
INEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL. ASSP-22, NO. 3, OCTOBER 1974

A Multiline Computer Voice Response System Utilizing

ADPCM Coded Speech

LEWIS H. ROSENTHAL, MEMBER, IEEE, LAWRENCE R. RABINER, MEMBER, IEEE, RONALD W. SCHAFER,
MEMBER, IEEE, P. CUMMISKEY, MEMBER, IEEE, AND JAMES L. FLANAGAN, FELLOW, IEEE

Abstract—In this paper we discuss the issues involved in liii-
plementing an automatic computer voice response system which is
capable of serving up to ten independent output channels in real
time. The system has been implemented on a Data General NOVA-
800 minicomputer. Individual isolated words and phrases are coded
at a rate of 24 000 bits/s using a hardware adaptive, differential
pulse-code modulation (ADPCM) coder, and stored on a fixed-head
disk as a random access vocabulary. By exploiting the features of
ADPCM coding, it is possible to create and edit automatically a
vocabulary for the system from an analog tape recording of the
spoken entries, with minimal operator intervention. To provide ten
simultaneous output lines of speech which are independent of each
other required the use of an efficient scheduling algorithm. Such
an algorithm was provided by the computer manufacturer in their
real-time multitasking system which was part of their Fortran soft-
ware. Thus almost all the programming required to implement this
real-time system was in Fortran, thereby providing flexibility and
ease in making changes in the system. Initial applications of the
voice response system are in computer aided voice wiring, automatic
directory assistance, and experiments on speaker verification, but the
system is sufficiently modi.tlar to adapt readily to other applications.

INTRODUCTION

ONE of the current goals of speech research is to sim-
plify the problem of communication between man

and machine by making it possible to use the human voice
as a means of interaction. Toward this end, work has been
carried out both in the area of automatic speech recogni-
tion [1] and in the area of automatic voice response
[2], [3]. At the present time, speech recognition systems
are still too primitive to be used in a general purpose
man—machine interface. However, automatic voice re-
sponse systems are now quite feasible and have numerous
applications. A few examples should serve to illustrate
the wide range of capabilities that such a voice response
system might have.

One fairly straightforward application of a voice re-
sponse system is computer-aided voice Wiring [4], [5].
Conventionally, a wireman works from a printed list
which contains the information for each wiring operation.
However, in many wiring situations it is awkward for
the wireman to divert his eyes from his work in order to
consult such a list. In these cases, it becomes convenient
to record the wirelist in spoken form on a cassette tape
and allow the wireman to work from a spoken list. Typi-

Manuscript received February 15, 1974.
The authors are with Bell Laboratories, Murray Hill, N. J. 07974.

cally, a foot switch is used to start the playback unit, and
recorded tones on the tape automatically stop the unit
after each wiring instruction. A maj or problem with this
technique is that it requires a considerable amount of
human effort in order to generate a spoken wirelist. One
person must read the list (which may be several hours
long), and another must monitor the audio output. Any
errors detected must then be edited and corrected. Even
after a wirelist has been recorded successfully, any future
updating of the list requires that this entire process be
repeated. In some cases, this could occur several times
in the course of a few days or weeks. The tedium factor
here is extremely high, which tends to increase human
errors and make this entire procedure impractical. How-
ever, this problem coUld be completely eliminated by
generating the spoken lists automatically with a voice
response system. If such a system operated faster than
real time, it would have multichannel capabilities. A
number of independent lists could then be generated
simultaneously, or a long single list could be generated
in pieces at a faster rate. This technique for the generation
of spoken wirelists is currently of interest to the Bell
System but undoubtedly would find application elsewhere
as well.

The availability of a Touch-Tone® telephone would
make possible a large number of additional applications
for automatic voice response. In these applications, the
telephone could be used as a remote computer terminal,
providing keyboard input and voice output. Such a sys-
tem would make computer data bases accessible to anyone
with a telephone. Applications include automatic telephone
directory assistance, automatic verification of credit card
numbers, automatic confirmation of reservations, and
many other applications requiring interactive communica-
tion with a computer. Finally, such a system could be
combined with a speaker verification system to provide
on-line voice verification for applications such as authen-
tication of credit card users or banking by telephone.
These are only a few examples of applications for auto-
matic voice response, but they serve to give some idea of
the motivation behind the development of an automatic
voice response system.

® Registered service mark of the American Telephone and Tele-
graph Company.

340 IEEE TRANSACTIONS ON ACOUSTICS, SPEECH, ANI) SIGNAL PROCESSING, OCTOBER 1974

DESIGN CONSIDERATIONS FOR A
VOICE RESPONSE SYSTEM

The general form of a voice response system is illus-
trated in the block diagram shown in Fig. 1. The vocabu-
lary for such a system may consist of individual words,
phrases, and even entire sentences. Before voice output
is possible, a vocabulary for the system must be prepared
and stored. Voice response is then obtained by accessing
the required vocabulary entries in sequence to form the
desired message. A multiline voice response system pro-
cesses several message requests in parallel, directing each
speech entry accessed to the appropriate output channel.

The actual design of a voice response system depends
on both the unit of vocabulary storage (e.g., words,
phrases, etc.) and the method of storing these units.
Efficient vocabulary storage generally requires that the
vocabulary entries be individual words, since many dif-
ferent messages can be composed from combinations of
the same words. On the other hand, highly contextual
messages composed from individual words can sound
very unnatural, unless a fairly sophisticated algorithm is
used to interpolate pitch, amplitude and formant fre-
quencies across word boundaries. Thus, a tradeoff exists
between efficiency of vocabulary storage and the natural-
ness of the output speech. Nevertheless, for many ap-
plications of voice response it is adequate to generate
speech by a simple concatenation or abutting of individ-
ual words and phrases. These applications generally require
noncontextual output speech, the elements of which can
be stored as individual words, and a small number of
contextual messages, which can be stored as entire phrases
or sentences. This restiiction on the output speech greatly
reduces the complexity of the voice response system, but
it still allows for all of the applications previously dis-
cussed. In addition, it makes possible the design of a
totally digital multiline voice response system, based
on a medium-sised vocabulary (under 200 words or
phrases) which can be edited with a minimum of effort..
The design of such a voice response system, with the
capability of servicing up to ten simultaneous output.
lines, is the subject of this paper.

Fig. 2 shows an overall block diagram of the digital
voice response system which will be described here. The
main feature which distinguishes this system from the
general system of Fig. 1 is that all speech processing is
done digitally. Input speech is converted to digital form
before being edited, cataloged, and stored, and the speech
remains in digital form until a desired output message is
formed.

The voice response system was implemented on a Data
General NOVA-800 minicomputer. The computer is a
16-bit word length machine with 32 768 words of 800 us
core memory, hardware integer multiply/divide, hardware
floating point unit, and 786 432 words of fixed head disk.
The computer facility also included a real-time clock, 32
high speed direct memory access channels, Tektronix
4010 terminal, two moving head disk packs, paper tape

reader, line printer, and a card reader. Extensive software
was also supplied with the computer including a real-time
disk operating system (RDOS), and a Fortran V com-
piler, along with other standard programs such as an
editor, an assembler, and a library file editor.

