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v(n)=x(n/L) n = 0, ±L, ±2L,-

Abstract—In an earlier paper Crochiere and Rabiner [11 discuss the
theory of using finite impulse response (FIR) digital filters for signal
decimation, interpolation, and filtering. In this paper we expand on the
ideas presented in the earlier paper on implementing narrow-band de-
signs efficiently. It is shown how, using the techniques of decimation
and interpolation, a desired narrow-band filter can be realized with a
greatly reduced number of multiplications per second in the realization
over standard direct form implementations. Further, it is shown that
the proposed implementation can have less roundoff noise and less
severe coefficient sensitivity problems than a standard direct form im-
plementation. Several examples are presented to illustrate the appli-
cability of this implementation to practical design problems.

I. INTRODUCTION

ONE of the most difficult problems in digital filtering is
the implementation of a narrow-band filter. The dif-
ficulty lies in the fact that such narrow-band filters

inherently have sharp transitions in their frequency response,
thereby requiring high-order designs to meet the desired fre-
quency response specifications. These high-order designs are
difficult to implement because of roundoff noise and coeffi-
cient sensitivity problems. Furthermore, they require a fairly
large amount of computation in their realizations. In this
paper we propose a novel implementation for narrow-band
digital filters which has the following properties.

Property 1: The computation (in terms of multiplications
per second) required to implement the filter is greatly reduced
from that required for a standard, direct form implementation
for an equivalent finite impulse response (FIR) digital filter.

Property 2: The computation is comparable to that re-
quired for optimum (elliptic) infinite impulse response (IIR)
filters in a cascade realization.

Property 3: The phase response is linear.
Property 4: The roundoff noise generated in computing the

output can be significantly less than for a standard direct form
FIR implementation.

Property 5: The coefficient sensitivity problems can be less
severe than for standard direct form FIR implementations.

The proposed implementation is based on using the tech-
niques of decimation and interpolation, as discussed by
Crochiere and Rabiner [1}, to realize a narrow-band filter
as a cascade of a decimator and an interpolator. Fig. 1 shows
a block diagram of a general purpose system for decimating,
or interpolating, a signal x(n). The box labeled L1 is a sample
rate increase box which creates a signal v(n) defined as
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= 0 otherwise, (1)

i.e., v(n) contains samples of x(n) spaced L samples apart;
zero-valued samples being filled in between these samples.
The box labeled M1 is a decimation box which samples the
input to the box once every. Mth sample, i.e., y(n) is defined
as

y(n)w(nM) n=0,±l,±2,"-. (2)

The box in the middle of Fig. 1 is the low-pass filter required
to prevent aliasing when w(n) is decimated by the factor of
M:l [1].

The general structure of Fig. 1 can be used to change the
sampling rate of a signal by the factor L/M. Thus if M = 1, the
structure acts as an interpolator at the rate of 1 :L. If L = 1,
the structure acts as a sample rate reducer by a factor of M: 1.
By cascading two structures of the type shown in Fig. 1, the
structure of Fig. 2 can be obtained. In this case L1 is set equal
to 1 (for the first stage), and M2 is set equal to 1 (for the sec-
ond stage). Thus the structure is a one-stage decimator (with
a decimation rate of D: 1), followed by a one-stage interpola-
tor (with an interpolation rate of 1: D). It can be seen that
the input and output sampling rates are identical in this im-
plementation. Thus the overall structure acts like a low-pass
filter in terms of its input—output characteristics, and will be
referred to as a one-stage decimation—interpolation filter be-
cause it consists of one stage of decimation followed by one
stage of interpolation.

In Section II of this paper we will discuss the theory of im-
plementation of the above one-stage decimation—interpolation
filter for narrow-band FIR applications and show how it
achieves the properties discussed above. Later we show
how these results extend to the more general multistage
decimation—interpolation filter designs. In Section III sev-
eral examples of actual realizations are given with numerical
comparisons of the efficiencies of various implementations.

