighted error, 
defined as 

IIE(f)ll= max W ( f )  l D ( f )  - G( f ) l  (13) 
f EF 

over the  set of coefficients of G ( f ) .  

form 
The  error  function E ( f )  can be rewritten in the 

E ( f )  = W f )  CD(f)  - G ( f ) l =  W ( f )  & ( f ) [ = -  Wf) P(fi] 

(14) 

if one is careful to  2mit those  endpoint(s) *where 
Q ( f )  = 0. Letting D ( f )  = D ( f ) / & (  f )  and W ( f )  = 
W( f )  &( f ) ,  then an equivalent  approximation  problem 
would be to minimize the  quantity 

I IE(~)I I  = max * ( f )  ~ f i ~ )  - P ( ~ ) I  (15) 
f EF'  

by choice of the coefficients of P( f ) .  The  set F is re- 
placed by F' = F - { endpoints  where &( f )  = o}. 

The net  effect of this  reformulation of the  problem 
is a  unification of the  four cases of linear phase FIR 
filters  from the  point of view  of the  approximation 
problem.  Furthermore, (15) provides  a simplified 
viewpoint from which it is easy to see the necessary 
and  sufficient  conditions which are  satisfied by the 
best  approximation.  Finally, (15) shows  how to 
calculate  this  best  approximation using an algorithm 
which can do only cosine approximations.  The set 
of necessary and  sufficient  conditions for  this  best 
approximation is  given in the following  alternation 
theorem [ 21 . 

Alternation  theorem: If P ( f )  is a  linear  combi- 
nation  of r cosine functions i.e., 

P ( f )  = a(k) cos Znhf, 
r -  1 

k = O  

then  a necessary and  sufficient  condition that 
P ( f )  be the unique best weighted Cheby%hev ap- 
proximation to a  continuous  function D ( f )  on 
F' is tkat  the weighted error  function E( f )  = 
W(f )  [ D ( f )  - P ( f ) ]  exhibit at least r- + 1 extre- 
mal frequencies  in F'  . 

These  extremal  frequencies  are  a set of points 
{ F j } ,  i = 1, 2, * .  . , r + 1 such that F 1  < F2 < .  . < 
F, < F,+l , with E(F,)  = -E(F,+,  ), i = 1, 2, . . . , r- and 
lE(FAl= mmFcw8 E ( f ) .  

both the desired  magnitude  function and the weight- An' algorithm c&- now be designed to make the 



508 IEEE TRANSACTIONS  ON  AUDIO  AND ELECTROACOUSTICS,  DECEMBER 1973 

INPUT FILTER 

TRANSFORM 

DENSE  GRID FOR 

DESIRED MAGNITUDE 

I APPROXIMATION PROBLEM I FORMULATE EQUIVALENT 

EXTREMAL FREQUENCIES 

SOLVE  THE 

CALCULATE  IMPULSE 
RESPONSE x PRINT OUT  THE 1 OPTIMAL ERROR-& I 

IMPULSE RESPONSE 

Fig. 1. Overall flowchart of filter design algorithm. 

error  function of the  filter  satisfy  the  set of necessary 
and  sufficient  conditions  for  optimality as stated  in 
the  alternation  theorem.  The  next  section describes 
such an algorithm along with  details as to its  imple- 
mentation. 

111. Description of the Design Algorithm 

As seen in Fig. 1, the design algorithm  consists of 
an input section,  formulation of the  appropriate 
equivalent  approximation  problem,  solution of the 
approximation  problem using the Remez exchange 
method,  and  calculation of the  filter impulse re- 
sponse.  The  flowcharts of  Figs.  2-5  give details of 
the  exact  structure of the  computer program. 

The  input which describes the  filter  specifications 
consists of the following. 

1) The filter  length, 3 < NFILT < NFMAX (the upper 
limit  set by the programmer). 

2)  The  type of filter (JTYPE): 

a) Multiple passband/stopband ( J T Y P E = ~ )  

b)  Differentiator ( J T Y P E = ~ )  

C) Hilbert  transformer ( J T Y P E = ~ ) .  

3) The  frequency  bands,  specified by upper  and 
lower  cutoff  frequencies (EDGE array) up  to  a maxi- 
mum of 10 bands. 

4) The  desired  frequency  response (FX array) in 
each  band. 

5) A positive weight function (WTX array)  in  each 
band. 

6) The grid density (LGRID), assumed to be 16 unless 

7) Impulse  response  punch  option (JPUNCH). 

Part 3) specifies the  set F to be  of the  form F = U B i  
where each frequency  band Bi is a closed subinterval of 
[ 0, 1.  The  inputs 4) and  5)  are  interpreted  differ- 
ently by the program for  a  differentiator  than  for  the 
other  two  types of filters (see the EFF and WATE sub- 
routines  in Figs. 3 and 4). The weight specification  in 
the case of a  differentiator  results  in  a relative error 
tolerance as  is used in all other cases. 

The  set F must be replaced by a  finite  set of points 
for implementation on  a computer. A dense grid of 
points is used with the spacing between  points being 
O . ~ / ( L G R I D  X r )  where r is the number of cosine basis 
functions.  Both D( f )  and W (  f )  are evaluated on this 
grid by the subroutines EFF and WATE, respectively. 
Then the auxjliary  app5oximation  problem is set  up 
by forming D ( f )  and W( f )  as above, and  an  initial 
guess  of the extrema1 frequencies is made by taking 
r + 1 equally spaced frequency values. The  subrou- 
tine REMEZ (Fig. 5) is called to perform the calcula- 
tion of the best  approximation for  the equivalent 
problem.  The mechanics of the Remez algorithm will 
not be discussed here  since  they  are  treated elsewhere 
for  the particular case of low-pass filters [9] . (The 
flowchart of Fig. 5 gives details about  the mechanics 
of the Remez algorithm as implemented  in  this design 

specified  otherwise. 

Program.) 
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Input  Filter  specs: 

2. Type of F i l t e r   ( JTYPEI  
1. F i l ter   Length  (NFILT) 

4. Card  Punch  Option (JPUNCH) 
3. Number  of  Frequency  Bands (NBANDS) 

5. Grid  Density (LGRID) 

Input  Fi l ter  specs : 

2.  Desired  Function  or  Desired  Slope 
1. Bandedges - Array EDGE( ) 

3. weighting m s t a n t  for each b a n d - A r r a y  
(Differentiatar) in each  band-Array  FX( ) 

WTX( 1 

I 

Functions (NFCNS). This  depends  on  the 

between grld  paints equal to 
set  up  a dense  grid ar ray GRID with  spacing 

WTXarray 

I + 
SUBROUTINE - containing  the  desired  function  value  and + WATE t o  

Set up two  arrays DES( 1 and WT ( 

calculate WT the  weight  function  at  each  grid  paint 

I 
- 

FX orray 

calculote DES 

+ + 
I 

Make  an  initial  guess  for  the  locotion  of 
the  extremal  frequencies.  The  location  is 
recorded  by  keeping  track  of  the  index  of  the 
f requency  in  the GRID a r ray .  
The  ind ices  are  s tored  in   IEXT  ar ray.  
In i t ia l   guess   i s   NFCNS+i   equa l ly   spaced 
index  values 

1 
Fig. 2. Detailed flowchart for fiiter design algorithm. 

The  appropriate  equations (3)-(12) are  used to re- 
cover the impulse  response  from the coefficients of 
the best cosine approximation  obtained in the REMEZ 

subroutine.  The'outputs of the program are the im- 
pulse  response, the  optimal  error  (min 11 E(f) l l ) ,  and 
the r f 1 extremal  frequencies  where E( f )  = k llE( f ) l l .  