The design of the voice response system can be logically
divided into two parts, the first part dealing with the
creation and editing of a vocabulary and the second part
dealing with the characteristics of the output, or message
composition, system. These two parts will be discussed in
separate sections of this paper, since thefr design con-
siderations are totally different. Throughout the discus-
sion, any factors which tend to limit the maximum capa-
bilities of the system will be pointed out and explained.

CREATION OF A VOCABULARY

An important requirement of a voice response system
is a convenient means of storing, editing and updating the
vocabulary for the system. Vocabulary entries must be
stored in such a way that they can be quickly accessed
whenever needed, and the resulting message formed by a
concatenation of several entries should sound as natural
as possible. In addition, it is desirable to have a means of
easily changing vocabulary entries whenever necessary.
Currently existing voice response systems employ a variety
of both analog and digital recording techniques, in an
attempt to meet these requirements. These possibilities
will now be discussed in detail, with an emphasis on the
degree to which each method meets the requirements just
outlined.

One means of vocabulary storage is to record speech
entries in analog form on a tape, film, or magnetic drum.

MESSAGE REQUEST I OUTPUT MESSAGE 1
MESSAGE REQUEST 2 OUTPUT MESSAGE 2MESSAGE

ThMPOSITIONMESSAGE REQUEST N OUTPUT MESSAGE N

Fig. 1. Block diagram of a voice response system.

MESSAGE
REQUEST I

Fig. 2. Block diagram of an all-digital voice response system.

ROS1NTHAL et al.: ADPC CODED SPEECH 341

This technique is used mainly in systems with relatively
small vocabularies, since the entries are not stored very
economically. The storage medium itself is usually divided
into tracks, each of fixed duration, and an individual
word or phrase is recorded on each track. This recording
technique is probably the simplest of those used, but it is
also the least flexible. For example, it is often necessary
to compress a long word so that it can fit on a single track
of the storage medium. This, plus the fact that pauses
between words must also be of fixed duration, tends to
add an unnatural quality to the output speech. In addi-
tion, retrieval time for a given word is usually fairly
long, because of the time required to position a reading
device at the beginning of the correct track. Finally, the
ease in changing vocabulary entries depends on the par-
ticular storage device used. If the medium is photographic
film, generation of a new vocabulary requires a new
storage medium as well. It appears, therefore, that analog
st6rage leaves much to be desired in meeting the require
ments for a flexible voice response system. Nevertheless,
such systems are in current use and are available com-
mercially.

The alternative to analog storage is, of course, some
form of digital storage of speech. Digital storage devices
for automatic voice response systems include magnetic
disks, drums, and solid state memories. These devices all
provide faster access times than analog storage media and
allow the possibility of variable length vocabulary entries.
Solid state memories provide the fastest access times, but
large ones are still economically impractical. The best
compromise between access time and storage capacity is
provided by a fixed head, or head-per-track, disk. This
device has tracks similar to those of an analog drum, but
it rotates at a much higher speed (3600 rpm is typical),
thus providing rapid access to any section of a track. In
addition, since the disk is a read/write memory, changing
vocabulary entries is never a problem.

Another consideration when employing digital storage
is the selection of a method for digitizing speech. Recent
efforts in speech research have provided several possible
alternatives for this choice [6]. The most direct method
for digitizing speech is to use linear pulse-code modulation
(PCM), which simply quantizes a band-limited analog
signal both in time and in amplitude. This method does
not require any special processing of the speech signal, but
it dOes require bit rates on the order of 60 000 bits/s (6
kHz sampling rate X 10 bits/sample) to produce good
quality speech. Lower bit rates can be obtained by reduc-
ing the sampling rate and/or the number of bits per
sample, but only at the expense of speech quality. Thus,
this technique is unacceptable for voice response systems
which require either a medium-sized vocabulary or the
capability to service a reasonable number of output lines
simultaneously. An alternative method for analyzing and
synthesizing speech is to use formant coding procedures
[4]. The bit rate required for storage of the formant
parameters is on the order of 1000 bits/s but considerable
computation time is required both to get the formants

for a given word and to synthesize a word from its form-
ants, unless special purpose hardware is avaiinble. Thus,
this technique is convenient only in applications where
vocabulary size is the most important factor. Between
these two extremes of bit rate are various methods for
coding speech, including log PCM, differential PCM
(DPCM) [7], adaptive delta modulation (ADM) [8],
and adaptive DPCM (ADPCM) [9], [10]. The bit rates
for these coding techniques range from 50 000 bits/s
down to approximately 16 000 bits/s, depending on the
sampling rate and the number of bits used to represent
each sample. The speech quality at these bit rates is not
as good as that of high quality linear PCM, but for many
applications of automatic voice response high quality
speech is not required. Instead, the goal of these tech-
niques i to optimize speech quality for a given bit rate.
These coding schemes all perform some processing of the
original speech signal, but this processing can generally
be done using fairly simple and inexpensive digital hard-
ware. Thus, for applications requiring both medium-sized
vocabularies and flexibility in changing vocabulary en-
tries, one of these coding techniques provides a good
compromise between bit rate and speech quality. Based
on a number of considerations, ADPCM coding was the
method selected.

There were several reasons for selecting ADPCM coding
for the voice response system. First, it provides good qual-
ity (20 dB S/N) [9] speech at a bit rate of 24 000 bits/s
(6 kHz sampling rate X 4 bits per sample). ADPCM-
coded speech at this bit rate was found to be perceptually
comparable in quality to PCM at a bit rate of 42 000
bits/s [9], [10]' (7 log bits X 6000 sámples/s). (At a
bit rate of 24 000 bits/s ADPC]\1 also has about a 6 dB
signal-to-noise ratio advantage over adaptive delta modu-
lation [6].) Another factor in the selection of ADPCM
coding was that the entire encoding/decoding process
could be performed by fairly inexpensive hardware in real
time. Thus, no central processing unit (CPU) time would
be needed for processing of the speech data. Finally, it has
been found that an automatic editing algorithm to isolate
the endpoints of an utterance can be devised for ADPCM-
coded speech. This algorithm will be described later in
this paper.

Before describing the principles of ADPCM coding a
brief review of linear PCM will be given in order to pro-
vide a basis for comparison with ADPCM, Fig. 3 shows a
block diagram for a linear PCM coder and decoder. Input
to the coder is the sampled speech waveform x(n), which
is discrete in time but not in amplitude. Digital output is
obtained by quantizing x(n) in amplitude with a fixed,
uniform quantizer to produce (n) and then encoding
each quantized sample to produce a binary representation.
In the decoder, the quantized signal (n) is reconstructed
from the bit stream and then low-pass filtered to producc

1 The objective signal-to-noise ratio improvement of ADPCM
over log POM is only about 8—10 dB. The subjective improvement
is on the order of 18 dB or 3 bits.