EXPAND BY DECIMATE BY
L:1 LPF 1:M

x(n) v(n) w(n) y(n)
-i L1L — MM

rO Lfro Lfro Lfro

N10 rO rO
2

h0 Lf O\::.! Lfro
2M

hr10 L
M rO

Fig. 1. Block diagram for a general purpose system to change the
sampling rate by L/M with L and M integers.
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I i and, by interchanging the summations over 1 and m, (10) can
I LPF DECIMATION INTERPOLATION LPF I

x(n)' v(n)EI win) u(n) 'yin) be written as
I. D-lL__P f/D h2(n)

x(m)hj(n - m) exp(j2irln/D)
Fig. 2. Block diagram of a decimation—interpolation implementation m I= 0 1

y(n)= D
*

ofa narrow-band low-pass filter.
(111)

Finally, in Section IV we provide a general discussion of the
— h2 (n)

x (m) h1 (n — m)
s(n)]

(12)properties of the structure, and give some further details on D
*

implementation methods.
where

II. THEORY OF IMPLEMENTATION OF

NARROW-BAND FIR DESIGNS s(n) = D n = 0, ±D, ±2D,"
It is fairly straightforward to analyze the one-stage 0 otherwise. (13)

decimation—interpolation structure of Fig. 2. If X(z),
H1(z), and V(z) are the z transforms of x(n), h1(n), and Equation (12) can be written as

v(n),then h2(n)

V(z)=H1(z)X(z).
y(n)= D

* s(n)]. (14)

As shown in [2], W(z), the z transform of w(n), is
related Thus the overall system can be realized as the convolution of

to V(z) by the relation x(n) with h1(n), followed by a modulation by the impulse
train s(n), followed by a convolution with h2(n)/D, as shown

1 D-i
W(z) = — V[z/D exp (-j2irl/D)] (4)

in Fig. 3.
D 1=0 If we consider the case where x(n) = u0(n), i.e., an impulse

excitation, then from (14) we get
and U(z), the z transform of u(n), is related to W(z) by the
relation h2(n)

D
* [h1(n)s(n)] (15)

U(z) = W(zD). (5)

whereas if x(n) is a delayed impulse, i.e.,
Finally Y(z), the z transform of y(n), can be written as

x(n)uo(n-m) (16)
Y(z) U(z)H2(z) (6)

then
where 112(z) is the z transform of h2(n). Combining (3)—(6)
gives

H2(z) D-1
y(n) = h2(n) * [h1(n - m) s(n)}. (17)

Y(z) = D X[exp (-j2irl/D) z}
1=0 It can be seen from (15) and (17) that the response of the sys-

H1 [exp (—j2irl/D) z]. (7)
tern to a delayed impulse is not the same as the system re-
sponse to an impulse which is delayed by the same amount—

Evaluating (7) on the unit circle gives i.e., the system is not strictly shift invariant. This same result
can be seen from (14) in that the modulator is of the formH2(e/°) D-1Y(e') =

D X[exp (J ( — 2T1/D))} s(n) and not s(n — m) as would be required for a shift-invariant
1=0 system. Thus the overall system of Figs. 2 and 3 is not ade-

H1 [exp (/ (w — 2T1ID))]. (8) quately characterized by a simple impulse response.
Based on the above discussion, it is easily shown that there

Equation (7) can be inverse z transformed to solve for y (n) as are D-distinct system responses to an impulse delayed by from

h2(n) ID_i
0 to D — 1 samples. Any further delays serve to repeat one of

y(n) = * (x(n) exp (j2irln/D)) the set of D responses. These D responses are the result of the
D 1=0 decimation stage in which the convolution of x(n) and hi(n)is

sampled once every Dth sample. There are D distinct ways of

* (h1 (n) exp (f2lrln/D))] (9) performing such sampling, depending on which sample of the
convolution is chosen as the initial sample.

where * denotes discrete convolution. By performing the Since the overall implementation is not characterized by a
inner convolution, (9) can be put in the form simple impulse response, the question of whether the overall

structure retains the linear phase characteristic of FIR filters
h2(n) rD—i

y(n) = *
L

x(m) exp (f27rlm/D) h1(n — m)
is not a simple one to answer. Strictly speaking, the phase

D 1=0 m response of the system is not exactly linear However, if we
examine (8) carefully, it can be seen that, under the appro-
priate conditions, the phase response of the system is essen-exp (j21(n - m)/D) l(n -

m)]
(10) tially linear. Equation (8) shows that Y(eiw) can be written
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N0 = fro

