A Computer Program for Designing Optimum FIR Linear Phase Digital Filters

James H. McCLELLAN, Student Member, IEEE, THOMAS W. PARKS, Member, IEEE, and LAWRENCE R. RABINER, Member, IEEE

Abstract

This paper presents a general-purpose computer program which is capable of designing a large class of optimum (in the minimax sense) FIR linear phase digital filters. The program has options for designing such standard filters as lowpass, high-pass, bandpass, and bandstop filters, as well as multipassband-stopband filters, differentiators, and Hilbert transformers. The program can also be used to design filters which approximate arbitrary frequency specifications which are provided by the user. The program is written in Fortran, and is carefully documented both by comments and by detailed floweharts. The filter design algorithm is shown to be exceedingly efficient, e.g., it is capable of designing a filter with a 100 -point impulse response in about 20 s .

I. Introduction

This paper presents a general algorithm for the design of a large class of finite impulse response (FIR) linear phase digital filters. Emphasis is placed on a description of how the algorithm works, and several examples are included which illustrate specific applications. A unified treatment of the theory behind this approach is available in [1].

The algorithm uses the Remez exchange method [2], [3] to design filters with minimum weighted Chebyshev error in approximating a desired ideal frequency response $D(f)$. Several authors have studied the FIR design problem for special filter types using several different algorithms [4]-[13]. The advantage of the present approach is that it combines the speed of the Remez procedure with a capability for designing a large class of general filter types. While the algorithm to be described has a special section for the more common filter types (e.g., bandpass filters with multiple bands, Hilbert transform filters, and differentiators), an arbitrary frequency response can also be approximated.

[^0]
II. Formulation of the Approximation Problem

The frequency response of an FIR digital filter with an N-point impulse response $\{h(k)\}$ is the z-transform of the sequence evaluated on the unit circle, i.e.,

$$
\begin{equation*}
H(f)^{1}=\left.H(z)\right|_{z=e^{j 2 \pi f}}=\sum_{k=0}^{N-1} h(k) e^{-j 2 \pi k f} . \tag{1}
\end{equation*}
$$

The frequency response of a linear phase filter can be written as

$$
\begin{equation*}
H(f)=G(f) e^{j}\left(\frac{L \pi}{2}-\left(\frac{N-1}{2}\right) 2 \pi f\right) \tag{2}
\end{equation*}
$$

where $G(f)$ is a real valued function and $L=0$ or 1 . It is possible to show that there are exactly four cases of linear phase FIR filters to consider [1]. These four cases differ in the length of the impulse response (even or odd) and the symmetry of the impulse response [positive $(L=0)$ or negative $(L=1)$]. By positive symmetry we mean $h(k)=h(N-1-k)$, and by negative symmetry $h(k)=-h(N-1-k)$.
In all cases, the real function $G(f)$ will be used to approximate the desired ideal magnitude specifications since the linear phase term in (2) has no effect on the magnitude response of the filter. The form of $G(f)$ depends on which of the four cases is being used. Using the appropriate symmetry relations, $G(f)$ can be expressed as follows.
Case 1: Positive symmetry, odd length:

$$
\begin{equation*}
G(f)=\sum_{k=0}^{n} a(k) \cos (2 \pi k f) \tag{3}
\end{equation*}
$$

where $n=(N-1) / 2, a(0)=h(n)$, and $a(k)=2 h(n-k)$ for $k=1,2, \cdots, n$.

Case 2: Positive symmetry, even length:

$$
\begin{equation*}
G(f)=\sum_{k=1}^{n} b(k) \cos \left[2 \pi\left(k-\frac{1}{2}\right) f\right] \tag{4}
\end{equation*}
$$

where $n=N / 2$ and $b(k)=2 h(n-k)$ for $k=1, \cdots, n$.
Case 3: Negative symmetry, odd length:

$$
\begin{equation*}
G(f)=\sum_{k=1}^{n} c(k) \sin (2 \pi k f) \tag{5}
\end{equation*}
$$

where $n=(N-1) / 2$ and $c(k)=2 h(n-k)$ for $k=1$, $2, \cdots, n$ and $h(n)=0$.
Case 4: Negative symmetry, even length:

$$
\begin{equation*}
G(f)=\sum_{k=1}^{n} d(k) \sin \left[2 \pi\left(k-\frac{1}{2}\right) f\right] \tag{6}
\end{equation*}
$$

where $n=N / 2$ and $d(k)=2 h(n-k)$ for $k=1, \cdots, n$.
Earlier efforts at designing FIR filters concentrated on Case 1 designs, but it is now possible to combine

[^1]all four cases into one algorithm. This is accomplished by noting that $G(f)$ can be rewritten as $G(f)=$ $Q(f) P(f)$ where $P(f)$ is a linear combination of cosine functions. Thus, results that have been worked out for Case 1 can be applied to the other three cases as well. For these purposes, it is convenient to express the summations in (4)-(6) as a sum of cosines directly. Simple manipulations of (4)-(6) yield the expressions.

Case 2:

$$
\begin{align*}
& \sum_{k=1}^{n} b(k) \cos \left[2 \pi\left(k-\frac{1}{2}\right) f\right] \\
&=\cos (\pi f) \sum_{k=0}^{n-1} \tilde{b}(k) \cos (2 \pi k f) . \tag{7}
\end{align*}
$$

Case 3:
$\sum_{k=1}^{n} c(k) \sin (2 \pi k f)=\sin (2 \pi f) \sum_{k=0}^{n-1} \tilde{c}(k) \cos (2 \pi k f)$.

Case 4:

$$
\begin{align*}
\sum_{k=1}^{n} d(k) \sin [2 \pi(k & \left.\left.-\frac{1}{2}\right) f\right] \\
& =\sin (\pi f) \sum_{k=0}^{n-1} \tilde{d}(k) \cos (2 \pi k f) \tag{9}
\end{align*}
$$

where
Case 2: $\left\{\begin{array}{l}b(1)=\tilde{b}(0)+\frac{1}{2} \tilde{b}(1) \\ b(k)=\frac{1}{2}[\tilde{b}(k-1)+\tilde{b}(k)], \\ b(n)=\frac{1}{2} \tilde{b}(n-1) \quad k=2,3, \cdots, n-1\end{array}\right.$
Case 3: $\left\{\begin{array}{rl}c(1) & =\tilde{c}(0)-\frac{1}{2} \tilde{c}(2) \\ c(k) & =\frac{1}{2}[\tilde{c}(k-1)-\tilde{c}(k+1)], \\ c(n-1) & =\frac{1}{2} \tilde{c}(n-2) \\ c(n) & =\frac{1}{2} \tilde{c}(n-1)\end{array} \quad k=2,3, \cdots, n-2\right.$
Case 4: $\left\{\begin{array}{l}d(1)=\tilde{d}(0)-\frac{1}{2} \tilde{d}(1) \\ d(k)=\frac{1}{2}[\tilde{d}(k-1)-\tilde{d}(k)], \\ d(n)=\frac{1}{2} \tilde{d}(n-1) .\end{array} \quad k=2,3, \cdots, n-1\right.$
The motivation for rewriting the four cases in a common form is that a single central computation routine (based on the Remez exchange method) can be used to calculate the best approximation in each of the four cases. This is accomplished by modifying both the desired magnitude function and the weight-
ing function to formulate a new equivalent approximation problem.
The original approximation problem can be stated as follows: given a desired magnitude response $D(f)$ and a positive weight function $W(f)$, both continuous on a compact subset $F \subset\left[0, \frac{1}{2}\right]$ (note that the sampling rate is 1.0) and one of the four cases of linear phase filters [i.e., the forms of $G(f)$], then one wishes to minimize the maximum absolute weighted error, defined as