342 IEEE TRANSACTIONS ON ACOUSTICS, SPEECH, ANI) SIGNAL PROCESSING, OCTOBER 1974

SPEECH
OUT LOW-PASS ___________________

FILTER

Fig. 3. PCM coder/decoder block diagram.

the analog speech output. Thus, it is seen that the entire
encoding/decoding process for linear PCM is fairly
straightforward.

The major problem with linear PCM coding is that it
is a very inflexible coding technique. Once the sampling
rate and the number of hits per sample have been speci-
fied, the bit rate (sampling rate X number of bits per
sample) and speech quality are completely determined. If
the sampling rate is reduced further, intelligibility is
sacrificed. Alternatively, if fewer bits are used to represent
each sample, more noise will be present in the coded signal.
The latter problem is due to the limitations of a fixed,
uniform quantiEer. This quantizer must have both a step
size small enough to provide good resolution at low signal
levels and a large number of quantization levels in order
to cover the wide dynamic range of an input signal. For a
speech signal, which covers a very wide dynamic range,
these requirements necessitate a high bit rate for linear
PCM-coded speech.

In order to overcome the limitations of linear PCM
coding, two separate approaches have been taken with
ADPCM. First, instead of quantizing the actual speech
waveform, a difference signal derived from the waveform
is quantized instead. The motivation here is that there
is a high degree of correlation between successive speech
samples. Therefore, a difference signal will be smaller
than the original signal and can be more accurately repre-
sented using a small number of quantizer levels. Second, in
order to compensate for a wide range of input levels, the
quantizer step size is made to adapt instantaneously to
the level of the signal at its input, thus providing more
resolution when the signal level is low and less resolution
when the signal level is high.

Fig. 4 shows a block diagram of an ADPCM coder and
decoder. Without the adaptive quantizer, the system is a
conventional DPCM coder. The difference signal 5(n)
at the top of Fig. 4 is obtained by subtracting from each
sample of the input speech signal an estimate of that
sample y (n). The estimate is obtained by taking the
sum of the previous estimate y(n — 1) and the previous
quantized difference S(n — 1), sealed by the constant a
(which is close to 1.0). By using this technique for deriving
the difference ignal, it can be shown that quantization
errors do not accumulate with successive differences [7].

In fact, for each sample of the input signal x (n), the
quantity x (n) — (ii), which is the difference be-
tween the actual speech sample and the sample which
will be reconstructed by the decoder, is equal to 5(n) —
S(n), the quantizatioq error for the current difference. It
has been shown that the use of differential coding in the
DPCM coder yields a 4—6 dB advantage in S/N over
POM coding for speech [9], [10].

Further improvement in the DPCM coder is obtained
by using an adaptive quantizer. The input—output relation
for the adaptive quantizer is given in Fig. 5. Such a quan-
tizer modifies its step size A(n) on the basis of the most
recent quantizer output. For the current implementation,
the adaptation rule is that for each input to the quantizer
5(n), the quantizer step size A (n) is obtained from the
formula

A(n) = .MA(n — 1), (1)

where M, the step-size multiplier, is a function of the
previous quantizer input (n — 1). Meaningful adapta-
tion requires that the step size be decreased upon detection
of quantizer underload (i.e., when the quantizer input is
small) and increased upon detection of quaatizer overload
(i.e., when the quantizer input is large). The particular
values used for ill in the current implementation were
selected by performing computer simulations of the
ADPCM coder and are given in Fig. 5. In the hardware
implementation of the coder, the quantizer has a finite
library of 21 possible step sizes \vith a range of 100 to 1.
Thus, the quantizer step size A (n) obeys the relation in
(1) only for a certain range of values, beyond which it
saturates either at a maximum or minimum step size. The
use of an adaptive quantizer has been shown to give an
additional 4 dB advantage in S/N over PCM [9], [10]. It
should be noted that only the 4-bit quantizer output
level must be transmitted since the step-size adaptation
algorithm in the decoder is identical to the one in the coder,
and therefore the step size is completely determined from
the sequence of quantizer output levels.

The remainder of the ADPCM coder/decoder of Fig. 4
is straightforward. The quantized difference signal S(n)

CODER

DIGITAL

DECODER

DIGITAL

ER

Fig. 4. ADPCM coder/decoder block diagram.

01110ml
0101

o2ij
0001

m2

0000 m3

m4

1111

1110
m4

1100 m
1011 m2 Mn
ml

1010

10,1l__. I.—Mnl
)00
ml

Fig. 5. Quantizer characteristic for ADPCM coder.

is encoded to produce a digital output in the same manner
as with linear PCM, except that the encoder is controlled
by the step-size adaptation logic. Thus, the resulting
digital output c (n) for each input sample is a 4-bit number
which reflects the quantizer output level as well as the
change in level of the input speech. In the decoder, the
same adaptation logic as was employed in the coder is
used, so that in the absence of transmission errors ' (n),
the decoded quantizer output, is identical to (n). A
differential feedback loop identical to that used in the
coder reconstructs the signal f'(n), and this signal is then
low-pass filtered to produce the analog output.

For the voice response system which was implemented,
1 ADPCM coder/decoder and 9 decoders were constructed.
Fig. 6 is a photograph of the actual hardware for one of
these coders. Each coder was separately interfaced to the
computer. The coder interface packs four 4-bit coded
speech samples to each 16-bit computer word. Each
decoder interface, in turn, unpacks the coded samples
and clocks them to the decoder. By performing this pack-
ing/unpacking process in the interface instead of in the
computer, the computation time saved can be utilized
more efficiently to control the multiple, simultaneous
output lines of speech.

AUTOMATIC EDITING OF ADPCM
CODED SPEECH

After a file of speech has been created using the ADPCM
coder and stored on a fixed head disk, it is necessary to
isolate the individual words and phrases in the file, so
that the speech can be stored efficiently in the word
catalog without intervening periods of silence between
entries. Conventionally, this editing is done manually
by a combination of listening to the speech and studying

Fig. 6. Hardware for ADPCM coder/decoder.

a visual display of the speech waveform. However, this
process is both time consuming and subject to inaccuracies
due to human error. Furthermore, this method does not
yield repeatable results. This problem is especially notice-
able when an unvoiced segment of speech appears at the
beginning or end of a word. As a result, manual editing
usually results in the shortening of an utterance, both
at the beginning and at the end. When such chopped
words are concatenated to form a message, the effects
become quite discernible and are, in fact, distracting.

ADPCM coding, however, provides an alternative to
manual editing. Because of the step-size adaptation used
in ADPCM coded speech, an ADPCM coder effectively
has an automatic gain control (AGC). This causes the
coded ADPCM samples to exhibit high energy2 during
bOth voiced and unvoiced speech, but not during low
level background silence, which causes the ADPCM
quaittizer to saturate at its minimum step size. Thus a
very sharp threshold between speech and no speech is
obtained due to the effective AGC of the ADPCM coder.
This sharp threshold is used as a mOans of distinguishing
between silence and unvoiced segments. So long as the
energy of the silence pOrtion lies below the threshold
value, then low value code word energies result. By con-
trast, low energy unvoiced segments that exceed the
threshold will produce high value code word energies.
Thus, a very important condition is that the original
recordings be performed in a low noise environment. This
is no real restriction for voice response applications as
the vocabulary is generally recorded in a soundproof
room. Using this fact, an algorithm was developed to
determine automatically the beginning and end of an
utterance.