N1 ND+NIfro".
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Fig. 3. Modulation structure realization of the system of Fig. 2.

in the form

H (e1'') D-1
Y(eJ')= 2D B,(e")

with

B1(e"') = X[exp(1 (w — 2irl/D))]
20-3 20-1 '

H1 [exp (1 (w — 2irl/D))}. (20) 2v(——) 2( 5)
Fig. 4. Frequency domain interpretations of the individual components

Fig. 4 shows plots of B1(e'') in the case where H1 (e") is a of the interpolated (but unfiltered) signal.
narrow-band low-pass filter with high stopband loss. The
terms B1(e/) can be seen to occupy the frequency regions such a structure can be made to operate much more efficiently

than a standard direct form implementation.
(21a) Assume that each of the low-pass filters h1(n) and h2(n) is

an N-point linear phase FIR filter. For a direct implementa-
tion of a single N-point FIR filter, the number of multiplica-

(2lb) tions per second is2

1)

(D-l- 1)w(D-1).
If the interpolation filter passes only the frequency region
0w2ir/D, and 2ir((D- 1)/D)2ir, then (19) can be
reduced to a single term (the 1 = 0 term), giving

Y(e1")
X(e1°)

H1 (eiw) H(e1'). (22)

Since H1 (e1'') and H2 (e") are FIR linear phase filters, to the
extent that the approximations are valid, the overall system is
linear phase. In practice, the approximations are valid if
H1(e") and H2(e") are designed with small stopband
tolerances. Finally, it is seen that the resulting filter has the
frequency response

H(eiw)
H1(eJ")H2(e)

D

Equation (23) is not valid exactly since in its derivation it was
assumed that the stopband responses of both H1 (e1'') and
H2(e") were sufficiently small to prevent any aliasing. If
aliasing is negligible for the passb and of the resulting filter, the
tolerance is essentially the sum of the tolerances of H1 (e)
and H2(e), whereas for the stopband, the tolerance is essen-
tially the tolerance of either H1 (e1") or H2 (e''). Thus if the
filter desired has passband tolerance ö, and stopband toler-
ance a practical technique for implementing this filter is to
design two identióal filters (H1 (e") and H2 (e")) with pass-
band tolerances and stopband tolerances s1

In summary, we have just shown how a narrow-band low-pass
filter can be realized as a one-stage decimation—interpolation
process (i.e., one stage of decimation and one stage of inter-
polation) for which the decimation and interpolation rates are
dependent on the bandwidth of the filter. We now show that

1Note that from (23), in order for the overall gain of th filter to. be
unity in the passband, the combined passband gain of H1 (e") H2(e1t")
must be equal to D.

(24)

where fro is the sampling rate of the input. For the structure
of Fig. 2, the computation of w(n) from x(n) requires

NDfro (25)

multiplications per second, whereas the computation of y (n)
from u(n) requires

IV1=Nfro (26)

multiplications per second. Thus the overall number of mul-
(23) tiplications per second for the structure of Fig. 2 is

(27)

Thus the ratio of multiplications per second for the two im-
plementations is

N0 N/2fro = (28)N1 3N/2fro . l/D 3
Equation (28) shows that if D > 3 the new structure is more
efficient than the standard direct form structure.

Until now we have only considered the simple decImation-
interpolation realization of Fig. 2. However Crochiere and
Rabiner [1] have shown that a decimation (or an interpola-
tion) factor of D can often be more efficiently realized in a
multistage process, rather than a single-stage process as shown
in Fig. 2. Fig. 5 shows a general K-stage integer decimator
followed by a K-stage integer interpolator. The resulting

2We are assuming N is even until Section III for simplicity. When N
is odd we replace N/2 by (N + 1)72 in the relevant equations.
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STAGE F OF STAGE K—I OF STAGE 1 OF
INTERPOLATION NTERPOLATION I NTERPOLATION

Fig. 5. Block diagram of a K-stage decimation—interpolation realization
of a narrow-band low-pass filter.

multistage structure can be more efficient than the single-
stage structure by as much as 500: 1 for large values of D.