$$
\begin{equation*}
\|E(f)\|=\max _{f \in F} W(f)|D(f)-G(f)| \tag{13}
\end{equation*}
$$

over the set of coefficients of $G(f)$.
The error function $E(f)$ can be rewritten in the form
$E(f)=W(f)[D(f)-G(f)]=W(f) Q(f)\left[\frac{D(f)}{Q(f)}-P(f)\right]$
if one is careful to omit those endpoint(s) where $Q(f)=0$. Letting $\hat{D}(f)=D(f) / Q(f)$ and $\hat{W}(f)=$ $W(f) Q(f)$, then an equivalent approximation problem would be to minimize the quantity

$$
\begin{equation*}
\|E(f)\|=\max _{f \in F^{\prime}} \hat{W}(f)|\hat{D}(f)-P(f)| \tag{15}
\end{equation*}
$$

by choice of the coefficients of $P(f)$. The set F is replaced by $F^{\prime}=F-\{$ endpoints where $Q(f)=0\}$.
The net effect of this reformulation of the problem is a unification of the four cases of linear phase FIR filters from the point of view of the approximation problem. Furthermore, (15) provides a simplified viewpoint from which it is easy to see the necessary and sufficient conditions which are satisfied by the best approximation. Finally, (15) shows how to calculate this best approximation using an algorithm which can do only cosine approximations. The set of necessary and sufficient conditions for this best approximation is given in the following alternation theorem [2].

Alternation theorem: If $P(f)$ is a linear combination of r cosine functions i.e.,

$$
P(f)=\sum_{k=0}^{r-1} \alpha(k) \cos 2 \pi k f,
$$

then a necessary and sufficient condition that $P(f)$ be the unique best weighted Chebyshev approximation to a continuous function $\hat{D}(f)$ on F^{\prime} is that the weighted error function $E(f)=$ $\hat{W}(f)[\hat{D}(f)-P(f)]$ exhibit at least $r+1$ extremal frequencies in F^{\prime}.
These extremal frequencies are a set of points $\left\{F_{i}\right\}, i=1,2, \cdots, r+1$ such that $F_{1}<F_{2}<\cdots<$ $F_{r}<F_{r+1}$, with $E\left(F_{i}\right)=-E\left(F_{i+1}\right), i=1,2, \cdots, r$ and $\left|E\left(F_{i}\right)\right|=\max _{f \in F^{\prime}} E(f)$.

An algorithm can now be designed to make the

Fig. 1. Overall flowchart of filter design algorithm.
error function of the filter satisfy the set of necessary and sufficient conditions for optimality as stated in the alternation theorem. The next section describes such an algorithm along with details as to its implementation.

III. Description of the Design Algorithm

As seen in Fig. 1, the design algorithm consists of an input section, formulation of the appropriate equivalent approximation problem, solution of the approximation problem using the Remez exchange method, and calculation of the filter impulse response. The flowcharts of Figs. 2-5 give details of the exact structure of the computer program.
The input which describes the filter specifications consists of the following.

1) The filter length, $3 \leqslant$ nfilt \leqslant nfmax (the upper limit set by the programmer).
2) The type of filter (JTYPE):
a) Multiple passband/stopband (\quad TYYPE $=1$)
b) Differentiator (\quad тчее $=2$)
c) Hilbert transformer (\quad TYPE=3).
3) The frequency bands, specified by upper and lower cutoff frequencies (edge array) up to a maximum of 10 bands.
4) The desired frequency response (fx array) in each band.
5) A positive weight function (wrx array) in each band.
6) The grid density (LGRID), assumed to be 16 unless specified otherwise.
7) Impulse response punch option (JPunch).

Part 3) specifies the set F to be of the form $F=\cup B_{i}$ where each frequency band B_{i} is a closed subinterval of $\left[0, \frac{1}{2}\right]$. The inputs 4) and 5) are interpreted differently by the program for a differentiator than for the other two types of filters (see the eff and wate subroutines in Figs. 3 and 4). The weight specification in the case of a differentiator results in a relative error tolerance as is used in all other cases.
The set F must be replaced by a finite set of points for implementation on a computer. A dense grid of points is used with the spacing between points being $0.5 /($ LGRId $\times r)$ where r is the number of cosine basis functions. Both $D(f)$ and $W(f)$ are evaluated on this grid by the subroutines eff and wate, respectively. Then the auxiliary approximation problem is set up by forming $\hat{D}(f)$ and $\hat{W}(f)$ as above, and an initial guess of the extremal frequencies is made by taking $r+1$ equally spaced frequency values. The subroutine remez (Fig. 5) is called to perform the calculation of the best approximation for the equivalent problem. The mechanics of the Remez algorithm will not be discussed here since they are treated elsewhere for the particular case of low-pass filters [9]. (The flowchart of Fig. 5 gives details about the mechanics of the Remez algorithm as implemented in this design program.)

Fig. 2. Detailed flowchart for filter design algorithm.

The appropriate equations (3)-(12) are used to recover the impulse response from the coefficients of the best cosine approximation obtained in the remez subroutine. The outputs of the program are the impulse response, the optimal error ($\min \|E(f)\|)$, and the $r+1$ extremal frequencies where $E(f)= \pm\|E(f)\|$.
It is possible that one might want to design a filter to approximate a magnitude specification which is not included in the scheme given above, or change the
weight function to get a desired tolerance scheme. A flowchart of such a program is given in Fig. 6. In such cases, the user must code the subroutines EfF and wate to calculate $D(f)$ and $W(f)$. The input is the same as before, except that there are only two types of filters, depending on whether the impulse symmetry is positive or negative.

A detailed program listing of the generalized design program is given in the Appendix. Representative

Fig. 2. (Continued.)

Evaluates desired function at a grid point
Fig. 3. Flowchart for subroutine EFF.

Evaluates weight function at a grid point
Fig. 4. Flowehart for subroutine wate.

Fig. 5. Detailed flowehart for subroutine remez.

Fig. 5. (Continued.)

Fig. 5. (Continued.)

Fig. 6. Flowchart for arbitrary magnitude filter design algorithm.

Fig. 7. Output listing for an $N=24$ low-pass filter.

Fig. 8. Magnitude responses, on linear and \log scales, for an $N=24$ low-pass filter.
input card sequences are given for the design of a bandpass filter and a differentiator. To approximate an arbitrary magnitude response and/or an arbitrary weighting function, all the user has to do is change the subroutines eff and wate and use the program in the Appendix. In the next section, representative filters designed using these algorithms are presented.

IV. Design Examples

Figs. 7-22 show specific examples of use of the design program for several typical filters of interest. For each of these filters, one figure shows the computer output listing (including the run time on a Honeywell 6000 computer), and the other figure shows a plot of the filter frequency response on either a linear or a log magnitude scale (or sometimes both). Figs. 7 and 8 are for an $N=24$ low-pass filter. For this example, the run time was 0.77 s. Figs. 9 and 10 are for an $N=32$ bandpass filter. This example is the first example listed in the prologue to the program in the Appendix. The run time for this example was 0.82 s . Figs. 11 and 12 are for an $N=50$ bandpass filter in which unequal weighting was used in the two stopbands. Thus the peak error in the upper stopband is ten times smaller than the peak error in the lower stopband. A total of 2.96 s was required to design this filter. Figs. 13 and 14 are for an $N=31$ bandstop filter with equal weighting in both passbands. For the design of this filter 1.61 s were required.