It is possible that  one might  want to design a  filter 
to approximate  a magnitude  specification which  is 
not included in the scheme given above, or change the 

weight function to get  a desired tolerance  scheme. A 
flowchart of such  a program is  given in Fig. 6. In 
such cases, the user must  code  the  subroutines EFF and 
WATE to  calculate D ( f )  and W( f ) .  The  input is the 
same as before, except  that  there are  only  two  types 
of filters,  depending  on  whether  the  impulse syrn- 
metry  is positive or negative. 

A detailed  program listing of the generalized design 
program  is given  in the Appendix.  Representative 
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C a l l  REMEZ e x c h a n g e   a l g o r i t h m  

O d d   L e n g t h  

H (  j ) =  1/2 a ( N F C N S + l - j  

H I N F C N S ) = a ( l )  

Where  a o r r a y   c o n t a i n s  

c o e f f i c i e n t s  of  b e s t  

c o s i n e   a p p r o x ~ m a t i o n  

Even   Leng th  

H ( j )  = 1 / 4 [ a ( N F C N S + l - j 1 4  

a ( N F C N S + Z - j i ]  

H ( 1 I  = 1 / 4   a ( N F C N S )  

HINFCNS)=I /Z~I I I+  

1 / 4   Q ( 2 )  

H ( j 1  = 1 / 4 [ a ( N F C N S + l - j ) -  

o d d   L e n g t h  

H ( j ) = 1 / 4 [ a l N F C N S + l - j ) -  

Q (  NFCNS + 3 - j I] 
H ( 1 ) = 1 / 4 a ( N F C N S )  

H (2) 114 OL I N F C N S - I  

H l N F C N S l = 1 / 2 a ( O -  

1 / 4 a ( 3 1  
H ( NFCNS +i I = O  

P r o g r a m   O u t p u t  
I .  T i t l e  
2 .  T y p e  o f  F i i t e r  
3. F i l t e r   L e n g t h  
4. I m p u l s e   R e s p o n s e  
5. s o n d e d g e s  
6. D e s i r e d   v a l u e / s i o p e   i n   e a c h   b a n d  
7. W e i g h t i n g   i n   e a c h   b a n d  
8. D e v i a t i o n   i n   e a c h   b a n d  
9. D e v i a t i o n   i n   d B   f o r   T y p e  1 
10. E x t r e m a 1   F r e q u e n c i e s  

P u n c h   i m p u l s e   r e s p o n s e  i f  
desired,  JPUNCH = !  

Fig. 2. (Continued.) 

SUBROUTINE EFF 

E F F ( F l = F X l j )  

f a r  F E j - t h   b o n d  
0 0.5 

E F F ( F 1   = F X ( j l . F  

T 
E v o l u O t e S   d e s i r e d   f u n c t i o n   a t  0 g r i d   p o i n t  

Fig. 3. Flowchart for subroutine EFF. 
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SUBROUTINE  WATE 

1 

5 1 1  

WATE (F) = W t X (   j )  
f o r  F E j t h  band 
WATE (F) = W t X (   j )  
f o r  F E j t h  band 

W T X ( j )  i f  F X ( j ) = O  
WATE ( F )  = 

W T X ( j ) l F  i f  F X ( j ) # O  

E v a l u a t e s   w e i g h t   f u n c t i o n   a t   a   g r i d   p o i n t  

Fig. 4. Flowchart for subroutine WATE. 

REMEZ 

Init ialize  iteration  count 
ITRMAX * 25 

NITERDO 

@ Main Iteratian  Loop-statement IOO * NITER=NITER t I 

Ga to 400 

coeff icientsof 
best  approximation 

lNO 
Calculate the  abscissae  for  the 
Lagrange interpalat ion 

x ( j ) = c a s [ Z a F ( j ) ]  
Where F( j )  are  the  extrema1 
frequencies 

1 
coefficients  using  subroutine D 
calculate  Lagrange  interpoiat ian 

A D ( j ) * G [ X ( i ) - X ( j ) ]   ( i # j l  
i = l  

+ 
Calculate  the  current  value  of  the  deviat ion 
(DEV)  and  "print OEV. 

A O ( j 1   D E S [ I E X T ( j l ]  
DEv= i = *  

f (-llj-'AO( j  )/WT[IEXT( j I] 
1'1 

1 
1 
1 

I Record  sgn (DEW a set DEV= IDEVJ J 

Calculate  ordinates  for  Lagrange  interpolation 
Y ~ j l ~ D E S I I E X T ( j ) ] + ( - l l i   M V / W T [ I E X T ( j ) ]  

GO to calculot ion 
of coeff icients 

approximat ion 

error  
message  of  best 

1"" 
Fig. 5 .  Detailed flowchart for subroutine REMEZ. 
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FOT the 1st extrema1 frequency  se1 upper 
KUP  ond  lower KLOW I tmi ls On the 
G ( l 0  Dolnts lo be searched 

KUP = IEXT(21 
KLOW = 0 

Furthermwe, le1 the  sign of the error 01 
each  exfrernol  frequency be denoted 
by v(i  I 

Yes Go to endpoml  search  Istolemen1 3001 

K = I E x T ~  j I I (.e. the grid polnt @djjacent 
S u b r w l l n e  GEE at GRID ( K t 1 1  where 

to the i th exlremal  frequencyl. Then 
COlCulote the  welqhled error 

E R R = W T ( K + I I [ G E E ( K t I I - D E S ( K t l ) ]  i SUBROUTINE GEE 

Where 
X = C O S [ Z r T G R I D ( K I ]  

NO yes 

1 
calculate frequency  response a n d  
weighted error  at  index K-1 

1 I 

There 1s a locol maximum of 
the error Curve  where lhe 
stgned error IS greater  than me 
present  deviollon.  continue 
the seorch at KtP, K+3, 
, . K V P  until this locol mox error curve.  search K - 2 ,  
1s found. 

yes 

There is a locol mox of 
2w 

max is found 
K - 3  .... KLOW Ynlii this IOCOI 

i( 
1. Change lhisexlremal frequency 
2. update KLOW and KUP for 

KL0W=mox{~1EXT~j l ) -1 .1EXT~i~- I ) *  
KUP=min{IEXTlJtZl.NGRID} 

where signed error I S  
~ 

next iterotlon 
Find such a 
locol mor: 

Continue  searching K-2.K-3. 
... KLOW for 0 IOCOI mOK 

2 DEV 

3. Note that one exlremal hos Don't find 

+ I  JCHNGE =JCHNGE+I  
A I 

GO to beginnlog I 
(Statement 2001 

of  the Imp 
Find such 0 

a tocol max where rlgned locol max 
Search K t 2 , K t 3 : - . K U P  for 

error ? D E V  

Fig. 5. (Continued.) 
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Statement  300-Endpoints  search 
I 