By a procedure similar to that above we can show that
these multistage designs have linear phase, within the con-
straints of aliasing, and that they can be approximately char-
acterized by the system function

H(eJ") uH1(eJ°)H2 [exp (fco/D1)J
• - HK[exp(jw/D1D2 -

HK[exp(jw/D1D2 . -

- -H2 [exp(jw/D1)] H1(e').

Because of aliasing they are also, strictly speaking, shift-
variant systems and have a total of D distinct impulse re-
sponses, where D = D1D2 - - D.

Since these multistage structures are thoroughly discussed
by Crochiere and Rabiner [1], we will not say anything more
about them here. Instead in the next section we present
several examples illustrating the use of the proposed imple-
mentation for realizing narrow-band low-pass filters.

III. FILTER EXAMPLES

To illustrate the application of the techniques discussed in
Section II, we present three design examples for narrow-band
filters.

Example 1

The first example (given only for illustrative purposes) is the
design of a low-pass filter with specifications

f = = 0.041666, , = 0.31

f = = 0.083333, = 0.155

fro = 1.

The decimation rate, D, for this filter is

1
6

2f8 21/12
A direct form implementation (no decimation or interpola-
tion) requires a value of N0 of 11 as determined using the
design program of McClellan et a!. [3]. This implementation
requires (N0 + 1)/2 or 6 multiplications/s. When the desired
filter is implemented as shown in Fig. 2 (using D = 6), two
identical filters, h1(n) and h2(n),3 are required with identical
specifications to those listed above except the passband toler-

3A scaling factor of D = 6 is required in the implementation of h2(n)
to preserve the overall signal level in the filter [2].

ance, is halved for each filter. Using the design program, a
length N1 = 17 filter was determined adequate to meet the
specifications. For this implementation a total of (N1 ÷ 1)7
(2 * D) or 3/2 multiplications/s are required to decimate the
input to a rate fro/D, while a total of N1/D or 17/6 mul-
tiplications/s are required to interpolate the signal back to
the original rate. Thus the total number of multiplications
per second is 4- for this one-stage implementation, as opposed
to 6 for the direct implementation. Finally, if the filter is
implemented in a multistage arrangement, as in Fig. 5, then
using the design tables of Crochiere and Rabiner [1], two
stages of decimation followed by two stages of interpolation
yields a somewhat lower multiplication rate than the single
stage. For the two-stage implementation, the optimum
decimation factors are 3.3 for the first stage and 1.8 for the
second stage. Since integer decimation factors are most con-
venient, and since Crochiere and Rabiner [1] have shown that
the individual decimation factors can be varied over a fairly
large range without strongly affecting the overall multiplica-
tion rate [1], the values D1 = 3 and D2 = 2 were chosen for

(29) the two-stage implementation. For the first stage, the filter
specifications were

f ==0.041666, ö ==0.0775

fi f = - = 0.25, = = 0.155

fro = 1

= 3.

These specifications required a filter of length N21 =4. For
the second stage, the filter specifications were

fp2 = = 0.041666, öp2 = 0.0775

f52 = = 0.083333, 62 = = 0.155

fri O.3333
D2 = 2.

These specifications required a filter of length N22 =8.
The total multiplication rate for implementing the filter is
therefore

D = first decimation stage

R2D = second decimation stage

R21 = first interpolation stage
R11 = second interpolation stage

RT = = 4 multiplications/s.

Thus the total overall multiplications rate, RT, for the two-
stage implementation is only slightly smaller than for the one-
stage implementation for this example. However, the two-
stage multiplication rate can often be significantly smaller
than the one-stage multiplication rate, as will be seen in a
later example.

STAGE I OF STAGE 2 OF
DECIMATION DECFMATION

STAGE K OF
DECIMATION
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Fig. 6 shows a plot of the log-magnitude frequency response
of the one-stage implementation. Due to the aliasing, the fre-
quency response is not equiripple; however, the original filter
specifications are still met, or exceeded, at all frequencies.

Fig. 7 shows a plot of the log-magnitude frequency response
of the two-stage implementation. In this case the frequency
response shows more variation than the one-stage case since
the ripples from H1 (eJ") do not line up with the ripples from
H2 (exp / (w/D1)) which was then filtered by H1 (e'°).