To illustrate the multiband capability of the pro-

Fig. 9. Output listing for an $N=32$ bandpass filter.

Fig. 10. Log magnitude response for an $N=32$ bandpass filter.

Fig. 11. Output listing for an $N=50$ bandpass filter with unequal weighting in the stopbands.

Fig. 12. Log magnitude response of an $N=50$ bandpass filter with unequal weighting in the stopbands.

Fig. 13. Output listing for an $N=31$ bandstop filter.

Fig. 14. Log magnitude response for an $N=31$ bandstop filter.
gram, Figs. 15 and 16 show results for an $N=55$ five-band filter with three stopbands and two passbands. The weighting in each of the stopbands is different, making the peak approximation error differ in each of these bands. A total of 3.81 s was required to design this filter.

Figs. 17-20 show typical examples of single band approximations to a differentiator and a Hilbert transformer. Figs. 17 and 18 show results for an $N=32$ full band differentiator (this filter is the second example listed in the prologue to the Appendix),
whereas Figs. 19 and 20 show results for an $N=20$ Hilbert transformer where the upper cutoff frequency is 0.5 and the lower cutoff frequency is 0.05 . The peak (relative) approximation error is 0.0062 for the differentiator and 0.02 for the Hilbert transformer. The design times for these two examples are 1.11 s for the differentiator and 0.48 s for the Hilbert transformer.

Finally, Figs. 21 and 22 show an example of an $N=128$ bandpass filter with an arbitrary weighting function of the form

Fig. 15. Output listing for an $N=55$ multiband filter.

Fig. 16. Log magnitude response for an $N=55$ multiband filter.

Fig. 17. Output listing for an $N=32$ differentiator.

Fig. 18. Magnitude and error responses for an $N=32$ differentiator.
FINIIE IfPlese ReSpunse fFIR)
LINEAK PHASE UIGLTAL FILTER JESIGiN
REMEZ ExCHANGE ALGURITHA
HIL日EKT TRANOHOKMER
FHLEK LENGTH = <
***** LM̂Ulír RLSPOVSE *****
$H(\quad 1)=3.104 C 0+89 E-01=-H(\quad 20)$
$H(\quad 2)=0.1+173287 E-01=-H(13)$
$\left.\begin{array}{ll}H(3)=0.244524375-41=-H(18) \\ H(& =\end{array}\right)$
$H(5)=0.39852580 E-01=-H(15)$
$\mathrm{Hi} 6)=0.55333500 \mathrm{E}-01=-H(15)$
$H(\quad 7)=0.78542752 \mathrm{c}-01=-H(14)$
$H(\quad y)=0.11823755 \mathrm{E} 00=-H(13)$
$\mathrm{H}(\mathrm{g})=0.20664125 \mathrm{E} 30=-\mathrm{H}(12)$
$H(10)=0.63475 \% 19 E 00=-H(11)$
BAND $:$ BAND
LUWER GAND EUGE UPP=R BAND EUGE
0.05000000 WEIGHTING DEVIATION U.ULO55604
EXTKEMAL FReQUENCIES

0.0504000	0.0656250	0.10 .32550	0.1468750	0.1937200
0.2437500	0.2957500	0.3460750	0.3768751	0.4500001
0.5000000				

TIME = 0.4825937 SECONDS

Fig. 19. Output listing for an $N=20$ Hilbert transformer.

Fig. 20. Magnitude and error responses for an $N=20$ Hilbert transformer.
＊＊＊

LINEAR PHASE DIGITAL FILTER DESIGN REFEZ EXCHANGE ALGORITHM

GTH $=12 \mathrm{~B}$
IMPULSE RESPONSE 7 羊平羊
Hi 1$)=-0.20662533 E-02=H(128)$

$H(4)=0.67255029 E-03=H(125)$
$H(5)=0.93764407 E-03=H(124)$
$H(6)=0.68975566 E-03=H(123)$
$H(\quad 7)=-0.15411817 E-03=M(122)$
$H(9)=-0.10910514 \mathrm{E}-02=H(120)$
$H 110)=-0.35942515 E-03=H(119)$
$H(11)=0.74040653 E-03=M(118)$
$H(12)=0.15200502 E-02=H(117)$
$H(13)=0.15296961 E-02=H(116)$
H（14）$=0.72595198 E-03=H(115)$
$H(15)=-0.4$ B411612E－03 $=H(114)$
$H(16)=-0.11471390 E-02=H(113)$
$H(17)=-0.10636777 E-02=H(112)$
$H(18)=-0.33 .55668 E-03=H(111)$
$H(19)=0.39056916 E-03=H(110)$
$H 121=0.5175241 E-03=H(109$
$H(22)=0.14988618 \mathrm{E}-04=H(107)$
$H(23)=0.24683373 E-03=H(105)$
$H(24)=0.10519103 E-02=H(105)$
$H(25)=0.15913830 E-02=H(104)$
$H(26)=0.93133046 E-03=H(103)$
27）$=-0.11501053 E-02=H(102)$
Hi 29）$=-0.44120705 \mathrm{E}-02=H(100)$
$H(30)=-0.21395665 E-02=H(99)$
$H(32)=0.73509655 E-02=H 198)$
$H(33)=0.84703702 E-02=H(96)$
$H(34)=0.40213218 \mathrm{~F}-02=H(95)$
$H(36)=-0.12156497 E-01=H(94)$
$H(37)=-0.13554154 \mathrm{~F}-01=H(92)$
$\mathrm{H}(38)=-0.62183138 E-02=H(91)$
$H(39)=0.6791437 E-02=H(90)$
$H(39)=0.67914337 E-02=H(90)$
$H(40)=0.17947235 E-01=H(89)$
$H(41)=0.19518513 E-01=H(88)$
$H(42)=0.87717158 E-02=H(87)$
$H(44)=-0.24259875 E-01=H 185)$
$H(45)=-0.25905771 E-01=H 184)$
$\begin{array}{ll}H(45)=-0.11425838 E-01=H(& 83) \\ H(4)=0.12021431 E-01=H(82)\end{array}$
$H(48)=0.30664441 E-01=H(81)$
$H(50)=0.140105 \mathrm{~B} 3 \mathrm{~F}-01=H(79)$
$H(51)=-0.14528283 F-01=H 1 \quad 78)$
$H(52)=-0.36550244 \mathrm{~F}-01=H(77)$ $H(54)=-0.1 E 241339 E-01=4(75)$
$H(55)=0.16669269 \mathrm{E}-01=\mathrm{H}(74)$
$H(56)=0.4136$ 月275E－01 $=H($ 73）
$H(57)=0.42361176 E-01=H(72)$
$H(59)=-0.18188843 E-01=H(70)$
（6）$=-0.4459298 B E-01=H(69)$
$H(62)=-0.18354116 E-01=H(67)$
$H(63)=0.18954474 \mathrm{~F}-01=H($
Fig．21．Output listing for an $N=128$ bandpass filter with arbitrary weighting characteristics．

Fig．21．（Continued．）

Fig．22．Log magnitude response for an $N=128$ bandpass filter with arbitrary weighting characteristics．

$$
W(f)= \begin{cases}\frac{10}{1-9 f} & 0 \leqslant f \leqslant 0.1 \\ 1 & 0.12 \leqslant f \leqslant 0.13 \\ \frac{10}{9 f-1.25} & 0.15 \leqslant f \leqslant 0.25 \\ 10 & 0.25 \leqslant f \leqslant 0.5 .\end{cases}
$$