5 1 3  

f ind such 0 search  those  indices  less  than  min { IEXT ( I ), new IEXT ( 1  ) }  
locol mox for  error  with  sign - u ( l )  and  greater  than  the  error 

ot new I E X T ( n 1  

Find such a 
local  max 

Store  the  index and error  value 
I 1 

for  local max of the  error  curve  with  sign - u l n l  local max 
and  error I error  01 new I E X T ( 1  ) 
and  error  fwnd  above 

locol max 

yes 

1 
IEXT for  next  i terat ion 
IEXT ( 1  ) = index f w n d  above NO 
I E X T  ( 2 )  =new  IEXT ( 1  1 

IEXT (1) = n e *   I E X T  t i l  

I 

I E X T  ( 1  1 = new I E X T  ( 2 1  

I E x T ( n - O = n e w I E X T ( n )  
I E X T ( ~ )  = index  just  found 

t 
I 
I 
I 

Evoluate GEE bt NFCNS equOllY spoced 
points  in  the  interval [ O,l/P] 

c 
Inverse OFT to obtain  coeff ic ients of the 
best  cosine  approximation 

Fig. 5. (Continued.) 

I n p u t   F i l t e r   s p e c s :  
NFILT,  JTYPE,  NBANDS,  JPUNCH,  LGRID, 
EDGE ( 1 ,  F X (  ) I  W T X  ( 

1 
c o l c u l o t e   n u m b e r  of a p p r o x i m a t i n g   f u n c t i o n s  

a n d   s e t  up t he   dense  grid 
F X  o r r o y  W T X  a r r a y  

1 - 1 1 - 

SUBROUTINE 
WATE se i  up the a r r a y s  DES and WT EFF 
SUBROUTINE 

s u p p l i e d   b y  
u s e r  u s e r  
S u p p l i e d  by - - 

P o s i t i v e   s y m m e t r y  N e g o t i v e   S y m m e t r y  
( T y p e  ! I  1 ( T y p e  2 )  

,i Odd  Length  1 1 1; Even  Length Odd  Length ' Even  Length 

c o n t i n u e d   a s  in t h e   m a i n   f l o w c h a r t  

Fig. 6. Flowchart for arbitrary magnitude filter design algo- 
rithm. 
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dANtJ  

LOWPASS FILTER 
N.24 

1.1, 1 

FREQUENCY 

Fig. 8. Magnitude  responses, on linear  and log scales, for an 
N = 24 low-pass  filter. 

input card sequences are given for  the design of a 
bandpass filter and a  differentiator. To approximate 
an arbitrary  magnitude  response and/or an arbitrary 
weighting function, all the user has to  do is change 
the  subroutines EFF and WATE and use the program in 
the Appendix. In  the  next section,  representative 
filters designed using these  algorithms are presented. 

IV. Design Examples 

Figs. 7-22 show specific examples of use of the de- 
sign  program for several typical  filters of interest.  For 
each of these  filters,  one figure shows the  computer 
output listing (including the  run  time  on a Honeywell 
6000 computer),  and  the  other figure shows a plot of 
the  filter frequency response on  either a linear or a 
log magnitude scale (or sometimes both). Figs. 7 and 
8 are for  an N = 24 low-pass filter. For  this  example, 
the  run  time was 0.77 s. Figs. 9 and 10 are for an 
N = 32 bandpass filter.  This  example is the first ex- 
ample listed  in the prologue to  the program in the 
Appendix. The  run  time  for  this  example was 0.82 s. 
Figs. 11 and 12 are for an N = 50 bandpass filter in 
which unequal weighting was used in the  two  stop- 
bands. Thus the peak error in the  upper  stopband is 
ten times smaller than  the peak error in the lower 
stopband. A total of 2.96 s was required to design 
this  filter. Figs. 13 and 14 are for an N = 31 bandstop 
filter  with  equal weighting in  both passbands. For  the 
design  of this  filter 1.61 s were required. 

To illustrate the multiband  capability of the pro- 
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B A d O  

EXTKEHAL FREQUENCIES 
0. 
0.1000000 0.2000000 0.L19531L 0.2527344 0.2839844 

0.0273437 0.052734~ 0.0761719 0.0937500 

0.3132812  0.3386719  0.3500000 0.4250000 0.4328125 
U.4503906 0.4796875 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
T I M E =  0.8245625 S i G D N D S  

Fig. 9. Output listing for an N = 32 bandpws  filter. 

BANOPASS FILTER 
N=32 

I I 
0 

-io 

-20 
rn 
2-30 - 

2 -40 
5 

w 

-50 
I 
w -60 
s 
-70 

-80 

-90 
0. I 0.2 0.3 0.4 0.5 

515  

FREOUENCY 

Fig. 10. Log magnitude response for an N = 32 badpass filter. 
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BANDPASS FILTER 
N=50 

I 
5 -50 

-60 
w 

t 
i -70 
a 
I -80 
0 
9 -90 

-100 

-110 

-120 

- 

~ 

I I I I 
0.1 0.2 0.3 0.4 

FREOUENCY 

5 

Fig. 12. Log magnitude response of an N = 50 bandpass filter 
with unequal weighting in  the  stopbands. 
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l * + + + + + l + + * + + * * , + * * + * + * ~ l * + + + * + ~ * * + + * + l l + * ~ * * * * + + + + ~ ~ + ~ ~ + + ~ l + + * + ~ + + + + +  

T l M t =  1.6110156 S ~ c 3 1 i i ) S  

Fig. 13. Output listing for an N = 31 bandstop filter. 

BANDSTOP FILTER 
N-31 

Fig. 14. Logmagnitude response for an N = 31 bandstop filter. 

gram, Figs. 15  and 16 show  results for  an N = 55 
five-band filter  with  three  stopbands  and  two pass- 
bands. The weighting in  each of the  stopbands is 
different,  making  the  peak  approximation  error  differ 
in  each of these bands. A total of 3.81 s was required 
to design this  filter. 

Figs. 17-20  show  typical  examples of single band 
approximations to a  differentiator  and  a  Hilbert 
transformer. Figs. 17 and 18 show  results for an 
N = 32 full band differentiator (this filter is the sec- 
ond  example  listed  in the prologue to  the Appendix), 

whereas Figs. 19 and 20 show  results for an N = 20 
Hilbert  transformer  where the  upper  cutoff frequency 
is 0.5 and the lower  cutoff  frequency is 0.05. The 
peak  (relative)  approximation  error is 0.0062 for  the 
differentiator  and 0.02 for  the Hilbert  transformer. 
The design times for these two examples  are 1.11 s 
for  the  differentiator and 0.48 s for  the Hilbert  trans- 
former. 

Finally, Figs. 21 and  22  show  an  example of an 
N = 128 bandpass filter  with an arbitrary weighting 
function of the  form 
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MULTIBAND  FILTER 

1 ° B  

-901 1 I 
0.1 0.2 0.3 0.4 ( 

FREQUENCY 

Fig. 16. Log magnitude response for an N = 55 
filter. 