Fig. 7 illustrates a block diagram of the editing pro-
cedure. For each ADPCM coded speech sample c(n),3
an energy calculation is made using the formula

n+O
E(n) = [c(i) — 7512 (2)

where the constant 7.5 represents the dc average of the
code words (see Fig. 5). Thus, the energy is computed
over a 101 point window centered around the current

2 This code word energy is not directly related to the energy of the
original speech signal.

3c(n) is the level equivalent, of the 4-bit encoded quantizer output
level; thus c(n) is an integer in the range 0 < c(n) < 15.

ROSENTHAL et at.: ADPCM CODED SPEECH 343

(n)

S(n)

m1 .8
m2= 1.25

m32
m4=3

—5Q

344 IEEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, OCTOBER 1974

Fig. 7. Block diagram of endpoint algorithm.

speech sample, corresponding to approximately 16 ms
of speech. The energy values obtained are then compared
sample by sample with an energy threshold, which is set
midway between the measured energy of background
silence and the average energy of speech. When the code
word energy exceeds this threshold for 50 ms or 300 con-
secutive samples, the point at which the energy first
exceeded the threshold is recorded as the beginning of an
utterance. The algorithm then begins at that point and
continues to make the energy comparison with the thres-
hold. When the code word energy falls below the threshold
for 160 ms or 1000 consecutive samples, the point at which
the energy first passed below the threshold is recorded
as the end of the utterance. The 160 ms criterion ensures
that the algorithm will not misthke a stop consonant
within a word or phrase for the end of the utterance. A
few examples will now illustrate the effectiveness of this
algorithm.

Fig. 8 shows a code word plot for the beginning of the
word "oh," a word which is all voiced speech. Each line
of the plot corresponds to about 40 ms or 256 samples of
speech. An offset of 7.5 has been subtracted from each
sample in agreement with the energy calculation of (2).
The vertical line in the plot marks the point at which the
endpoint algorithm detected the beginning of the utter-
ance. Because of the energy window, the algorithm was
about 4 ms early in its identification of a starting point,
but this error is small enough to be ignored. The energy
waveform on which the identification was based is given
in Fig. 9. Finally, Figs. 10 and 11 show, respectively, the
decoded speech waveform and its energy for the same
section of speech. Since the word "oh" is entirely voiced, it
is not too difficult in this ease to locate the start of speech
from an observation of the decoded waveform. However,
the transition from silence to speech is not nearly as
abrupt as it is in the plot of the coded samples.

The next set of examples gives further evidence of the
value of this technique for automatic editing of speech.
Fig. 12 illustrates the coded samples for the beginning of
the word "three," which begins with the unvoiced fricative
"th." In this case, the transition from silence to speech
is not as abrupt as it was in the previous example, even
for the code words. Nevertheless, it is clear that there is
significant code word activity in the vicinity of the point
denoted by the endpoint algorithm. Fig. 13, which displays
the energy of the code words for this segment of speech,
confirms this observation. Note, however, the contrast

- . ..
513

.' -. _ fr—r-t I-fl— !
768

769

WORD BEGINS

,t S

1024

513 768

WORD BEG IN

1024769

513 768

769 1024280
536

Fig. 10. Speech plot for beginning of utterance ''oh".

513 768

WORD BEGINS

769 1024

1025 1280

1281 1536

Fig. 11. Speech energy plot for beginning of utterance "oh".

between these plots and Figs. 14 and 15, which display
the decoded speech waveform and its energy for the same
section of speech. A trained observer may be able to
detect the proper starting point of the utterance from
these plots by increasing the gain of the unvoiced section,
but any attempt to do this automatically would generally

BEG INNING
DURATIONNERGY END

CODED

ENERGY
LOGIC TO

DURATION

STARTING
BLOCK,
SAMPLEDETERM I NE

LCULAT ION ENDPOINTS OF
ENDING
BLOCK,
SAMPLE

E(rl) [Cul—7.5}
ifl-5O

1025 1280

1281 1536

Fig. 8. Code word plot for beginning of utterance "oh".

1025 1280

1281 1536

Fig. 9. Code word energy plot for beginning of utterance "oh".

ROSENTHAL et at.: ADPCM CODED SPEECH 345

WORD BEGINS-4rfrL)*
257 512rW
513 768

769 1024

Fig. 12. Code word plot for beginning of utterance "three".

DBEGINS

257 512

513 768

—-—-—- 024

Fig. 13. Code word energy plot for beginning of utterance "three".

WORD BEGINS

1 256

257

-

512

—___-__Jv
513 768

result in spurious identifications, since the energy of un-
voiced speech is so low.

Similar results are obtained when this algorithm is
used to detect the end of an utterance. The only require-
ment here is that there be a pause of at least 160 ms
between spoken utterances, so that a stop consonant can
be clearly distinguished from the end of a word.

The endpoint algorithm just discussed was tested on
50 typical entries for a voice response system vocabulary
with essentially no errors. Auditory and visual verifica-
tion indicated no evidence of shortening of any of the
words. Two other measures of the coded speech signal,

769 1024

Fig. 15. Speech energy plot for beginning of utterance "three".

the energy in the difference signal and the energy in the
quantizer step-size, were also studied as possible signals
for use with the automatic editing algorithm. However,
the results based on the coded samples themselves were
far more accurate than those obtained from any of these
other signals.

VOCABULARY CREATION

The first step in creating a vocabulary for t.he voice
response system is to store coded speech on the disk.
Fig. 16 shows a block diagram of how input speech is
coded and stored. Coded 4-bit speech samples are packed
4 samples to a computer word by the coder interface and
transferred directly to core buffers via the direct memory
access (DMA) data channel. A recording program handles
the disk transfers and takes care of all necessary book-
keeping functions.

Once speech is stored on the disk, a cataloging program
is required to add, delete and rename entries in the vocabu-
lary. To keep track of the entries in the speech file, a
directory must be maintained. Fig. 17 shows a typical
directory of a 30 entry vocabulary. The column labeled
ENTRY gives the alphanumeric (ASCII) name associated
with the speech entry. For example, the ASCII name
PLT is associated with the word plate. The next three
columns in Fig. 17 give information as to the starting disk
block (NBKST) for the entry in the speech file, the total
number of 256 word blocks (NBLK) occupied by that
entry, and the number of samples (NSAMP) actually
occupied in the last disk block. Recall that the automatic
endpoint algorithm described earlier can isolate the word
to within one sample and thus words need not occupy an
integral number of disk blocks.

Fig. 18 shows a flow chart for the cataloging program.
Basically, this program must perform bookkeeping on the
speech directory, and on the speech file for the tasks of
adding, deleting and renaming entries of the vocabulary.
For adding entries this program makes use of the automatic
endpoint algorithm previously described.