Example 2
As a more realistic example we consider the implementation

of a narrow-band low-pass filter with specifications

4=0.025, ,=0.Ol
f = 0.05, = 0.001

fro = 1.0

D= 10.

For the straight direct form implementation, the filter specifi-
cations are met by an FIR filter with N0 = 110—i.e., 55

multiplications/s are required. For one stage of decimation
and one stage of interpolation, a value of N1 121 is required
(the specifications remain the same except is halved). Thus
the total multiplication rate for this one-stage implementation
is

RiD = 6.1 decimation stage

R11 12.1 interpolation stage
RT = 18.2 multiplications/s.

For a two-stage implementation, the optimum decimation
ratios are D1 = 4.719 for the first stage, and D2 = 2.119 for
the second stage. A convenient choice of integers forD1 and
D2 are D1 = 5 and D2 = 2. The specifications for the low-pass
filter for the first stage are

f i = 0.025, 6p1 = = 0.0025

fi = 0.15, ==0.001
fro = 1

= 5.

The impulse response duration of a linear phase FIR filter re-
quired to meet these specifications is N21 = 25. The specifi-
cations for the low-pass filter for the second stage are

42 = 0.025, öpi =—=0.0025

fs2 = 0.05, si = 6, = 0.001

fri =2O.2
D2 = 2.

The duration of a linear phase FIR filter required to meet
these specifications is N22 27. The total multiplication

0.2 0.3
NORMALIZED FREQUENCY

Fig. 6. Log-magnitude frequency response for a one-stage implementa-
tionofaD = 6 filter.

rate for the two-stage realization is therefore

R1 D = 13/5 first decimation stage
R2D = 14/10

R21= 27/10
R11= 25/5

RT= 11.7

Table I summarizes the results on the efficiencies of realizing
the narrow-band design of Example 2. It is seen that the two-
stage implementation is almost five times as efficient (in terms
of multiplication rate) as the direct form realization. Further,
it is seen that the coefficient storage for the two-stage imple-
mentation is about half that of the direct form implementa-
tion since the filter orders are significantly lower for the two-
stage implementation than the direct form.

Fig. 8 shows plots of the impulse responses of the one- [Fig.
8(a)] and two-stage implementations [Fig. 8(c)], as well as
the log-magnitude frequency responses of the impulse re-
sponses from the one- [Fig. 8(b)] and two-stage [Fig. 8(d)]
designs. The impulse response envelopes for the one- and two-
stage designs are markedly similar (as expected); whereas the
log-magnitude responses of the individual impulse responses
differ because the aliasing from a one-stage design is different
from the aliasing of a two-stage design,

-az
Ui0
I.-z

S

z
Ui0
I—

z0

00-j

0.2 0,3

NORMALIZED FREQUENCY

Fig. 7. Log-magnitude frequency response of a two-stage implementa-
tion of aD = 6 filter.

second decimation stage

first interpolation stage

second interpolation stage

multiplications/s.
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TABLE I
COMPARISONS FOR D = 10 LOW-PASS FILTER

Example 3
As a final example we consider the design of a very narrow-

band low-pass filter (as is generally required in many speech
processing systems) [4] with specifications

f = 0.00475, 5,, = 0.001

f = 0.005, = 0.0001

fro = 1

D= 100.
These specifications are those for a sharp cutoff (the transition
width is LiF = 0.00025) with tight tolerances in both the pass-
band and stopband, as is often required in actual applications.

For the direct form implementation an optimal linear phase
FIR filter could not actually be designed to meet the above
specifications because of numerical accuracy considerations in
designing very high-order filters. Thus using the design for-
mulas of Herrmann et al. [5] an estimate of the required
filter length was computed, giving N0 = 15 590—i.e., an ex-
tremely high-order filter is required to meet these tight speci-
fications. In reality it is not reasonable to implement such a
high-order filter directly because of roundoff noise and coeffi-
cient sensitivity problems. However we wifi now show that
when a multistage decimation—interpolation realization is
used, the required filter orders are substantially lower, and in
fact such filters can easily be designed and implemented. The