5 

multiband 
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DIFFERENTIATOR 
N = 32 

: 'Z(.) 
z 
c1 a 
I 

0 
0 0.5 

0.0062 

0 
Q 

Q 
Q 
W 

-0.0062 

0.0062 

W 

5: > m  

i i W  
( C  1 

Q 

-0.0062 v v v \I \I V I  
0.5 . -  

FREOUENCY 

Fig. 18. Magnitude  and  error responses  for an N = 32 dif- 
ferentiatw. 
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OY I 
0.5 

OY I 
0.5 

0.05 0.5 

Fig. 20. Magnitude  and error responses for an N = 20 Hilbert 
transformer. 
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LOWEQ BPNO  EDGE 0. 
PANO 3 

0 . 1 2 0 0 0 0 0 0  
RAND 4 

0 ~ 1 5 0 0 0 0 0 0  
UPPER  91NP F O G €  0.10000000 0.13000000  0.25000000 0.50000000 

0.25000000 
BAND 1 PANO 7 

DESIRED  VALUE 
WEIGHTING 

0. 1 . 0 0 0 0 0 0 0 0  0. 

D E V I A T I C N  0 . 0 0 5 0 0 1 7 4  0.05001741  0.00500134 
10.00000000  1.00000000 1 0 . 0 0 0 0 0 0 0 0  1 0 . 0 0 0 0 0 0 0 0  

0.  

EXTREHAL  FPEn 

0.0454102 
0. 

0.0834961 
0.1200000 

0.1880859 
0 .1548828  

0.2271494 

0.3461914 
0.3066406 

0.3857422 
0.4252930 
0.4647555 

0.267089n 

UEYCTES 
0.0102579 

0.0898477 
0.0532227 

0 . 1 2 4 8 8 7 8  
0.1602539 
0. 1958984 
0.2349609 
0.2749023 

0.3540039 
0.3144531 

0.393551r7 
0.4331055 
0.4771680 

0.0200195 
0.0610352 
0.0952148 
0.1300000 
0.1666016 
0.20?7109 
0,2427734 

0.3615164 
0.3222656 

0.4013672 

0.4804h87 
0.4409190 

0.2a27148 

0.0288066 

0.1500000 
0.0996328 

0.1734375 

0.2509766 
0.2115234 

0.2910156 
0 -3305664 
0.?696289 
0.4091797 
0.4407305 

0. 06118477 

o ,4887812 

0.0371094 
0.0761719 
0.1000000 
0.151464R 
0.1807617 
0.2193359 
0.2592773 
o.?9a8?81 
0 . 3 3 ~ 3 7 ~ 9  
0.3779297 
0.4169922 

0.4960 937 
0.4565430 

ARBITRARY  WEIGHTING 
BANDPASS  FILTER 

N = i 2 8  

‘1 A I 

z 
-50 

w -60 

-70 

-eo 

s 

-901 I I , \ ‘ I  1 I , Ir I 1 
0.1 0.2 0.3 0.4 0.5 

FREOUENCY 

Fig. 22. Log magnitude  response  for  an N = 128 bandpass 
filter  with  arbitrary  weighting  characteristics. 

[* Od f < 0.1 

I 1  0.12 < f <  0.13 

9f - 1.25 
0.15 < f <  0.25 

10 0.25 < f < 0.5. 

Thus  the tolerance scheme  is linear in the intervals 
0 < f d 0.1  and  0.15 < f d 0.25.  The  error at  the 
stopband edges is 0.0005 (-66 dB),  and the peak 
error increases linearly to  0.005 (-46 dB).  The  time 
required to design this  filter was 23.8 s. 

Summary 

A general-purpose linear phase FIR filter design 
program is presented which is capable of designing a 
wide variety of standard  filters as  well as any desired 
magnitude response which can be specified by the 

user. The speed of the algorithm, as well  as its gen- 
erality,  make this program an attractive  one  for  a 
wide variety of design applications. 

Appendix 

C 
C 
C 
C 
C 
C 
C 
C 
C 
L 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
c 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

PROGRAM FOH 1 H t  UESIGN OF L INEAH  PHASt   F IN ITE  IMPULSt  

J I M  MCCLELLAFV. RICE  UNIVLKSITY,   APRIL  139  1976 
RESPONSL (F IR1   F ILTEKS  USING THE HCMtL EXCHANtiL  ALGOHITHM 

TtiHEE  TYPES OF F I L T t H S  AHL INCLUOED--bANOPUSS F l L l L R S  
DIFFEREM1  IATORS, ANU H I L B t H T  THAkSFORtY F l L l t R b  

THt INPUT  DAIA  CUNSISTS OF 5 CARUS 

CAHD l - - F l L T t K   L t N G l H v   1 Y P t  Ob F I L T t k .   1 - M U L l I P L t  
PASSBAND/bTUPBANUq 2-UIFFtHENl IATOH*  3-HILdE1RI TRANSFURM 
FILTER. NUMBER  OF BANOSt  LAHU PUNCH UtSIRtUq ANU G H l O  
Ot81SITY. 

CAKO 2--Ul iNDtUGtb1 LOirEH AlUU UPPtH LUGES FOR LYCH BANU 
W l l H  A MAXIMUM 01- 1 U  BANUS. 

CAHU ~ - - U E S I R ~ L .  FUNCTIO lv  ( O R   U t S i H t U  SLUPt  I F  A 
OIFFEHENl1ATUK) F O R  tYCH BANU. 

CARD L)--WiIGHT kLINCIIORI I N  LAcH BAhU. F O K  A 
DIFFEKEN11UTOR+  THE WLILhT +UNCTION 15 I iUVLHStL I  
PRUPOHTiUwAL TU F. 

THE FULLORINL I w u r  LIATA SP~CIFIES A LENGTH 32 BANUPYSS 
FILTER WlrH STUPBANUS u T U  0.1 A ~ U  0.423 T O  O.S, AIW 
PASSBANU C R O M  0.2 T U  0.3’3 k I T H  WLI IHTI I IG UF 1 U  I I U  Ih t  
STOPBAINDS  ANU 1 I N  T H t  PAbbBAluU. THL IMPULSE HESPOlUbE 
WILL B t  PUNCHED ANU THE t i H l U  I ILNSITY IS 32. I H l S  IS T H C  
F I L T E H   I N  F I L U K L S  9 A M I   1 U  IN I H L  T t X l .  
SAtYPLE I N P U T  O A l A  S t T U P  
3 2 9 1 r S r l r 3 2  
0 ~ ~ . 1 ~ 0 . 2 ~ 0 . 3 5 ~ 0 . Y 2 3 ~ 0 . 5  
011.0 
l t i 1 1 , l U  

Tnt FDLLt iwINb I lUPUI  OATA SPEClFIES A LENblH  32  WIDrBANU 
DIFFEHENTIATOH W I T H  SLOPE A ANU u i t l L H l I N I  OF 111. T H t  
Io9PJLSt  HtbPONbt WlLL h O 1  a t  PUNCHtU &NU I h t  bK1U 
DE,USITY I &  A S S U M t t i  T O  b t  lo. T H I S  IS 1 H t   F l L l t H  IIU 
F I G U K t S   1 7  AhU 15 I h  I H t  T t X I .  
32r21110.U 
O . d . 5  
1.U 
l . u  