As can be seen in Fig. 17, the average storage require-
ment for an isolated word entry is 4 disk blocks or 1024
words. Thus a typical vocabulary of 100 words would
require approximately 100 000 words of disk storage. This

WORD BEGINS

1 . 256

257 512

513 768

Fig. 14. Speech plot for beginning of utterance "three".

346 IEEE TRANSACTIONS ON ACOUSTICS, SPEECH, ANI) SIGNAL PROCESSING, OCTOBER 1974

ENTRY NBKST NBLK NSAMP

I 1 59 3 158
2 10 93 3 231
3 II 96 4 178
4 12 100 4 212
5 13 104 4 237
6 14 108 4 153
7 2 62 3 126
8 3 65 4 104
9 4 69 4 63

10 5 73 4 123
II 6 77 5 51
12 7 82 4 175
13 8 86 3 91
14 9 89 4 85
15 BAY 36 3 122
16 CRK 56 3 201
17 FLE 43 3 250
l8 FRM 22 4 42
19 GRO 16 3 144
20 HOR 52 4 2l4
21 LN}(4 3 157
22 LVL 19 3 121
23 MIS 30 6 137
24 MON 46 3 243
25 NET 7 4 175
26 PLT 49 3 151
27 SWT 11 5 2
28 TRK 0 4 3
29 IJVS 26 4 204
30 VER 39 4 1

NEXT FREE BLOCK IS BLOCK 112

Fig. 17. Typical speech directory for 30 entries.

amount of storage is readily available in most commercial
fixed-head disk systems. The fixed-head disk used in our
implementation had 786 432 words of storage. Thus, on
the order of 800 words could be stored on such a disk.

THE OUTPUT SIDE OF THE VOICE
RESPONSE SYSTEM

The retrieval, or message omposition, section of the
voice response system has a well defined function. It
must access the vocabulary entries necessary to form the
desired output message and output them with minimal
delay and no unwanted pauses. In the case of a multiline
voice response system, the retrieval section must supply
each output channel with its desired message, again with
minimal delay and no unwanted pauses. In order to
provide at least a minimum of context in the output
speech, it is also necessary to have control over the amount
of silence between spoken entries. Finally, the system
should be as modular as possible, so that it can be used

in a variety of applications. It is believed that the output
system to be described here meets all of the above require-
ments and the design principles discussed here can be
applied in the design of a variety of sophisticated voice
response system.

TIi\IING CONSIDERATIONS
The maximum number of output lines that a voice

response system can support depends on many timing
considerations. However, a first estimate can be obtained
by considering the hardware constraints imposed by the
disk and coders. Each track of the disk used in this im-
plementation contains 8 sectors of 256 words each.. How-
ever, because of hardware constraints, consecutive sectors
cannot be written or read on the same revolution. Thus, the
maximum rate of data transfer from the disk is 4 X 256
or 1024 words per revolution. The disk revolves at 60
revolutions/s; thus it can transfer data at the rate of
approximately 60 000 words/s. The coder, as stated
previously, operates at the rate of 24 000 bits, or 1500
words/s. Therefore, the ratio of disk data rate to coder
data rate sets a theoretical maximum of 40 output lines
for such a voice response system.

In practice, however, the above estimate is not really
valid, since it assumes perfect disk read scheduling and

SPEECH
IN

Fig. 16. Block diagram of ADPCM recording program.

Fig. 18. Block diagram of word cataloging program.

ROSENTHAL et at.: ADPCM CODED SPEECH 347

ignores the possibility of a conflict occurring when too
many coders request data from the same sector of the
disk. The size of speech buffers in core also limits the
maximum number of output lines. If double buffering for
each channel is assumed, so that one buffer can be filled
while the other is being emptied, then the buffer size
determines the amount of time available to fill the empty
buffers for all the output channels in the system. For a
buffer size of 256 words (the size of a disk block), this
filling time is 167 ms or 10 revolutions of the disk. Buffer
size can in theory be increased further, but the total buffer
size required for the system quickly becomes excessive.

Another factor influencing buffer size requirements is
related to the nature of the speech itself. Since each speech
entry is stored in an integral number of disk blocks, there
can be as much as 1/6 s trailing silence at the end of an
entry. In order to control the amount of silence between
spoken entries, this trailing silence should not be out-
putted to the coder. Instead, the coder must output the
fraction of the buffer containing speech and then go right
on to the next buffer, if no intermediate silence is desired.
This means, however, that double buffering of the speech
is inadequate, since a partial buffer may not permit enough
time for the empty buffer to be refilled. Thus, control of
output silence necessitates a third speech buffer for each
output channel In order to maintain a continuous flow
of speech with partial buffers, the voice response system
must be able to make two disk reads for any channel with
a partial buffer and still keep up with all the other chan-
nels. Since an average speech entry occupies 4 disk blocks,
the average requirement for each channel is 1.25 reads
of the disk in 10 revolutions, assuming a buffer length
of 256 words.

Based on the above arguments, a goal of ten output
lines was chosen for the voice response system. This number
was adequate for any of the applications intended for the
system yet would not overly tax the capabilities of the
disk. Speech buffers of 256 words each were also chosen,
in order to minimize core buffer requirements for the
system. With these numbers, the average demand on the
system is for approximately 12.5 disk reads in 10 revolu-
tions of the disk. Depending on the status of the channels
at a given time, the number of disk reads in 10 revolutions
can vary from a minimum of 10 to a maximum of 20. In
order to minimize the possibility of a disk read conflict,
several steps were taken in the design of the output sys-
tem. These techniques will be described later, along with
more detailed timing measurements for the system.

MULTITASK PROGRAMMING
CONSIDERATIONS

In order to handle up to 10 output channels in real
time, a voice response system must be designed in such a
way as to minimize any wasted idle time of the CPU. For
example, after a speech buffer for a given channel has
been filled, the system must immediately proceed to
service the next channel needing a buffer. To accomplish

this, it is necessary to synchronize the emptying and
ifiling of speech buffers for each channel. On the other
hand, the 10 output channels are completely independent
of each other and should be kept isolated in the software.
These requirements were met by using the real-time
multitasking capabilities of Data General's Fortran [11].
These features include the ability to run several inde-
pendent program units or tasks simultaneously on a
priority basis, the ability to communicate data between
tasks through Fortran Common areas, and the ability
to synchronize two tasks or a task and an interrupt service
routine by means of special tasking routines. In addition,
all code generated by the compiler is reentrant, thus
permitting different tasks to share the same code. Since
these features of multitasking were relied upon heavily
in the design of the output system, a brief discussion of
the basic concepts of multitasking will now be given
before describing the output system in detail.

In the programming sense, a task can be defined as a
logically complete execution path through a program. A
multitask program is then nothing more than a program
which consists of several tasks, each executing inde-
pendently of the others but competing with the others
for the use of system resources. These resources, which
include all peripheral devices and even the CPU itself,
are allocated to tasks on the basis of their ability to use
them. Active tasks may exist in any one of three possible
states. They may be executing (in control of the CPU),
ready (awaiting control of the CPU), or suspended (un-
able to use the CPU). When more than one task is ready
to use a given resource, that resource will be allocated on a
priority basis. The result of this scheduling procedure is
an efficient utilization of all system resources.