Thus the tolerance scheme is linear in the intervals $0 \leqslant f \leqslant 0.1$ and $0.15 \leqslant f \leqslant 0.25$ ．The error at the stopband edges is $0.0005(-66 \mathrm{~dB})$ ，and the peak error increases linearly to $0.005(-46 \mathrm{~dB})$ ．The time required to design this filter was 23.8 s ．

Summary

A general－purpose linear phase FIR filter design program is presented which is capable of designing a wide variety of standard filters as well as any desired magnitude response which can be specified by the
user．The speed of the algorithm，as well as its gen－ erality，make this program an attractive one for a wide variety of design applications．

Appendix

PROGRAM FOK THE DESIGN OF LINEAK PHASE FINITE IMPULSE RESPONSE（FIR）FILTERS USING THE HEMEL EXCHANGE ALGOKITHM JIM MCCLELLAN．RICE UNIVERSITY，APRIL 13 ， 1973 THHEE TYPES OF FILTEKS ARE INCLUUED－GANDPASS FILTERS DIFFEREINTIATORS，AND HILBEKT TKANSFOHM FILTERS

THE INPUT DAIA CUNSISTS OF 5 CARUS
CAKO 1－－FILTER LENGTH，TYPE OF FILTEK．1－MULTIPLE PASSBAND／STUPBAND，2－CIFFERENTLATOR，S－HILEERI TRANSFUFM． FILTER．NUMEER OF BANDS，GARU PUNCH UESIRED，AND GKLD DENSITY．

CARD 2－－HANDEDGES，LOWER AND LPPER EUGES FOR EACH BAND WITH A MAXIMUM UF IU BANDS．

CARU 3－－DESIREL FUNCTIOI（OR LESIREU SLUPE IF A DIFFERENT $\perp A T O K$ ）FOR EACH BANU．

CARO 4－－WEIGHT FLNCTLON LN EACH BAND．FOK A OIFFERENIIATUR，THE WEIGHI FUNCTION IS LINVERSELY PROPORTIUINAL TU F．

THE FULLOWING INPUT DATA SPECIFIES A LENGTH 32 bandrass FILTER WITH STUPBAWDS 0 TU 0.1 AND 0.425 TO $0 . b$ AND PASSBANE FROM O．e TU 0.35 WITM WEDGHIDNG UF 10 IN THK STOPBANDS ANU 1 IN THE PASSBAIND．THE IMPULSE KESPONSE． WILL BE PUNCHED ANU THE GRID DENSITY IS 32．IHIS IS THE FILTER IN FIGUKES 9 AND 10 IN THE TEXI．
SAMPLE INPUT DAIA SETUP
32，1．5，1，32
$0.0 .1,0.2,0.35,0.420,0.5$
$0,1,0$
$10,1,10$
THE FOLLOWING INPUI UATA SPECIFIES A LENGIH 32 WIDEBANU DIFFERENTIATOR NITH SLOPE 1 ANU WEIGHIING OF $1 / t$ ．THE IMPULSE RESPONSE WILE AUT OE PUNCHED ANL THE GKDO IMPULSE RESPONSE WILG NUI OE PUNGHED ANL THE GKLS DENSITY 15 ASSUMED TO GE 1O．T
FIGURES 17 ANU 18 IN THE TEXT．
32，2．2－0．0
0.0 .5
1.10
1.0

COMMON PIZ，AU，DEV，$\lambda \cdot Y$－GKIE，UES，WT，ALPHA，IEXI，NFCNS．NGRIL
JIMENSIUN IEXT（66），AO（66），ALPHA（66），X（66），Y（66）
OIMENSIUN H（OG）
DIMENSION DES（1045），GH2U（1045）／WT（104b）
DLMENSLUN ELUE（20）•FX（I0），WIX（10）．UEVLAT（10）
DOUGLE PREC」SION P」る．Pi
JOUELE PRECISIUN ALQUEV．X，Y
P12＝0．283185007179580
$\mathrm{PI}=3.141552653589793$

```
C THE PROGRAM IS SET UP FOR A MAXIMUM LENGTH OF 22B. BUT
C THIS UPPER LIMIT CAN BE CHANGEO BY REUIMENSIONING THE 
C ARRAYS IEXT. AD. ALPHA, X, Y, HTO BE NFMAX/2 + 2.
C THE ARRAYS DES, GRID, AND WT MUST DIMENSIONED
C 16(NFMMX/2 + 2).
NFMAX=128
    CONTINUE
        JTYPE=0
C
PROGRAM INPUT SECTION
    READ *,NFILT,JTYPE,NBANDS*JPUNCH:LGRID
    IF(NFILT.GT.NFMAX,OR,NFILT.LT,3) CALL ERROR
    IF(NBANDS.LE,O) NBANDS=1
C
C GRID DENSITY IS ASSUMED TO BE 16 UNLESS SPECIFIED
C OTHERWISE
    IF(LGRID.LE.O) LGRID=16
    JB=2*NBANDS
    READ *:(EDGE(J),J =1,JB)
    READ *:(FX(い):J=1:NBANDS)
    READ *.(WTX(J),J=1,NBANDS)
    IF(JTYPE.EQ.O) CALL ERROR
    NEG=1
        IF(JT广YPE.EQ.1) NEG=0
        NODD=NFILT/2
        NODO=NFILT-2*NOOU
        NFCNS=NFILT/2
        IF (NODD.EQ.1.AND:NEG.EQ.O) NFCNS=NFCNS+1
C SET UP THE DENSE GRID, THE NUMBER OF POINTS IN THE GRID
C SET UP THE DENSE GRID, THE NUMBER OF
        GRID(1)=EDGE(1)
        DELF=LGRID*NFCNS
        DELF=0.5/DELF
        IF(NEG.EQ.O) GO TO 135
        IF(EDGE(1):LT.DELF) GRIO(1)=DELF
    135 CONTINUE
        J=1
        LBAND=1
    140 FUP=EOGE(L+1)
    145 TEMP=GRID(J)
C CALCULATE THE DESIRED MAGNITUDE RESPONSE AND THE WEİGHT
C FUNCTION ON THE GRIU
    DES(U)=EFF(TLMP,FX,WTX,LBANO,UTYPE)
    WT(J)=WATE(TEMP & FX,WTX,LBAND,JTYPE)
    J=J+1
    GRIC(J)=TEMP+DELF
    IF(GRIU(J).GT.FUP) GO TU 150
    GO TO 145
    15u GRIC(J-1)=FUP
    OES(J-1)=EFF(FUP,FX,NTX,LBAND,UTYPL}
    WT (J-1)=WATE (FUP,FX,WTX.LBAND.JTYPE)
    LBAND=LBAND +1
    L=L+2
    IF(LBAND.GT.NBANDS) GO TO 160
    GRID(J)=EDGE(L)
    GO TO 140
    160 NGRID=\-1
    IF(NEG.NE.NODO) GO TO 165
    IF(GRID(NGRIO).GT.(0.5mDELF)) NGRIU=NGRID-1
    165 CONTINUE
C
C SET UP A NEW APPROXIMAIION PROBLEM WHICH IS EQUIVALENT
c TO THE ORIGINAL PROBLEM
    IF(NEG) 170.170,180
    170 IF(NODD.EQ.1) GO TO 200
    DO 175 J=1.NGRID
    CHANGE=DCOS(PI*GRID(U))
    DES(J)=DES(u)/CHANGE
    175WT(J)=WT (J)*CHANGE
        GO TO 200
    180 IF(NODD.EQ.1) GO TO 190
        00 185 J=1.NGRID
        CHANGE=LSIN(P1*GRID(J))
        DES(J)=DES(J)/CHANGE
        $WT(J)=WT(J)*CHANGE
        G0 TO 200
    190 DO 195 J=1.NGRID
        CHANGE=DSIN(PI2*GRID(J))
        DES(J)=DES(J)/CHANGE
    195 wT(J)=WT(J)*CHANGE
C INITIAL GUESS FOR THE EXTREMAL FREQUENCIES--EGUALLY
C SPACED ALUNG THE GRID
200 TEMP=FLOAT(NGRID-1)/FLUAT(NFCNS)
        DO 210 J=1,NFCNS
    210 IEXT (J)=(J-1)*TEMP+1
        IEXT(NFCNS+1)=NGRID
        NM1 =NFCNS-1
        NZ=NFC/vS+1
```