COMMDiu P I ~ ~ A ~ ~ U E V ~ X , ~ ~ ~ K I U , U ~ ~ . W T I U L P H U I I E X I ~ N F C N S I N G R ~ U  
3IMENSIOk I t X T ~ b b l ~ A O ~ 6 b l r A L P n ~ l 6 b ~ ~ X ( 6 b ) . ~ ~ b b l  
u I M t l U b l U N  t i ( b b )  

OIPIEI\ ISI~N E ~ I t ~ 2 O l r ~ X ~ i 0 ~ ~ W I X ~ l O l ~ U t ~ l ~ T i l U l  
DIMEbSlUN D t b ~ 1 0 4 5 1 ~ b H I U ~ l ~ 4 5 1 ~ ~ 1 ~ ~ ~ ~ ’ 3 ~  

Ui rUBL t   PH iC lb lO iu   P12rV1  
OOUbLt   P f l tC Ia lUN  Ab*UtVvX.Y 
P12=D.ZBj185S0717Y’38b 
PI:5.1415Y2b53589793 
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C 
C THE PROGRAM IS SET UP FOR A MAXIMUM LLNGTH OF 1 2 8 1  BUT 
C T H I S  UPPER L I M I T  CAN BE CHANGED  BY REUIMLNSIONING THL 
C ARRAYS I E X T t  AD, ALPHA1  X+ Yo H TO BE NFHAX/2 + 2. 

C 
C C4LL THC HLMEZ LXCHANbE ALCORIIHM T O  UO THL  APPhOXIPIATION 
C PROIjLLM 
C 

c THE A R R ~ Y S  DES, GRID, ANO WT MUST OIMLNSIONED 

C 
C l 6 (NFNAX/2  + 2). 

1 0 0  CONTINUE 
NFMAX.128 

JTYPE=O 
C 
C PROGRAM INPUT  SECTION 
C 

READ * ,NF ILT~JTYPE~NBANDSIJPUNCH.LGRIO 
IF(NFILT.GT.NFMAX.OR.NFILT.LT.3) CALL ERROR 
IF(NBANOS.LE.01 NBANDS.1 

C 

C OTHERWISE 
C GRI0,DENSfTY IS ASSUMED T O  BE 16 UNLESS SPECIFIED 

C 
IF(LGRID.LE.0) LGRID:16 
JB%?*NBANOS 
READ * r ( E D G E ( J ) v J = l r J B )  
READ * t ( F X ( J ) r J = l r N B A N O S )  
READ *r(WTX(J).J:l.NBANUS) 
fF(JTYPE.EQ.0) C A L L  ERROR 
NEG-1 

NODO=NFILT/2 
IF(JTYPE.EQ.1)  NEG-0 

NODD:NFILT-2*NODO 
NFCNS=NFILT/P 
IF(NOOD.EQ.l.ANO.NEG.E0.0) NFCNS:NFCNS+l 

C 

c IS (F ILTER LENGTH + l ) *GRID  OENSITY/P 
C SET  UP THE. DENSE GRID. THE NUMBER  OF POINTS I N  THE GRIO 

C 
GRIO( l ) :EOGE( l )  

DELF:0.5/DELF 
OELF:LGRID*NFCNS 

IF(NEti.EQ.0) GO T O  1 3 5  
IF (EOGE( l ) .LT .DELF)  GRID(1l:OELF 

L-1 
J-1 

LBAND-1 

1 3 5  CONTINUE 

140  FUP=EOGE(L+l)  
145  TEMP=ti f l IO(J) 

C 

C FUNCTION ON THE G R I O  
c CALCULATE THE D ~ S I R E D  MA~NITUDE RESPONSE AND TnL LUEI~~HT 

C 
U ~ S ( J ) : E F F ( T ~ M P , F X , W T X , L ~ A N O , J T Y P E )  
W T ( J ) : ~ A T E I T E M P ~ F X ~ W T X 1 L B A W O I J T I P E l  
J:J+~ 
GRIO(J):TEMP+OE.LF 

GO T O  145 
I F ( G R i V ( J ) . t i r . F U l ' )   6 0  TU 150 

L:L+2 

GRIO(J): iDGE(Ll 
IF(LBANO.GT.NBANOS1 GO T O  160 

GO T O  140 
160  NGRID=J-1 

IF(NEG.NE.NODD) GO TO 165 
IF(GRID(NGRIU).GT.(O.5-U~LF)l NGR1O:NGRID-I 

1 6 5  CONTINUE 
C 

C T O  THE ORIGINAL PROBLEM 
C SET UP A NEW APPROXIMATION PROBLEM WHICH IS EQUIVALLNT 

C 
I F ( N E G 1   1 7 0 ~ 1 7 0 * 1 8 0  

1 7 0  IF(NOOO.EQ.1) GO TO 200  
DO 1 7 5  J:lvNGRID 
CHANGE=UCOS(PI*GRID(J)) 
DES(Jl:OES(J)/ChANGE 

GO TO 200  

DO 1 8 5   J = l t N G R I O  

175  WT(J l :hT(J l *CHANGE 

180  TFlNOOD.EO.1) GO T O  1 9 0  

CHANGE.:DSIN(PI*GHID(J)) 
OES(Jl:DES(J)/CHANGE 

GV TO 200  

DES(J)-OESIJ) /CHANGE 
C H A N t i E : O S I N ~ ~ I Z ~ G R I D l J ~ ~  

185  WT(J):kT(J)*CHANCE 

1 9 0  UO 1 9 5  J:l*NGRID 

1 9 5  WT(J):WTIJ)*CHANGE 
C 
C I N I T I A L  GUESS FOR THE EXTRtMAL  FREQUENCILS--EWUALLY 
C SPACED ALONG THE GRID 
C 

200  T E M P : F L O A T ( N G H I U - l ) / F L U A T ~ N ~ C N S ~  
U O  2 1 0   J I l t N F C N S  

2 1 0  IEXT(J ) : ( J - l ) *TEMP+ l  

NM1;NFLNS-1 
ILXT(NFCNS+l)=NGHIO 

NZ=NFCNS+l 

CALL  HEMEZ(LUGEdf3ANUS) 
L 
C CALCULATt  THt  IMPULSE H L S P U N S t .  
C 

300  IF(NODU.Lb.0) ti0 TO 51U 
I F I N L G )   3 0 0 ~ 5 0 0 ~ 5 2 0  

$05 u(J)=O.S*ALPHA(NL-J)  
00 5 0 5  J:l*NPIl 

H ( N F L h b I = U L P V A ( l )  
6 0   I U   5 5 0  

UO 315 J = 2 d i l d l  

l I ~ N ~ C h S ~ : ~ ~ 5 * 4 L P h A ( 1 ~ + 0 ~ 2 5 * U L l " H A ( ~ . )  
60 T U  550  

323  IFIl4UtlU.Eb.U) bU IL, 33u 

W ( L l = 0 , 2 5 * A L r 1 ~ A ( l v M l )  
H~l~=LI.25*ALPtiAIIufL~ub~ 

00 525 J=J,lUkl 

H ( N F C N s ) = 0 . S * A L P H A ( 1 ) - 0 . 2 5 ~ A L ~ H A ( 3 )  
H(NLI:U.O 
GO TO 3 5 0  

330  H(1):0,25*ALPHA(NFCNS) 
00 535  J-ZvNVI l  

3 3 5  H(J):0.25*(ALPHAlNZ-Jl-ALPHA(NFCNS+Z-J)) 
H I N F C N S ) E O . ~ * A L P H A ( ~ ) - O . ~ ~ * A L P H A ( ~ )  