In order to keep track of the tasks in a multitask pro-
gram, a Task Control Block (TCB) is maintained for
each task. The TCB contains status information for the
task and several temporary storage locations, which are
used to save the state of the processor whenever a task
loses control of the CPU. The TCB's in a given program
are linked together in order of priority. When several
tasks exist at the same priority, the TCB for the task
which most recently had control of the CPU is placed
at the end of its priority class in the chain. This ordering
of the TCB's in a chain facilitates the allocation of CPU
time to tasks.

Allocation of system resources in a multitask program
is performed by a multitask scheduler. Fig. 19 shows a
simplified flow chart of this scheduler. CPU control re-
turns to the scheduler whenever the currently executing
task becomes suspended (e.g., when it is awaiting comple-
tion of an 10 event), or whenever a hardware interrupt
is serviced. The scheduler searches the chain of active
TCB's to find the highest priority task in the ready state
and turns over control of the CPU to that task. If no
tasks are ready, the scheduler simply waits until one
becomes ready. Because of the manner in which the
TCB's are linked, tasks of equal priority receive CPU
control on an equal or "round-robin" basis. This feature

348 IEEE TRANSACTIONS ON ACOIJSTICS, SPEECH, AND SIGNAL PROCESSING, OCTOBER 1974

YES

GIVE CPU
CONTROL TO

H IGHEST
PRIOR F TV

READY TASK

Fig. 19. Block diagram of multitasking allocator.

is convenient for programs which consist of several iden-
tical tasks, such as the output program for the voice
response system.

Intertask communication can be accomplished in
several possible ways. The most direct approach is for
different tasks to share the same data base, either through
a common disk file or a Fortran Common area. However,
this method provides no synchronization between tasks
and may result in a task trying to access data from another
task which is not yet available. To overcome this problem,
tasks can be synchronized by the sending and receiving
of one-word messages.

Whenever an executing task must wait to receive a
message from another task, the receiving task becomes
suspended, and control returns to the task scheduler.
When the message is then sent at a later time, control
returns to the scheduler, which readies the receiving task
which had previously been suspended. Thus, no CPU
time is wasted while a task is waiting for an event to
occur. This same technique for task synchronization
can also be used to synchronize a task and an interrupt
service routine. Normally, the task environment becomes
frozen whenever an interrupt occurs. However, if an
interrupt service routine sends a message to a task which is
currently awaiting the message, that task will be readied
before control returns to the scheduler. This feature of
multitasking makes it possible to activate a task upon
the occurrence of an external interrupt. Thus, intertask
communication in a multitask program is greatly facili-
tated by the availability of several tasking routines in
the Fortran library.

Fig. 20 illustrates a block diagram for a typical channel
in the output system. The software for each channel
consists of three distinct program units. The first of these
units, the FEED task, must access the information to be
converted to speech and load it into a Common buffer
area. This module will be different for each application
of the voice response system. The second program unit,
the OUTPUT task, controls the output speech by making
the appropriate disk reads to fill the speech buffers. The
information obtained by the FEED task is used to deter-
mine which blocks of speech from disk are to be read.
Finally, the third program unit is the driver for the speech
coder. This program must direct the coder to the next
full buffer of speech to be outputted and signal the OUTPUT
task to fill any empty buffers. Since the drivers were not

written as reentrant subroutines a separate one is necessary
for each output channel. However, most of the code for
the other two program units can be shared by all channels.

CODER DEVICE DRIVER
In order to make full use of the three buffers which

are required for each channel of the output system, triple
buffering is used in the device driver. A flow chart of the
coder interrupt service routine is shown in Fig. 21. When
servicing an interrupt, the routine first checks a status
flag to see if the next buffer to be outputted is full. If it is
not, the coder is directed to a 256 word buffer of coded
silence, and the interrupt is dismissed. If the next buffer
has been filled, the service routine first changes the status
of that buffer to "being emptied." It then changes the
status of the buffer that has just been outputted to "being
filled." Next, the routine gets the address and buffer
length of the next full buffer and starts the coder. Finally,
a message is transmitted to inform the OUTPUT task asso-
ciated with that channel that a new buffer of speech will
be needed, and the interrupt is dismissed.

The use of a buffer of silence whenever the next speech
buffer is not full serves two purposes in the system. First,
it indicates the error condition which occurs if the OUTPUT
task cannot keep up with the coder. \iore importantly,
however, it is used to insert deliberate silence between
spoken entries. Normally, the OUTPUT task sets a buffer's
status to full as soon as the buffer has been filled. When
silence is desired, however, the buffer is filled but its
status is not immediately set to full. This causes the coder
service routine to insert silence in the output speech. The
duration of the silence is determined by the delay between
the filling of the speech buffer and the setting of its status
flag. This duration is controlled by a real-time clock. Since
coded silence is obtained from a buffer in core instead of
from the disk, periods of silence reduce the number of
disk read requests for a given output channel.

Triple buffering of the output speech was selected in
order to be able to handle partial buffers. Normally, there
is a full buffer of speech between the buffer being emptied

2

DIRECTORY
INFORMATION

CODED SPEECH
TO DECODER

Fig. 20. Block diagram of a typical output channel.

ROSENTHAL et al.: ADPCM CODED SPEECH 349

and the buffer being filled. Therefore, when a partial
buffer comes along, the next buffer will have already been
filled. Initially, after the outputting of a partial buffer,
there may no longer be a full buffer between the two
buffers being emptied and filled. However, since partial
buffers occur oniy about once every fourth buffer, the
OUTPUT task will have time to catch up with its filling of
buffers before the next partial buffer ocCurs. Periods of
silence in the output speech also help the OUTPUT task
to keep up with the filling of empty buffers.

Communication of data between the device driver and
the output task is accomplished through Fortran Common
storage. Synchronization is accomplished by means of
one-word messages transmitted by the interrupt service
routine.

THE OUTPUT TASK
Basically, the function of the OUTPUT task is to control

the output of speech on each of the voice channels. Input
to the task is a 128 word buffer containing the, information
to be outputted. Each entry in this buffer is a number
specifying here in the speech directory the entry can be
found. This format elimiliates the need for directory
lookups while the speech is being outputted but at the
same time minimizes the size of the information buffer.
The numbers —1, —2, and —3 are also possible entries
in the information buffer. The numbers —1 and —2 are
used to select two different silence intervals in the 'output
speech, and —3 designates the end of the message. The
information buffer for a given channel must be filled
before any speech output is possible on that channel. The
means by which this buffer is filled depends, of course, on
the particular application of the voice response system.
The next section will discuss this procedure for the com-
puter-aided voice wiring application.