CALL THE REMEZ EXCHANGE ALGORITHM TO vO THE APPKOXIMATION PROBLEM

CALL REMEZ（EUGE，NEANUS）
CALCULATE THE IMPULSE RESPONSL．
IFINEG） $300 \cdot 340.320$
300 IF（NOLU．EG． 0 ）GO TO 310 DO 3uS J＝1，NA1
$305 \mathrm{H}(\mathrm{J})=0.5 * \mathrm{ALPHA}(1 \mathrm{~L} \angle-U)$ H（NFCNS）＝ALPHA（1） GO $10 \quad 350$
310 H（1）$=0.25 * A L P H A(N F C N S)$ ט0 $315 \mathrm{~J}=2$ ，iNM 1
21 $H(J)=0.25 *(A L P H A(N Z-U)+A L P H A(N F C N S+2-J))$ H（NFCNS）$=0.5 * A L P H A(2)+0.25 * A L P H A(E)$ GU TO 350
320 IF（NuLu．EG．0）GU 10330
$H(1)=U .25 * A L P H A($ INFCNS $)$
$H(2)=0.25 * A L$ HHA（VM1） DO $325 \mathrm{~J}=3$ ． $\operatorname{Nan} 1$
$325 \mathrm{H}(\mathrm{J})=0.25 *($ ALPHA $(N \angle-J)-$ ALPHA $(N F C N S+3-J))$ $\mathrm{H}(\mathrm{NFCNS})=0.5 * A L P H A(1)-0.25 * A L P H A(3)$ $H(N Z)=0.0$ G0 TO 350
$330 H(1)=0.25 *$ ALPHA（NFCNS） $00335 \mathrm{~J}=2$ ， NN 1
$335 H(J)=0.25 *(A L P H A(N Z-J)-A L P H A(N F C N S+2-J j)$ H（NFCNS）$=0.5 * A L P H A(1)-0.25 * A L P H A(2)$

350 PRINT 360
360 FORMAT（1HI，70（1H＊）／／25X，＂FINITE IMPULSE RESPONSE（FIR）$/$ ， 60 FORMAT（1HA，
$125 X$ ．＇LINEAR PHASE DIGITAL FILTER DESIGN＊／ 225X．＂REMEZ EXCHANGE ALGORITHM＊／ IF（JTYPE．EQ．1）PRINT 365
365 FORMAT（25X，＂BANUPASS FILTER＊／） IF（JTYPE．EG． 2 ）PRINT 370
370 FORMAT（ $25 \times$ ；DIFFERENTIATOR＇／） IF（JTYPE．EQ．S）PRINT 375
375 FORMAT（25X＊＊HILBERT TRANSFORMER＇／） PRINT 378，NFILT
378 FORMAT（ $15 \times$ ．${ }^{\circ}$ FILTER LENGTH $=\cdot .13 /$ ） PRINT 380
380 FORMAT（15x，＊＊＊＊＊＊IMPULSE RESPONSE＊＊＊＊＊＇）
DO $381 \mathrm{~J}=1$ ，NFCNS
$K=N F I L T+1-J$
IF（NEG．EQ．O）PRINT 382．J．H（J）．K
IF（NEG．EQ．1）PRINT 383．N．H（J）：K
381 CONTINUE

 IF（NEG．EG．1．AND．NODD．EQ．1）PRINT 384，NZ
384 FORMAT（20X．＂H（＇．I3，$)=0.0$ ）
DO $450 \mathrm{~K}=1$ ，NBANDS． 4
KUP $=K+3$
IF（KUP，GT．NBANDS）KUP＝NBANDS
PRINT 385．（J．J＝K•KUP）
385 FORMAT（／24X，4（＇BAND＇，I3，8X）） PRINT 390．（EDGE（2＊J－1），ل＝K，KUP）
390 FORMAT（2X，＇LOWER BAND EOGE＇，5F15．9） PRINT 395．（EDGE（2＊J）：J＝K，KUP）
395 FORMAT $2 \times$ ．UPPPER BAND EDGE•，5F15；91 IF（JTYPE，NE，2）PRINT 400 ．（FX $(J), J=K, K U P)$
400．FORMAT（ 2 X, ＇DESIRED VALUE＇， $2 \mathrm{X}, 5 \mathrm{~F}$ 15．9） IF（UTYPE，EQ，2）PRINT $405,(F X(J), J=K, K U P)$
405 FORMAT（2X．＇DESIRED SLOPE＇， $2 \mathrm{X}, 5 \mathrm{~F}$ 15．9） PRINT $410,(W T X(J), J=K, K U P)$
410 FORMAT（2X，＇WEIGHTING＊© 6 X，5F15．9） DO 420 J＝K，KUP
420 DEVIAT（J）＝DEV／WTX（J）
PRINT 425．（DEVIAT（J），J＝K，KUP）
425 FORMAT（2X．＇DEVIATION＇ 6 XX ；5F15．9） IF（JTYPE．NE，1）GO TO 450 UO 430 J＝K．KU
43 U UEVLAT（N）$=20.0$＊ALOG10（UEVLAI（J）） PKINT 435，（UEVIAT（J），J＝K•KUP）
435 FORNAT（2X．＇UKVIATLUN LN UB＇．SF15．5）
45 CONTLNUE PRINT 455，（GR1U（1EXT（U））：Jこ1，iNZ）
45 FORMAT（／2X．＂EXTKEMAL FREGUENCIES＂／（2X，5F12．7）） PRINT 460
460 FORMAT（／1X．70（1H＊）／1H1）
IF（UPUINCH．NE．0）PUINCH＊＊（H（J），$J=1$ ，NFCNS）
IF（NFILT．NE．O）GO TO 100 RETURN
END
FUNCTION EFF（TEMP，FX，WTX•LBAND，JTYPE）
FUIVCTION TO CALCULATE THE UESIRED MAGNITUDE RESPONSE
as a function of freduency．
DIMENSION FX（5），WTX（5）
IF（JTYPE．EQ．2）GO TO 1
EFF＝FX（LBAND）
RETURN

1 EFF $=F X($ LSAND $) *$ IEMP
RETURN
END

FUNCTION WATE(TEMP,FX.WTX,LBAND, JTYPE)
C FUNCTION TO CALCULATE THE WEIGHT FUNCTION AS A FUNCTION C OF FREQUENCY.