310 1111):11.PS+ALl'hII(i\lFChb) 

212 H(JI=U.~S*(ALPH4(i~L-~)+ALPtiA(~~FLN~+2-JII 

3 2 5  H ( J ) : 0 . 2 5 * ( A L P H A ( N L - J ) - ~ L P H A ( I ~ F C N ~ + 3 - J ) )  

C 
C PROGRAM OUTPUT SECTION. 
C 

350  PRINT  360 
360  FORMAT(lH1, ~ O ( ~ H * I / / ~ ~ X I ' F I N I T E  IMPULSE RESPONSE ( F I R ) V /  

~ L ~ X I ' L L N E A R  PHASE DIGITAL  F ILTER  OLSIGN' /  
225Xt'REMEZ EXCHANGE ALGORITHM'/) 

3 6 5  FORMAT(ZSXI'BANUPASS F I L T E R ' / )  
IF(JTYPE.EQ.1)  PRINT  365 

3 7 0  F O R M A T ( ~ ~ X I ' D I F F E R E N T ~ A T O R ' / )  
IF(JTYPE.EQ.21  PHINT  370 

375  FORMAT(E~XI 'HILBEHT TRANSFORMER'/) 
IF(JTYPE.EQ.3)   PRINT  375 

378   FORMAT(15X* 'F ILTLR LLluGTH = '*13/) 
PRINT  3781NFILT 

380   FORMAT(~~XI ' * * * * *   IMPULSE RESPONSE *****'I 
PRINT  300 

K = N F I L T + l - J  
IF( f iEG.EO.0)   PRINT  382.J~H(J l .K 
IF(NEG.EQ.1)  PRIhlT  383*JvH(J).K 

DO 3 8 1  J=I,NFCNS. 

3 8 1  CONTINUE 
3 8 2   F O R M A T ( 2 0 X ~ ' H ( ' . I 3 ~ ' )  = ' . E 1 5 . 6 ~ '  = H ( ' 3 1 4 * ' 1 ' 1  
3 8 3   F O R M A T ( ~ O X I ' H ( ' ~ I ~ O ' )  = ' r E 1 5 . 8 ~ '  * H ( ' v 1 4 * ' ) ' )  

3 8 4   F O R M A T ( ~ O X I ' H ( ' ~ I ~ ~ ' I  = 
IF(NEG.EQ.1~ANO.NODD.EQ~ll PRINT  3849NZ 

0.0') 
00 450 K=lvNBANOS,4 
KUP=K+3 

P R I N T   5 8 5 r ( J * J = K v K U P I  
IF(KUP.GT.NBANOS) KUP-NBANDS 

3 8 5  FORMAT(/24X~Y('BAND'rIlt8X)) 

390  FORMAT(2X~'LOWER  BAN0  EOGE'r5F15.91 
PRINT ~ ~ O ~ ( E D G E ( ~ * J - ~ I ~ J = K I K U P )  

395  FORHAT(~XI'UPPER  BAND.EDGE'r5F15.9) 
P R I N T   3 9 5 r ( E D G E ( Z * J ) r J = K l K U P )  

400. FORMAT(2Xv'DESIRED  VALUE'r2Xv5F15.9J 
I F I J T Y P E . N E . 2 1   P R I N T   4 0 0 * ( F X ( J ) * J = K ~ K U P l  

405  FORMATIZXI'DLSIRLD  SLOPE'g2X15F15r9) 
I F ( J T Y P E . E Q . 2 )   P R I N T   ~ O ~ V ( F X ( J ) ~ J = K I K U P I  

410  F O R M A T ( ~ X V ' W E I G H T I N G ' ~ ~ X ~ ~ F ~ ~ . ~ )  
P R I N T   4 1 0 v ! W T X ( J ) ~ J s K e K U P )  

DO 420 J=K*KUP 

4 2 5  F O R M A T ( ~ X I ' D E V I A T I O N ' . ~ X ~ ~ F ~ ~ . ~ )  
P R I N T   ~ P S , ( D L V I A T ( J ) ~ J = K I K U P )  

UI) q30  J:K*Kl.JP 
IF(JTYPE.NE.11 GO TO 450 

433 U ~ V I ~ l ( J ) : 2 0 . 0 * A L 0 6 1 0 1 U L V ~ A l ( J l )  
PHINT ~ ~ ~ ~ I ~ L V I A T ( J ) I J = K , K U ~ )  

1(3> F O R k ~ T ( 2 X ~ ' ~ L V I A T I O N  IIU OB'v5F15.5)  

420  OEVIAT(J l=DEV/WTX(J)  

45U C O N l l k u E  

455 FOHMAT(/2kv0lXTHLMAL FHL~UEI~CILS'/12X~5F12.7)1 

4 6 0   F O H M A T I / l X ~ 7 0 1 1 H * ) / 1 H 1 )  

PHINT 455.(GKl~(ltXT(J))~J=l~NL) 

PRINT 460 

IF(JPUidCH.NL.0) PUNCH * t (H(J ) r J : l vNFCNS)  
IF (NF ILT .kE .01  GO T O  100  
RETURN 
ENU 

FUNCTION E F F ( T E M P I F X ~ W T X ~ L B A N U , J T Y P E ~  
C 
C FUIJCTION TO CALCULATL  THL  ULSIHEU MAGNlTUDE RESPONSE 
C AS A FUNCTION OF FREQUENCY. 
C 

DIMENSION  FX(51rWTX(51 
IF(JTYPE.EQ.2) GO T O  1 

HETURN 
EFF:FX(LBANO) 
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C 
C 
C 
C 

C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 
C 

C 
C 
C 

1 EFF=FXILEANO)*TEMP 
HETUHN 
ENU 

FUNCTION M A T E ( T E M P ~ F X I W T X V L ~ ~ A N O ~ J T Y P E )  

FUNCTION T O  CALCULATL THL WEIGHT FUNCTION AS A  FUNCTION 
OF FREQUENCY. 

OIMENSION  FX(5) rWTX(S)  
IF (JTYPE.EQ.2)  GO T O  1 
WAtE:klX(LBANDI 
RETUHN 

1 I F ~ F X ( L B A N D ) . L T ~ U . O O O l J  GO T O  2 
WATE:WTX(LBANO)/TEMP 

2 WATE:WTX(LBANG) 
RETUKN 

RETURN 
END 

SUBROUTINE EHHOR 
PRINT 1 

END 
STOP 

1 FORMAT(' ************ ERROR I N  INPUT D A T A  * * * * * * * * * * * I  

SUBROUTINE  REMEZIEOGE~NBANDS) 

THIS SUBROUTINE  IMPLEMEklS THE REMEZ LXCHANGE ALGORIIHM 
FOR THE WEIGHTED CHEBYCHEV APPROXIMATION OF A  CONTINUOUS 
FUNCTION  WITH A SUM OF COSINES. INPUTS T O  THE  SUBROUTINE 

DESIRE0  FUNCTION ON THIS GRID* THE WEIGHT FUNCTION ON THE 
GRID,  THE NUMBER  OF COSINES, AND  AN I N I T I A L  GUESS OF THE 
EXTREMAL  FREQUENCIES. THE PROGRAM M I N I M I Z E S  T H t  CHEBYCHEV 
ERROR BY OETERMKNING  THE BEST LOCATION OF THE  LXTREHAL 
FREQUENCIES  (POINTS OF MAXIMUM ERROR) ANO THEN  CALCULATES 
THE COEFFICIENTS OF THE BEST  APPROXIMATION. 