Fig. 22 shows a flow chart for the OUTPUT task. The
speech dirctbry resides in core while this task is executing.
The normal sequence of operations is to fill a speech
buffer with the next desired disk block of speech, set the
buffer status tO "full," and check the status of the next
buffer. If the status is "being ifiled," the buffer is filled.
If it is not, the task is suspended until a synchronizing
message is issued by the coder interrupt service Foutine.
The OUTPUT task then checks the buffer status again,
taking actiOn as above. This procedure ensures both that
all empty buffers will be filled quickly and that the OUTPUT
task will suspend itself after all buffers have b.een filled,
thus freeing the CPU to allow it to service OUTPUT tasks
for the other speech channels.

The logic for the OUTPUT task becomes more complex
when it must consider the possible alternatives when the
last block of a speech entry has been read into a speech
buffer. First, the program checks the next entry in the
information buffer. If the number is greater than 0, imply-
ing an entry in the speech directory, the program simply
accesses this entry and continues as above. If the number
is —3, no more speech needs to be accessed, and the OUT-
PUT task can be suspended. If, however, the number is
either 1 or —2, the program records the fact that a silence
interval will begin after the next speech buffer has been
filled and then proceeds to the next entry. Silence is ef-
fected by filling the next buffer but not setting its status
flag to full until after a specified number of real-time clock
ticks; each of which is 1/10 s apart. Prior to beginning
the time delay, the program checks to see if it has just
finished outputting either the first or second half of the
information buffer. If it has, it issues a message to the

Fig. 21. Block diagram of coder service routine.

Fig. 22. Block diagram of OUTPUT task.

330 IEEE TEANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, OCTOHER 1974

FEED task to signal that half of the buffer can now be
refilled, if necessary. If the information buffer is loaded
from disk, the next access will then be made at a time
when the OUTPIJT task for that channel would normally
be accessing speech from the disk. Therefore, no additional
load is placed on the system by these additional disk
accesses. At the end of the silence interval, the OUTPUT
task sets to "full" the status flag for the buffer that was
last filled and continues as before.

In order to minimize program size, all of the logic for
the OUTPUT task is implemented as a reentrant Fortran
subroutine, with the output channel number as an argu-
inent. Therefore, the OUTPUT task for each channel con-
sists of a program which does nothing more than call this
subroutine, with the appropriate channel number as an
argument. This results in a significant reduction in code
for the output system.

THE FEEDING TASK
The function of the PEED task is to prepare the buffer

of information which will be outputted as speech. By
way of illustration, the FEED task has been implemented
for the application to computer-aided voice wiring. This
application was selected for several reasons. First, it is a
fairly direct application to implement. At the same time,
however, this application represents a worst case with
which to test the system. Since the generation of spoken
wirelists does not depend on human interaction with a
computer, it is fairly straightforward to set up the voice
response system with ten simultaneous output lines that
can be monitored for errors. In addition, this application
does not require any additional special equipment, such
as telephone answering hardware. Thus, the FEED task
to be discussed here serves both as a means to check out
the voice response system and as an example of how such
a task must be written in order to interface with the rest
of the system software.

Fig. 23 shows a flow chart for the current implementa-
tion of the FEED task. Prior to invoking the output pro-
gram, wirelist information is stored in a disk file in a form
suitable for the OUTPUT task. Thus, in this application
the FEED teak must simply keep the core information
buff er full. Initially, the FEED task receives program con-
trol before the OUTPUT task is activated. This task then
fills the information buffer, activates the OUTPUT task, and
suspends itself. Later, when the OUTPUT task issues a
message to the FEED task signaling that half of the in-
formation buffer has been emptied, the FEED task becomes
readied, loads the next 64 entries of the wirelist into the
empty half of the information buffer, and again suspends
itself. This process continues until the entire wirelist has
been outputted.

Preparation of a wirelist before it is stored on the disk
is accomplished by a separate program called Wirelist.
Input to tins program is a wirelist deck such as the one
listed in Fig. 24. The beginning columns of each card arc
reserved for sequence numbers, if desired. After the
sequence numbers, wirelist entries are listed in the same

2250 $ LVL 1 3 UVS 3 BAY 2 3 PLT 10 CRK 10

A211 $ LVL 2 $ UVS 3 BAY 0 $ PLT 5

A25 $ LVL 3 $ 20/5 5 BAY 0 3 222 12

CR5 30

ORB 32

A253 $ 20/2 3 $ IJVS 11 BAY 0 3 P21 13 CRY 20

A253 $ LVL S $ MIS 19 $ PLI :5 CRY 0 . 0

I2ig 24. Typical wirelist.

ASCII form in which they appear in the speech directory.
Entries are separated by one or more spaces, and may
continue through colunm 79. Column 80 is reserved for a
continuation symbol. Silence between entries can be
obtained by inserting a special silence character into the
list wherever it is desired. For the list in Fig. 24 this
character is a '7". Silence will automatically be placed
after the entries on each card, unless the continuation
synibol is used. The end of a wirelist is denoted by an
end of file symbol placed in column 1 of the last card. The
Wirelist program isolates each separate entry on the cards,
looks it up in the speech directory, and stores on disk only
the location of the entry in the speech directory. The
appropriate negative number is stored instead whenever

Fig. 23. Bloek diagram of FEED task.

ROSENTHAL el aL ADPCM CODED SPEECH 351

an entry denotes either silence or the end of the list. Thus,
each wirelist entry can be stored as a single number in the
disk file.

As was the case with the OUTPUT task, most of the logic
for the FEED task is included in a reentrant subroutine
shared by all channels. However, each channel can have
its own, totally independent wirelist. Separate information
buffers and disk files are maintained for each channel, in
order to eliminate the possibility of interaction between
the channels.

Other applications for the voice response system will
require a different FEED task, but the linkage to the OUT-
PUT task will remain the same. In applications where the
information buffers need to be filled only once, the message
requesting a new information buffer can simply be ac-
knowledged without taking any action. Since many
applications for voice response systems involve inter-
action with humans, who are slow in comparison with the
system, the successful operation of a ten channel system
with voice wiring output assures that other less demanding'
applications can be handled with the same degree of
success.

DISCUSSION

Using the ideas discussed in this paper a 10 line voice
response system was implemented. With up to ten simul-
taneous output lines of speech, no errors were detected on
any of the channels. The natural question, therefore, is
how many additional lines can be supported by such a
system. Although insufficient hardware was available
to answer this question experimentally, a look at some
of the numbers for this system should give some insight
into its maximum capabilities.

One practical limitation on the maximum capacity of
the voice response system is the amount of available core
memory. For a ten channel voice response system the
core requirements are roughly as follows. The system
software, which occupies the uppermost locations in core,
requires approximately 5K words of core memory. The
software for the voice response system itself requires
approximately 7K words of core memory, which includes
all the necessary Fortran library rOutines. In addition,
each output channel requires about 900 words of memory
for core buffers (3 X 256 or 768 words for the seeCh
buffers and 128 words for the information buffer). For
ten channels, this adds an additional requirement of 9K
words for core buffers, thus bringing the total so far up
to 21K words of core memory. However, this number
does not include the space for the Fortran runtime stacks.
These stacks provide temporary storage for all non-
Common variables in a Fortran environment. In a multi-
task program, each task is given an equal amount of the
runtime stack area for its own stacks. This means that
the amount of core space available for stacks must be at
least as large as the product of the number of tasks and
the size of the largest stack required by any of the tasks.
For the voice response system, which consists of 21 tasks

(10 FEED tasks, 10 OUTPUT tasks, and an initializing task)
and has available 32K words of core memory, each task
has approximately 500 words of memory for its stacks. It
is not known exactly how much of this storage area is
needed, but the important point is that each additional
channel added to the system would reduce the total stack
area by about 1000 words of memory and at the same
time reduce the fraction of the total area that would be
allocated to each task. Thus, in terms of available core
storage, the current implementation of the voice response
system is probably running very close to its maximum
capabilities.