DIMENSION FX(5),WIX(5)
IF (JTYPE.EQ.2) GO TO 1
WATE=WTX(LBAND)
RETURN
1 IF(FX(LBAND).LT.0.0001) GOTO 2
WATE=WTX(LBAND) /TEMP
RETURN
2 WATE=WTX(LBAND)
RETURN
END

SUBROUTINE ERKOR
PRINT 1
1 FORMAT(, ************ ERROR IN INPUT DATA ***********) STOP
END

SUBROUTINE REMEZ(EDGE,NBANDS)

C THIS SUBROUTINE IMPLEMENTS THE REMEZ EXCHANGE ALGORIIHM FOR THE WEIGHTED CHEBYCHEV APPROXIMATION OF A CONTINUOUS FUNCIION WITH A SUM OF COSINES. INPUTS TO THE SUBROUTINE ARE A DENSE GRID WHICH REPLACES THE FREQUENCY AXIS, THE DESIRED FUNCTION ON THIS GRID, THE WEIGHT FUNCTION ON THE GRID. THE NUMBER OF COSINES, AND AN INITIAL GUESS OF THE EXTREMAL FREQUENCIES. THE PROGRAM MINIMIZES THE CHE日YCHEY ERROR BY DETERMINING THE BEST LOCATION OF THE EXTREMAL FREQUENCIES (POINTS OF MAXIMUM ERROR) ANO THEN CALCULATES FREQUENCIES (POINTS OF MAXIMUM ERROR) ANO THE
THE COEFFICIENTS OF THE BEST APPROXIMATION.

COMMON PI2, AD,DEV,X,Y,GRID,UES,WT, ALPHA,IEXT, NFCNS, NGRID OIMENSION EDGE(20)
DIMENSION IEXT (66), AD (66), ALPHA (66), X(66), Y(66)
OIMENSION DES(1045),GRID(1045) WT(1045)
OIMENSION A(66), P(65),Q(65)
DOUBLE PRECISION PIZ,DNUM,DUEN,DTEMP.A.P. θ
DOUBLE PRECISION AD*DEV,X,Y
THE PROGRAM ALLOWS A MAXIMUM NUMBER OF ITERATIONS OF 25
1 TRMAX $=25$
DEVL=-1.0
$N Z=N F C N S+1$
$N Z Z=N F C N S+2$
NITER=0
100 CONTINUE
IEXT $(N Z Z)=N G R I D+1$
NITER=NITER+1
IF (NITER.GT.ITRMAX) GO TO 400
DO $110 \mathrm{~J}=\mathrm{I}$, N 2
DTEMP=GRID(IEXT(J))
DTEMP=DCOS(OTEMP*PI2)
$110 \times(\mathrm{J})=\mathrm{DTEMP}$
JET $=($ NF CNS -1$) / 15+1$
$00120 \quad \mathrm{~J}=1$. N 2
120 AD (J)=D(J,NZ,JET)
DNUM $=0.0$
DDEN $=0.0$
$K=1$
$00130 \quad \mathrm{~J}=1$, NZ
L=IEXT(J)
TEMP=AD(J)*UES(L)
DNUM=ONUM + DTEMP
DTEMP $=K * A D(J) / W T(L)$
DUEN=UDEN+UTEMP
$130 \mathrm{~K}=-\mathrm{K}$
UEV=UNUM/ODEN
Nu=1
IF (DEV.GT.O.0) NU=-1
OEV $=-$ NU*OEV
$K=$ ivu
$00140 \quad \mathrm{~J}=1 \cdot \mathrm{~N} 2$
$L=I E X I(J)$
OTEMP=K*DEV/WT(L)
$Y(J)=0 £ S(L)+L$ TEMP
14 U K=-K
IF (DEV.GE.DEVL) GO TO 150
CALL OUCH
GO TO 400
150 DEVL=QEV
JCHNGE=0
$\mathrm{k} 1=\mathrm{IEXT}$ (1)
KNZ $=1 E X T(N Z)$
KLOW=0
$\mathrm{NUT}=-\mathrm{NU}$
$J=1$

```
SEARCH FOR THE EXIREMAL FREQUENCIES OF IHE BEST
    APPROXIMATION
    200 IF(N.EQ.NZZ) YNZ=COMP
    IF(J,GE.NZZ) GO TO 300
    KUP=1EXT(J+2)
    L=IEXT(J)+1
    L=IEXT(U)
    IF(J.EG.2) Y1=COMP
    IF(J.EG:2)
    COMP=DEV
    IF(L.GE.KUP) GO TO 220
    ERR=GEE(L,NZ)
    ERK=(ERR=DES(L))*WT(L)
    DTEMP=NUT*ERR - COMP
    IF(DTEMP.LE.H.O) GO TO 220
    COMP=NUT*ERF
210 L=L+1
    IF(L.GE.KUP) GO TO 215
    ERR=GEE(L,NZ)
    RRR=(ERR-OES(L))*WT(L)
    DTEMP=NUT*ERK-COMP
    IF(DTEMP.LE,0.0) GO TO 215
    COMP=NUT*ERR
    GO TO 210
215 IEXT(J)=L-1
    J=J+1
    KLOW=L-1
    CHNGEEJCHNGE +1
    GO TO 200
220 L=L-1
225 L=L-1
    F(L.LE.KLOW) GO TO 250
    ERR=GEE (L,NZ)
    ERR=(ERR-DES(L))*WT(L)
    DTEMP=NUT*ERR-COMP
    IF(DTEMP.GT.O.0) GO TU 230
    F(JCHNGE.LE.U) GO TU 225
    GO TU 260
<3u COMP=NUI*ERR
<35 L=L-1
    F(L.GE.KLOW) GO 10 240
    ERR=GEL(L.NZ)
    EKR=(EKK-UES(L))*WT(L)
    EKR=(EKK-LES(L))*WT
    OTEMP=VVUT*EKK-COMP
    FF(OTEMF.LE.U.O) GC IO 240
    COMF=RUUT*ERF
    GO 10 235
440 KLOh=LEXY(J)
    IEXT(U)=L+1
    J= J+1
    JCHNGGE=JCHNGL + 1
    GO TO<OO
250 L=IEXT(J)+1
    IF(JCHNGE.GY.O) GO TO 215
255 L=L+1
    IF(L.GE.KUP) GO TO 260
    ERR=GEE (L,NZ)
    ERR=(ERR-DES(L))*WT(L)
    OTEMP=NUT*ERK-COMP
    IF(DTEMP.LE.0.0) GO 10 255
    COMP=NUT*ERR
    GO TO 210
260 KLOW=1EXT(J)
    u=J+1
    GO TO 200
300 IF(v.GT.NZZ) GO 10 320
    IF(K1.GT.IEXT(1)) K1=IEXT(1)
    IF(KNZ.LT.IEXT(NZ)) KNZ=IEXI(NZ)
    NUT1=NUT
    NUT=-NU
    L=0
    KUP=K1
    COMP=YNZ*(1.00001)
    LUCK=1
    L=L+1
    IF(L.GE,KUP) GO TO 315
    ERR=GEE(L,NZ)
    ERR=(ERR-DES(L))*WT(L)
    ERR=(ERR-DES(L))*W
    DTEMP=NUT*ERR-COMP
    COMP=NUT*ERR
    J=NZZ
    J=N2Z
315 LUCK=6
    GO TO 325
320 IF(LUCK.GT.9) GO TO }35
    IF(COMP.GT.Y1) Y1=COMP
    K2=IEXT (NZZ)
325 L=NGRID+1
    KLOW=K.NZ
    NUT=-NUT1
    COMP=Y1*(1.00001)
330 L=L-1
    IF(L.LE.KLOW) GO TO }34
    ERR=GEE(L,NZ)
    ERR=(ERR-DES(L))*WT(L)
    OTEMP=NUT*ERR-COMP
    IF(DTEMP.LE.O.0) GO TO 330
    J=NZZ
    J=NZZ
    COMP=NUT*ERR
    NOMP=NUT*ERR
    LUCK=LUCK+1
    GO TO 235
```