ARE A DENSE GRID WHICH RLPLACES THE FHEQUENCY AXIS, THE 

COMMON P I ~ ~ A D I O E V I X ~ Y I G R I O I U E S ~ W T ~ A L P H A ~ I E X T ~ N F C N S ~ N G R I D  

OIMENSION IEXTi66)~AD(66).ALPHA(66).X(66)~Yi66) 
OIMENSION  EDGE(2O) 

DIMENSION DES(1045).GHIU(10459rWT(l0~5) 
DIMENSION  A(66l .P(65) .Q(65)  
DOUBLE PRECISION P I ~ Q O N U M I O D E N I O T E M P I A I P ~ ~  
DOUBLE PRECISION A D ~ D E V ~ X ~ Y  

THE PROGRAM  ALLOWS A  HAXlMUM NUMBER OF ITERATIONS OF 25 

ITRMAX=25 

N2:NFCNStl 
DEVL:-1 0 

NZZ=NFCNS+Z 
N1TER:O 

1 0 0  CONTINUE 
IEXT(NZZ)=NGKID+l  
N1TER:NITERtl 
IF(NlTER.GT.ITRMAX1 63 T O  4 0 0  
DO 1 1 0  J:l,NL 
OTEMP=GRID( IEXT(J) )  
OTEMP=DCOS(UTEMP*PI2) 

1 1 0  X(J):DlEMP 
JET=(NFCNS-1)/15+1 

1 2 0   A O ( J ) = O ( J I N Z * J E T )  
DO 120  J : l tkZ 

0NUM:O.O 
OOEN-0.0 
K:l 
00 1 3 0  J:l.hL 

OTENP:AD(J)*bES(L) 
L-IEXT (J )  

ONUM:ONUM+DTEMP 
OTEKP=K*AOiJ)/WT(L) 

1 3 0  K=-K 
OOEN=ODEN+UTLMP 

UEV:DNUM/ODEh 
N u = l  
IF(OLV.GT.0.U) NU=- l  

1 

ULV=-NU+OLV 
K=NU 
00 1 9 0  J=ltrUL 
L = I t X I  L Jl 
UTEMP:K*OLV/WT(L) 
Y ( J l = D L S ( L ) + b T E W  

CALL OUCH 
1FiDEV.GE.OEVL) GO TO 1 5 0  

9 U  K=-K 

1 5 0  OEVLEOEV 
Go TO 4 0 0  

JCHNGE:O 
K l : IEXT( lJ  
KNZ=IEXTiNZ)  
KL0W:O 
NUT:-NU 
J:l 

C 
C SEARCH FOR THE LXTRtMAL FRLQUENCLES OF IHE  BES l  
C  APPROXIMATION 
C 

200 IF(J.EQ.NZZ) YNZ:COMP 

2 1 0  

2 1 5  

2 2 0  
22  5 

4 3 3  
235 

L 4 U  

250 

255 

2 6 0  

300 

3 1 0  

315 

3 2  0 

325 

3 3 0  

K U P = I E X T ( J t l )  
IF(J.GE,.NZZ) 60 TO 300 

L = I E X T L J ) + l  
kUT=-NUT 

C0MP:DEV 
IF(J .EG.2)  Y1:COMP 

ERR=bEE(L,NZ) 
IF(L. t iL.KUP) GO T O  2 2 0  

ERH=(EHR-DES(L))*WT(L) 
OT€MP:WUT*ERR-COMP 
IF(DTEMP.LE.O.0) GO T O  2 2 0  
COMP=NUT*ERR 
L=L t1  

ERR=GEE(L*NZ) 
IF(L.GE.KUP) GO T O  2 1 5  

ERR=(EHR-DESLL))*WT(L) 
0TEMP:NUTtERk-COMP 
IF(OTEMP.LE.O.0) 60 TO 2 1 s  
COMP=NUT*ERR 
GO T O  2 1 0  
I E X T ( J ) = L - 1  
J = J + l  
KLOW-L-1 
JCHNbtsJCHNGt+ l  
G O  T O  200 
L-L-1 
L=L- l  

LRR=GELIL*NZ)  
1FiL.Lt.KLOW) GO T O  250 

ERH=iERR-OES(L) ) *Wl (L)  
OTEMP=NUT*ERK-COHP 
IF(OTEMP.GT*O.O) GO TU 430 
1FIJCHNtiE.LL.U) 6 0  TO 2 2 5  
GO TI) 260 
COMP=NUT*ERk 
L=L-1 
IF(L.LL.KLOL1 G O  1U 290 
EHR:GLLIL.NLI 

UTtMP=f~Ul:LhK-COMP 
E h h : ( E k h - ~ E S ( L ) ) * Y T I L )  

IF(OTLMF.LL.u.U) 66 l(r 11(0  
CtiCc-shUT*LHh 
60 10 2 3 5  
K L O h = l k X T ( J I  
I r X T I J ) = L + l  
J=J*1 
JCHhbE=JCtiNGL+l 

L=L*1 
IF(JCHNGE.GT.0) 60 T O  215 

t R R = G L L i L t N Z )  
IF(L.GL.KUP) 6 0  T U  260 

ERR=(EHR-OESIL) ) *Wl IL )  
OTEMP=bUT*E&h-COMP 

COMP:NUT*ERR 
IF(OTEMP.LE.O.0) GO 1 0  255 

GO T O  2 1 0  
KLOW=IEXTIJ) 
J:J+1 
GO TO 200 
IF(J.GT.NZZ) GO 10 3 2 0  
IF IK l .GT . IEXT(1 ) )   K l : IEXT( l )  

NUT1:NUT 
IF(KNZ.LT.ILXT(N2))  KNZ:IEXl(NZl 

NUT:-NU 
L:O 
KUP:Kl 
C O M P = Y N Z + ( ~ . O O O O ~ )  
LUCK=l 
L=L+1 

ERR:GEE(L,NZ) 
IF(L.GE.KUP) GO TO 3 1 5  

ERR=iEHR-OES(Ll)*WT(L) 
DTEMP:NUT*ERR-COMP 

COMP:NUT*ERR 
IFiDTEMP.LE.O.01 GO TO 3 1 0  

GO T O  2 1 0  
J:NZZ 

LUCK:6 
GO T O  325 
IFiLUCK.GT.91 GO TO 3 5 0  

K1:IEXTiNZZ) 
IF(COMP.GTsY1) YI=COMP 

L - N G R I D t l  
KL0W:KNZ 
NUT=-NUTl 

LZL-1 
COMP=Yl*i1.000011 

ERR=GEE(LINZ> 
IF(L.LE.KLOW) GO TO 3 4 0  

ERR:(ERR-OES(L))*YT(LI 
DTEMP=NUT*ERK-COWP 

J:WZ 
IFiOTEMP.LE.O.0) GO T O  3 3 0  

COMP=NUT*ERR 
LUCK:LUCKtlO 
GO TO 2 3 5  
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340  IF(LUCK.EQ.6) GO TO 3 7 0  