Another limitation on the voice response system is the
amount of processor time available to support all the
output channels in real time. For the 10 channel voice
response system, it has been found that the processor is
actually running the system about 33 percent of the time.
The rest of the time is still available for running other
tasks, such as additional output channels. Thus, processor
time is not a serious limitation on the system, since other
factors would tend to limit the system capabilities before
this one becomes prominent. The following discussion
provides a rough estimate of how the processor time is
divided while running all 10 output lines. For the purpose
of simplification, the special cases of partial buffers and
silence between entries have been ignored in these cal-
culations.

Data channel transfers, which steal computer cycles in
order to transfer data from the disk to core or from core
to a speech decoder, consume approximately 3 percent
of the available processor time with a 10 channel system.
This time is divided evenly between disk transfers to core
and core transfers to the decoders. On the next higher
level, interrupt servicing consumes approximately 1
percent of the processor time with a 10 channel system,
including system overhead. The remaining 29 percent
of the time is spent actually running the programs. Of
this time, between 12and 25 percent is spent running the
system in order to set up the reads of the disk This is a
fairly high degree of system overhead, but it is tolerable
in this application because of the small amount of process-
ing required in the user programs. Summing up, it is
een that processor time does not impose a very strict
limitation on the maximum capabilities of the voice re-
sponse system.

The most serious limitation on the voice response sys-
tem is imposed by the properties of the disk. In the current
implementatibn, disk reads are scheduled in the same
order that they are requested. As a result, on a given
revolution of the disk between 0 and 4 reads will be made,
depending on the number and order of the read requests.
This algorithm is adequate for a 10 channel system, where
the average demand is for 12.5 reads in 10 revolutions, but
as the number of output channels is increased, this schedul—
ing algorithm will become inadequate. A more sophis-
ticated queueing algorithm could be developed, but such
an algorithm would have to interface with the asyn-
chronous OUTPUT tasks in order to be able to rearrange

352 IEEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, OCTOBER 1974

read requests. However, a more basic problem with the
disk is that it has only S sectors. Even with perfect disk
read scheduling, nothing can be done if too many read
requests are made for the same sector of the disk. The
probability of this occurrence is small for a ten channel
system, but as more channels are added it becomes a real
probleth.

Another minor problem similar to the disk conflict
problem is that of missing an interrupt from a decoder.
When a decoder requests an interrupt, it must be serviced
within 667 s in order to maintain a continuous flow of
speech data. This is no problem when handling a single
interrupt, but should several decoders request interrupts
at approximately the same time, the last one to request
the interrupt may not be serviced within the required time.
The probability of such an event occurring is very small,
since only 0.1 percent of the processor time is spent servic-
ing an interrupt for a single decoder, but again as the
number of output channels increases, so does this prob-
ability.

The preceding paragraphs have described several fac-
tors which tend to limit the maximum number of output
lines in a voice response system. However, as has been
stated previously, none of these factors affected the
performance of the 10 channel voice response system
which was implemented.

SUMMARY

The preceding sections have deschibed the components
of a 10 line automatic voice response system. In the input
side of the system, the most important feature is the
ADPCM coding of speech. This coding technique makes
possible both an efficient storage of speech on the disk
and a means for editing the coded speech automatically.
For the output side of the system, the most important
feature is the capability for real-time multitask program-
ming. This feature makes it possible for the CPU to run
as many as 21 independent tasks, service interrupts for a
disk, a real-time clock, and 10 decoders, and perform
data channel transfers for the disk and 10 decoders in
such a way that these different operations appear to be
going on simultaneously. The result of this multiprogram-

ming facility is a system which can produce ten sithul-
taneous output lines of speech in real time. This system
was implemented for the application of computer-aided
voice wiring, but the design is sufficiently flexible to
permit other similar applications. Finally, timing measure-
ments for this system were made and evaluated, in order
to determine the performance capabilities of the ystem.
The results of these tests indicated that the voice response
system design was fairly conservative and conld probably
handle more output channels. However, since a 10-channel
capability was adequate for all of the intended applica-
tions of this system, no attempt was made to surpass this
original goal.

ACKNOWLEDGMENT

The authors wish to thank the hardware and software
assistance provided by K. L. Shipley, and D. E. Bock
of Bell Laboratories, and R. H. Rabiner and G. Franzen
of Data General Corporation in implementing the voice
response system.

REFERENCES
[1] A. Newell et at., "Speech understnding Systems," Carnegie-

Mellon Rep., May 1971.
[2] J. L. Flanagan, C. H. Coker, L. H. Rabiner, H. W. Schafer, and

N. Tjmeda, "Synthetic voices for computers," IEEE Spectrum,
vol. 7, pp. 22—45, Oct. 1970.

[3] J. L. Flanagan and L. H. Rabiner, Speech Synthesis. Strouds-
burg, Pa.: Dowden, Hutchinson, and Ross, 1973.

[4] L. H. Rabiner, H. W. Schafer, and J. L. Flanagan, "Synthesis
of speech by concatenation of I formant-coded words," Bell
Syst. Tech. J., vol. 50, pp. 1541—1558, May—June 1971.

[5] J. L. Flanagan, L. H. Rabiner, R. W. Schafer, and J. D. Den-
than, "Wiring telephone apparatus from computer-generated
speech," Bell Syst. Tech. f. vol. 51, pp. 391—397, Feb. 1972.

[6] N. S. Jayant, "Digital coding of speech waveforms," Proc. IEEE,
vol. 62, pp. 611—632, May 1974.

[7] H. A. McDonald, "Signal-to-noise and idle channel performance
of differential pnlse code modulation systems—particular appli-
cations to voice signals," Bell Syst. Tech. f., vol. 45, pp. 1123—
1151, Sept. 1966.

[5] N. S. Jayant, "Adaptive delta modulation with a one-bit
memory," Bell Syst. Tech. J., pp. 321—342, Mar. 1970.

[9] P. Cnmmiskey, "Adaptive differential pulse-code modulation
for speech processing," Ph.D. dissertation, Newark College of
Engineering, Newark, N. J., 1973.

[10] P. Cummiskey, N. S. Jayant, and J. L. Flanagan, "Adaptive
quantilation in differential PCM coding of speech," Bell Syst.
Tech. J., vol. 52, pp. 1105—1118, Sept. 1973.

11] Fortran IV User's Alanuat, Data General Corporation, South-
boro, Mass., 1973.