340 IF（LUCK，EQ．6）GO TO 370
DO $345 \mathrm{~J}=1$ ，NFCNS
345 IEXT（NZZ－J）$=$ IEXT（NZ－ل）
IEXT（1）＝K1
GO TD 100
$350 \mathrm{KN}=\mathrm{IE} \times \mathrm{X}(N Z Z)$
DO $360 \quad j=1$ ，NF CNS
$360 \operatorname{IEXT}(\checkmark)=I E X T(J+1)$
$\operatorname{IEXT}(N Z)=K N$
GO TO 100
370 IF（山CHNGE，GT．0）GO TO 100

C CALCULATIUN OF THE COEFFICIENTS OF THE BEST APPROXIMATION USING THE INVERSE DISCRETE FOURIER TRANSFORM

400 CONTINUE
NM2 $=$ NFCNS -1
FSH＝1．0E－06
GTEMP＝GRIO（i）
$x(N Z Z)=-2.0$
CN＝2＊NFCNS－1
$O E L F=1,0 / C N$
L＝1
KKK＝0
IF（EDGE（1）．EQ．0．0．AND．EDGE（2＊NBANDS）．EQ．0．5）KKK＝2
IF（NFCNS．LE．B）KKK＝1
IF（KKK．EQ．1）GO TO 405
TEMP＝DCOS（PI2＊GRID（1））
DNUM $=0 \mathrm{COS}(P I 2 * G R I D(N G R I D))$
$A A=2.0 /$（DTEMP－DNUM）
B8＝－（DTEMP＋DNUM）／（DTEMP－DNUM）
405 CONTINUE
DO $430 \quad J=1$ ．NFFCNS
FT＝（J－1）＊DELF
XT＝0COS（PI2＊FT）
IF（KKK．EQ．1）GO TO 410
$X T=(X T-B B) / A A$
$F T=A R C O S(X T) / P I 2$
$410 \times E=X(L)$
IF（XT：GT，XE）GO TO 420
IF（（XE－XT）．LT，FSH）GO TO 415
$=L+1$
GO TO 410
$415 \mathrm{~A}(\mathrm{~J})=\mathrm{Y}(\mathrm{L})$
GO TO 425
420 IF（ $(X T-X E) . L T, F S H)$ GO TO 41 b
GRID（1）＝FT
$A(J)=G E E(1, N 2)$
425 CONTINUE
IF（L．GT．1）L＝L－1
430 CONTINUE
GRID（1）＝GTEMP
DDEN＝PI2／CN
DO $510 \quad J=1$ ．NFCNS
DTEMP $=0.0$
DNUM＝（J－1）＊DDEN
IF（NM1．LT．1）GO TO 505
DO $500 \mathrm{~K}=1$ ．NMI
500 DTEMP $=$ OTEMP＋A $(K+1) * D C O S(D N U M * K)$
505 DTEMP $=2,0$＊DTEMP＋A（1）
510 ALPHA $(N)=$ DTEMP
DO 550 $J=2$ ．NFCNS
550 ALPHA（u）＝2＊ALPHA（J）／LN
ALPHA（1）＝ALPHA（1）／CN
1F（KKK．LQ．I）GOTO 545
（1）＝2．J＊ALPHA（NFCNS）＊BB＋ALPHA（NMI）
$P(2)=2.0 * A A * L_{L P H A(i v F C N S)}$
U（1）＝ALPHA（NFLNS－2）－ALPHA（NFCINS）
DO $540 \mathrm{~J}=2$ ，ivint
IF（J．LT．NM1）G0 TO blb
$A A=0.5 * A A$
$B B=0.5 * B B$
515 CONTINUE
$P(J+2)=0.0$
$00 \quad 5 \geq 0 \quad k=1, J$
$A(K)=P(K)$
$520 P(K)=2.0 * B B * A\{K\}$
$p(2)=P(2)+A(1) * 己 . U * A A$
JMA＝Jー2
$00525 \quad k=1$ ： $\mathrm{JM} \mathrm{M}_{2}$
$525 P(K)=P(K)+Q(K)+A A * A(K+1)$
JP1 $=3+1$
DU $530 \mathrm{~K}=3 . \mathrm{JPa}$
$530 P(K)=P(K)+A A * A(K-1)$
IF（J．EL．NM1）60 TO 540
00 53S K＝1．0
$535 \mathrm{G}(\mathrm{K})=-\mathrm{A}(\mathrm{K})$
G（1）$=0(1)+$ ALFHA（NFCNS－1－J）
540 CONTINUE
DO $543 \quad J=1$ ，NF LiNS
543 ALPHA $(J)=F(J)$
545 CONTINUE
IF（NFCNS．GT．S）RETURN
ALPHA $(N F C N S+2)=0,0$
ALPrta（iNFCiNS +2$)=0.0$
KETURIG
END

DOUBLE PRECISION FUNCT \perp ON U（K，N，M）

C FUNGTION TO CALEULATL THE LAGRANGE INIERPOLATIUN
C CUEFFICIENTS FOK USt IN TrIt FUNCTION GEE．
COMMUN PIA，AL，UEV，X，Y，GKID，UES，WT，ALPHA，IEXI，NFCNS，NGRID DIMENSION IEXT（ 66 ），AD (66) ，ALPHA（ 66$), X(66), Y(66)$
JIMENSION OES（1045），GRIO（1045），WT（1045）
DOUBLE PRECISION AD，UEV，X ，Y
DOUGLL PRECISION Q
DOUBLE PRECISION PI2
$0=1,0$
$\theta=x(K)$
DO $3 \mathrm{~L}=1, \mathrm{M}$
002 J＝L，N．M
IF（ $\downarrow-K) 2,2,1$
$1 \mathrm{U}=2.0 * 0 *(6=x(\sqrt{2}))$
2 CONTINUE
3 CONTINUE
$0=1.0 / 0$
RETURN
ENU

DOUBLE PRECISION FUNGIIUN GEE（K，N）
FUIGCTION TO EVALUATL THE FREUULNCY RESPOINSE USING THE LAGRANGE INTEFPULATION FURMULA IN THE GARYCENIKLC FOKM

CUMMUN PI2，AU，JLV，X，Y，GKIU，UES，WT，ALPHA，IEXI，NFGCNS，NGRID
UIMENSLUN IEXT（66），AU（66），ALPHA（66），X（66），Y（60）
DIMENSIUN DES（2045），GKよU（1045）IWT（1045）
DUUBLE PHECISION P，C，U，XF
DUUBLE PRECISIUN P12
DUUBLE PRECISION AJ，UEV，X，Y
$p=0.0$
$\mathrm{XF}=\mathrm{GKlu}(\mathrm{K})$
$x F=U C O S(P I 2 * X F)$
$0=0.0$
$002 \mathrm{i}=2, \mathrm{~N}$
$C=x F-x(u)$
C＝AU（J）／C
$\mathrm{C}=\mathrm{A}+(\mathrm{C}$
$\mathrm{U}=\mathrm{U}+\mathrm{C}$
$1 \mathrm{P}=\mathrm{P}+\mathrm{C} * Y(\mathrm{Y})$
GEL＝ト／U
RETURIN
ENU

SUBROUIINE OUCH

PHLNT 1
1 FORMAT（＇＊＊＊＊＊＊＊＊＊＊＊＊FAILURE IU CUIVとRGE＊＊＊＊＊＊＊＊＊＊＊／
1．OPROGAGLE CAUSE 15 MACHINE ROUNDING EKROR＇／
2＇OTHE LMPULSL RESPONSL MAY BE LURKECT＇／
3．OCHECK WIfH A FREGUENCY KESPUNSE？）
RETUKIN
EINO