3 4 5   I E X T ( N Z Z - J ) = I E X T ( N Z - J )  
DO 345   JZ l rNFCNS 

GO TO 1 0 0  
IEXTI1) :K l  

DO 360 4:ltNFCNS 

IEXT(NZ)=KN 
GO TO 1 0 0  

3 5 0   K N = I t X T ( N Z Z )  

3 6 0   I L X T ( u ) = I E X T ( J + l )  

5 7 0  IF(JCHNGE.GT.0) GO T O  1 0 0  

C CALCULATION OF THE COEFFIClLkTS OF THL BEST APPROXIMATION 
C USING THE INVERbE  DISCRETE  FOURIER TRANSFORM 
C 

400 

4 0 5  

410 

4 1 5  

4 2 0  

4 2 5  

430 

5 0 0  

5 1 0  
5 0 5  

55u 

5 1 5  

52 0 

5 2 3  

530 

535 

54 0 

5 4 3  
545 

C 

CONTINUC 
NM1:NFCNS-1 
FSH:l.OE-06 

X(NZZl:-2.0 
GTEMP=GRIO(l l  

CN=2*NFLNS-l 
DELF=l.O/CN 
L:l 
KKK:O 
I F ~ E D G L ~ l ) . E O . O . O ~ A N D . E D G L ( 2 * N B A N D S ~ ~ E 0 . 0 ~ 5 ~  KKK=1 

IF(KKK.EB.1) GO TO 4 0 5  
IF(kFCNS.LE.3) KKK=l  

tiTEMP=DCOS(PI2*GRID(l)l 
D N U M = O C O S ( P I 2 * G H I O ( ~ G R I D ) ~  
AA:2.O/(DThP-UNUW) 
BE=-(DTEHPtDNUH)/ (DT~MP-DNUH) 
CONTiNUE 
ti0 430  J= lvNFCNS 
F T = ( J - l ) * D E L F  
XT:UCOStPI2*FT) 

XT:(XT-BB)/AA 
IF(KKK.EP.11 GO T O  410 

FT:ARCOS(XTI/PI2 
XE:X ( L )  
IFIXT.GT.XE) GO TO 4 2 0  
IF l (XE-XT) .LT.FSHl  GO T O  4 1 5  
L = L t 1  
GO TO 6 1 0  

C FillvCTlUPv TO CALLULATL T H t  LACiKAIUbL INILRPULUTIUN 
C C J E F F I C I t N T S  FOH U S t  I N  l t i t  FUNCTION b t t .  
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Abstract-A method of phoneme  recognition of connected 
speech is described. Input to the system is assumed to consist 
of the 24 continuant  phonemes in connected English speech. 
The  system  first categorizes  each successive 20-ms  segment of 
the  input speech utterance as either voiced  fricative, voiced 
nonfricative,  unvoiced  fricative or no-speech,  utilizing a mea- 
sure of the relative  energy balance  between  low  and high fre- 
quencies. Next,  the  recognition  of  each 20-ms segment is per- 
formed  from a distribution of axis-crossing  intervals of speech 
prefiltered to emphasize  each formant  freauency range. Seg- 
mentation is performed  from  the results of the  recognition of 
each  20-ms  segment and  from changes  in Categorization. 
Finally, the results of the  recognition of each  20-ms  segment 
between  each pair of segmentation  boundaries are combined 
and  the  phonemic  sound  occurring  most  frequently is printed 
out.  The  system  has  been  trained  for a single male speaker. 
Preliminary results  for  this  speaker  and  for  four  3-4s  sentences 
indicate: a correct  categorization decision for  about 97 per- 
cent of the  input 20-ms segments,  a correct  recognition  for 
about  78  percent of the  input 20-ms  segments, and  an overall 
correct  phoneme  recognition  for  about 87  percent of the  input 
phonemes. 

I. introduction 

Phoneme  recognition of speech by  machine has 
been a  subject of increasing interest in recent years. 

This  paper was partially presented at  the  1972  Internatlonal 
Manuscript received March 3,  1973; revised June  20, 1.973. 

Conference  on  Speech  Communication  and Processing, Bos- 
ton, Mass. 
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As a  result,  numerous  techniques have been devel- 
oped and applied [ 11 -[ 141.  In these  techniques, the 
difficulties associated with achieving phoneme recog- 
nition in total generality have forced the  employment 
of constraints  on  the  input speech utterance  accept- 
able by recognition systems. Such  constraints  include 
a  limitation  on  the size of the vocabulary (number of 
phonemes),  a  limitation  on  the  “naturalness” of the 
utterance .and a  limitation  on  the  number of speakers 
acceptable by the system.  The  employment of these 
three  constraints,  with varying degrees of restriction, 
has been universal in  phoneme  recognition systems. 

In  the system described in this  paper, the  input 
speech utterance is constrained to  consist of the con- 
tinuant phonemes in connected Engiish speech. 
Hence, 24 of the possible 40 or so phonemes  of En- 
glish are acceptable to  the recognizer. The system 
recognizes: the eleven vowels, /i,  I, E ,  ae, A ,  a, 3 ,  u, U, 
0, a /; the  four voiced fricatives, /v, a ,  z, j/; the  four 
unvoiced fricatives, /f, 0 ,  s, I/; the  three nasals /m,  n, 
q / ;  the  two semivowels, /1, r/, and  the null phoneme 
(no speech). It does not presently recognize: the 
vowel glides, /e, aU, aI, 3 I,  iU/;  the  consonant glides, 
/j, o/; the affricatives, /tJ, d3/;  the  stop consonants, 
/b,  d, g, p, t, k/;  or  the glottal fricative /h/. The 
group of phonemes to be recognized was chosen pri- 
marily as a  result of the high accuracy achieved in an 
initial study when recognizing these same phonemes 
uttered in  isolation [ 141. It was  of interest to deter- 
mine if this high accuracy of recognition  could be ac- 
complished for this same group of phonemes  in  con- 
tinuous speech. The  resulting  recognition system is 
one  that vocabulary restrictions can be lessened as 
methods of recognizing the remaining phonemes are 
developed and  applied. The  constraint  on  the  “natu- 
ralness” of the  spoken  utterance acceptable to  the 
system is not made. It is  assumed that  no  attempt is 
made to  enhance  recognition by other  than  “normal” 
enunciation  or ideal noise conditions. Finally, the 
system as implemented is “trained” to accept speech 
from  one  talker. A suitable  training  procedure is 
therefore  required  prior to  recognition. 

Four sentences  containing 107 phonemes were  used 
as a test of the recognition  system.  The  system  re- 
sponded  correctly for  about 87 percent of the pho- 
nemes. It responded  incorrectly for  about  4.5 per- 
cent  and failed to respond for  about 8.5 percent of 
the phonemes. 