Filter
Lengths

Multiplication
Rate Efficiency

Coefficient
Storage

Direct form N0 = 110 55 1:1 55 locations
realization

One-stage N1 = 121 18.4 3.0:1 61 locations
decimation—
interpolation

Two-stages N21 = 25 11.7 4.7:1 27 locations
decimation— N22 = 27
interpolation

-ja-

IMPU LSE
ESP0NSE

Dl0
1- STAGE

PLEMENTATION

) 60 180 24

I
IMPULSE
RESPOE

O 10
2- STAGE

JMPLEMENThTION
120

N IN SAMPLES
158

N IN SAMPLES
3160

0.5 0

a)

z
Ui

I-

Fig. 8. Impulse responses

0.2 0.3 0.4 0.1 0.2 0.3 0.4
NORMALIZED FREQUENCY NORMALIZED FEQUEP4CY

and log-magnitude frequency responses for a single- and a two-stage
Example 2,

0.5

implementation for
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TABLE II
COMPARISONS FOR D 100 LOW-PASS FILTER

Straight
FIR

Filter
One-Stage Dec.

One-Stage Interp.
Two-Stage Dec.

Two-Stage Interp.
Two-Stage Dec.

Two-Stage Interp.
Three-Stage Dec.

Three-Stage Interp.
Three-Stage Dec.

Three-Stage Interp.

Optimum dec. ratios — D = 100 = 39.428
D2 = 2336

39.428
D2 = 2.536

D1 = 16.094
D2 = 4.554
D3 = 1.364

D1 = 16.094
D2 =4.554

= 1.364

Actual dec. ratios used —

.

D = 100 = 40
D2—2.55/2

= 50
D2=2

= 15

D2=5
D3=4/3

= 10
D2=5
D32

Filter orders 15 590 16466 N1 284
N2=866

N1 = 423
N2347

N1 = 78
N2=83
N3=712

N1 = 50
N2=44
N3=356

Totalmult.rateusing
symmetry when possible

7795
melts/s

247
mults/s

19.3
mults/s

17.9
mults/s

14.23
muits/s

14.05
mults/s

Savings in the rate over the
straight filter (Ratio) — 31.6 404 435 548 554

Total number of stored
coefficients 7795 8233 575 385 437 255

Dec. = decimation f 0.00475 0.001 f,.0 1

Interp. = interpolation f 0.005 6 = 0.0001 D 100

direct form realization would require approximately 7795
multiplications/s.

For a one-stage implementation, the estimated filter order is
N1 = 16 466 since all specifications are the same except the
required passband ripple is halved. The total multiplication
rate for the one-stage design is Rr 247 multiplications/s or
a savings of a factor of 31.6 over direct form implementation.

For a two-stage implementation, the optimum decimation
ratios are D1 = 394 and D2 2.5. A convenient choice of
integer decimation ratios is D1 = 50 and D2 2. (It is possible
to consider the choice D1 =40, D = 2.5 but since noninteger
ratios sacrifice the halving of the multiplication rate during the
decimation stages, they generally are less efficient than integer
ratios.) For this choice of decimation ratios, the specifications
for the first low-pass filter are

fi =4=0.00475 p1 =O.OOO25

f1 =2_f3=O.015 1

f0 = 1.0

D1 = 50.

The estimated filter length to meet these specifications is
N21 = 423. The specifications for the second low-pass filter
are

implementation is RT = 17.91 multiplications/s—a savings of
a factor of 435.2 over direct form, and 13.8 over the one-
stage implementation. Furthermore, the filters required can
readily be designed and implemented as they are within the
range of the FIR design algorithms.

The total multiplication rate for realizing this narrow-band
filter can be reduced even further by using a three-stage imple-
mentation. Rather than giving the details here, Table II gives
a summary o'the required filter orders, decimation ratios, and
multiplication rates for several implementations of the narrow-
band design of Example 3. For a three-stage implementation,
the total multiplication rate can be reduced to 14.05 multipli-
cations/s. Using the same specifications, an elliptic filter was
designed and implemented in cascade form. A 14th-order
elliptic filter was required to meet the filter specifications.
The cascade form realization of this filter required 22 multi-
plications/s. Thus the three-stage implementation is about
50 percent more efficient than a cascade realization of an
elliptic filter meeting the identical specifications. Further-
more, the three-stage realization is essentially a linear phase
design, whereas the phase (or group delay) of the elliptic
filter is highly nonlinear.