References

［1］J．H．McClellan and T．W．Parks，＂A unified approach to the design of optimum FIR linear phase digital fil－ ters，＇，IEEE Trans．Circuit Theory，vol，CT－20，pp．697－ 701，Nov． 1973.
［2］E．W．Cheney，Introduction to Approximation Theory． New York：McGraw－Hill，1966，pp．72－100．
［3］E．Ya．Remez，＂General computational methods of Tchebycheff approximation，＂Kiev， 1957 （Atomic En－ ergy Translation 4491，pp．1－85）．
［4］B．Gold and K．L．Jordan，＂A direct search procedure for designing finite duration impulse response filters，＂ IEEE Trans．Audio Electroacoust．，vol．AU－17，pp．33－ 36，Mar． 1969.
［5］L．R．Rabiner，B．Gold，and C．McGonegal，＂An ap－ proach to the approximation problem for nonrecursive digital filters，＂IEEE Trans．Audio Electroacoust．，vol． AU－18，pp．83－106，June 1970.
［6］L．R．Rabiner and K．Steiglitz，＂The design of wideband recursive and nonrecursive digital differentiators．＂IEEE Trans．Audio Electroacoust．，vol．AU－18，pp．204－209， June 1970.
［7］O．Herrmann，＂Design of nonrecursive digital filters with linear phase，＂Electron．Lett．，pp．328－329， 1970.
［8］E．Hofstetter，A．V．Oppenheim，and J．Siegel，＂A new， technique for the design of nonrecursive digital filters，＂ in Proc．5th Annu．Princeton Conf．Inform．Sci．and Syst．，Mar．1971，pp．64－72．
［9］T．W．＇Parks and J．H．McCleilan，＂Chebyshev approxima－； tion for nonrecursive digital filters with linear phase，＂ IEEE Trans．Circuit Theory，vol．CT－19，pp．189－194， Mar． 1972.
［10］L．R．Rabiner，＂The design of finite impulse response
digital filters using linear programming techniques," Bell Syst. Tech. J., vol. 51, pp. 1177-1198, July-Aug. 1972.
[11] T. W. Parks and J. H. McClellan, "A program for the design of linear phase finite impulse response digital filters," IEEE Trans. Audio Elec troacoust., vol. AU-20, pp. 195-199, Aug. 1972.
[12] O. Herrmann, "Transversal filters for the Hilbert Transformation," Arch. Elek. Ubertragung., vol. 23, pp. 581587, 1969
[13] J. H. McClellan, "On the design of one-dimensional and two-dimensional FIR digital filters," Ph.D. dissertation, Rice Univ., Houston, Tex., Apr. 1973.

Computer Recognition of the Continuant Phonemes in Connected English Speech

RUSSELL J. NIEDERJOHN, Member, IEEE, and IAN B. THOMAS, Member, IEEE

Abstract

A method of phoneme recognition of connected speech is described. Input to the system is assumed to consist of the 24 continuant phonemes in connected English speech. The system first categorizes each successive $20-\mathrm{ms}$ segment of the input speech utterance as either voiced fricative, voiced nonfricative, unvoiced fricative or no-speech, utilizing a measure of the relative energy balance between low and high frequencies. Next, the recognition of each $20-\mathrm{ms}$ segment is performed from a distribution of axis-crossing intervals of speech prefiltered to emphasize each formant frequency range. Segmentation is performed from the results of the recognition of each $20-\mathrm{ms}$ segment and from changes in categorization. Finally, the results of the recognition of each $20-\mathrm{ms}$ segment between each pair of segmentation boundaries are combined and the phonemic sound occurring most frequently is printed out. The system has been trained for a single male speaker. Preliminary results for this speaker and for four 3-4-s sentences indicate: a correct categorization decision for about 97 percent of the input $20-\mathrm{ms}$ segments, a correct recognition for about 78 percent of the input $20-\mathrm{ms}$ segments, and an overall correct phoneme recognition for about 87 percent of the input phonemes.

I. Introduction

Phoneme recognition of speech by machine has been a subject of increasing interest in recent years.

[^2]As a result, numerous techniques have been developed and applied [1]-[14]. In these techniques, the difficulties associated with achieving phoneme recognition in total generality have forced the employment of constraints on the input speech utterance acceptable by recognition systems. Such constraints include a limitation on the size of the vocabulary (number of phonemes), a limitation on the "naturalness" of the utterance and a limitation on the number of speakers acceptable by the system. The employment of these three constraints, with varying degrees of restriction, has been universal in phoneme recognition systems.
In the system described in this paper, the input speech utterance is constrained to consist of the continuant phonemes in connected English speech. Hence, 24 of the possible 40 or so phonemes of English are acceptable to the recognizer. The system recognizes: the eleven vowels, /i, I, $\epsilon, \mathfrak{x}, \Lambda, \mathrm{a}, \supset, \mathrm{u}, \mathrm{U}$, $o, \delta /$; the four voiced fricatives, $/ \mathrm{v}, \underset{\partial}{ }, \mathrm{z}, 5 /$; the four unvoiced fricatives, /f, $\theta, \mathrm{s}, \mathrm{s} /$; the three nasals $/ \mathrm{m}, \mathrm{n}$, $\eta /$; the two semivowels, $/ l, r /$, and the null phoneme (no speech). It does not presently recognize: the vowel glides, /e, aU, aI, ว I, iU/; the consonant glides, $/ \mathrm{j}, \omega /$; the affricatives, $/ \mathrm{t} \mathrm{f}, \mathrm{d} 3 /$; the stop consonants, $/ \mathrm{b}, \mathrm{d}, \mathrm{g}, \mathrm{p}, \mathrm{t}, \mathrm{k} /$; or the glottal fricative $/ \mathrm{h} /$. The group of phonemes to be recognized was chosen primarily as a result of the high accuracy achieved in an initial study when recognizing these same phonemes uttered in isolation [14]. It was of interest to determine if this high accuracy of recognition could be accomplished for this same group of phonemes in continuous speech. The resulting recognition system is one that vocabulary restrictions can be lessened as methods of recognizing the remaining phonemes are developed and applied. The constraint on the "naturalness" of the spoken utterance acceptable to the system is not made. It is assumed that no attempt is made to enhance recognition by other than "normal" enunciation or ideal noise conditions. Finally, the system as implemented is "trained" to accept speech from one talker. A suitable training procedure is therefore required prior to recognition.
Four sentences containing 107 phonemes were used as a test of the recognition system. The system responded correctly for about 87 percent of the phonemes. It responded incorrectly for about 4.5 percent and failed to respond for about 8.5 percent of the phonemes.

[^0]: Manuscript received August 6, 1973. The work of J. H. McClellan and T. W. Parks was supported by NSF Grant GK-23697.
 J. H. McClellan and T. W. Parks are with Rice University, Houston, Tex.
 L. R. Rabiner is with Bell Laboratories, Murray Hill, N.J. 07974.

[^1]: ${ }^{1}$ For convenience, throughout this paper the notation $H(f)$ rather than $H\left(e^{j 2 \pi f}\right)$ is used to denote the frequency response of the digital filter.

[^2]: Manuscript received March 3, 1973; revised June 20, 1973. This paper was partially presented at the 1972 International Conference on Speech Communication and Processing, Boston, Mass.
 R. J. Niederiohn is with the Department of Electical Engineering, Marquette University, Milwaukee, Wis. 53233.
 I. B. Thomas is with the Department of Electrical Engineering, University of Massachusetts, Amherst, Mass. 01002.