IV. DISCUSSION

In the preceding sections we have shown that a narrow-band
low-pass filter can be realized using the processes of decima-
tion and interpolation. The advantages of the proposed
realization are primarily the following:

1) reduced total multiplication rate;
2) lower order filters required in implementing the design

(for two or more stages);
3) linear phase;
4) lower roundoff noise (for two or more stages); and
5) lower coefficient sensitivity (for two or more stages).

f2 =f = 0.00475 = = 0.00025

fa2 fr = 0.005 s2 = = 0.0001

fri = 0.02

= 2.

The estimated filter length to meet these specifications is We have already discussed and illustrated with examples the
N22 = 347. The total multiplication rate for this two-stage first three properties of the implementation. Properties 4 and
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5 follow directly from Property 2. The lower the filter orders
(with the concomitant relaxed filter specifications obtained
inherently by decimating the interpolating in stages), the less
roundoff noise in the realization (since roundoff noise is
directly proportional to filter order), and the lower the coeffi-
cient sensitivity (since this is also directly related to filter
order and tightness of specifications—i.e., the tolerances).

One disadvantage of the proposed implementation over a
direct form FIR realization is that the system is not strictly
time or shift invariant. However, we have shown that if the
aliasing can be neglected (as is generally true for most designs)
then the system is effectively a linear phase, linear, time-
invariant system.

An important issue in implementing a digital filter by the
methods discussed in this paper is what values of stopband at-
tenuation are required to make the aliasing sufficiently negli.
gible so that the results are usable. Unfortunately, there is no
simple answer to this question because the minimum stopband
attenuation is data dependent. Requirements for a speech
processing system need not be the same as those for a picture
processing system, etc. It should be emphasized, however,
that the potential gains in speed are sufficiently large that one
can tolerate making the stopband attenuation small enough to
"guarantee" that the effects of aliasing are made negligible.

Although we have concentrated on minimizing the total
computation in the implementation of the filter, another
consideration in a multistage implementation of an FIR
digital filter is the amount of storage required. Work in this
area is currently under investigation.

Finally, it is possible to consider a mixed filter structure in
which both FIR and hR stages are used. The considerations
and tradeoffs involved in the implementation of such a struc-
ture are currently being studied.
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Heuristic Optimization of the Cascade Realization
of Fixed-Point Digital Filters
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Abstract—In the cascade realization of fixed-point digital filters under
dynamic range constraints, the output noise due to accumulation of
roundoff errors is highly dependent upon the order of the sections.
For recursive filters it also depends on the pole—zero pairing that forms
the individual second-order sections. The output noise may vary over
several orders of magnitude for different cascade realizations of high-
order filters. Therefore an optimization procedure to fmd a good order-
ing and pairing is very desirable.

We propose a heuristic optimization procedure for finding a "near
optimal" solution. The procedure is completely automatic and does
not require any knowledgeable judgment. The number of function
evaluations required for a filter of N-cascaded sections is proportional
to N2. By using this procedure, "near optimal" solutions have been
found for a 22nd-order recursive filter in 23 s, and for a 55th-order
nonrecursive filter in 37.5 s, on an IBM 360-91 computer.
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I. INTRODUCTION

THE realization of digital filters by cascading second-
order sections has many desirable features, such as better
noise performance than the direct realization [1] and

permitting a modular realization of high-order digital filter in a
flexible manner.

When a fixed-point digital filter is realized by cascading its
second-order sections under dynamic range constraints, the re-
sulting roundoff error due to the use of finite word-length is
highly dependent upon the pole-zero pairing and ordering of
the sections. In this paper, we shall use the term assignment
to denote a specific pole—zero pairing and a specific ordering.
Jackson [2] has derived expressions for the roundoff error for
such ifiters and has also shown that wide variations in the out-
put noise can result from different assignments.

Based upon his extensive experimental analysis of several
filters, Jackson [2] has proposed rules for determining good
assignments. Lee [3] has suggested an optimization procedure


