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Real-Time Digital Hardware Pitch Detector
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LAWRENCE R. RAB1NER, SENIOR MEMBER, IEEE

Abstract—A high-quality pitch detector has been built in digital hard-
ware and operates in real time at a 10 kl-Iz sampling rate. The hardware
is capable of providing energy as well as pitch-period esthnates. The
pitch and energy computations are performed 100 times/s (i.e., once
per 10 ms interval). The algorithm to estimate the pitch period uses
center clipping, infinite peak clipping, and a simplified autocorrelation
analysis. The analysis is performed on a 300 sample section of speech
which is both center clipped and infinite peak clipped, yielding a three-
level speech signal where the levels are —1, 0, and +1 depending on the
relation of the original speech sample to the clipping threshold. Thus
computation of the autocorrelation function of the clipped speech is
easily implemented in digital hardware using simple combinatorial
logic, i.e., an up-down counter can be used to compute each correla-
tion point. The pitch detector has been interfaced to the NOVA com-
puter facility of the Acoustics Research Department at Bell Laboratories.

I. INTRODUCTION

LTHOUGH a wide variety of pitch-detection algorithms
have been proposed [1]— [6] , as yet few of them have
been built in special-purpose digital hardware capable

of real-time operation. This is because most of the pitch-
detection algorithms require either a great deal of logic, or an
excessive amount of computation. Neither of these situations
is conducive to inexpensive implementations in digital hard-
ware. Although software versions of these pitch detectors are
useful in some applications, there are many cases in which
system requirements include real-time operation.' Examples
of such systems include on-line systems for speaker verifica-
tion and identification [7] , and systems for helping to correct
speech impediments of the handicapped [8].

For such applications where reliable, real-time pitch detec-
tion is a requirement, a digital hardware pitch detector has
been built. The pitch detector operates in real time at a 10
kflz sampling rate. The hardware also computes energy as well
as pitch-period estimates. The pitch and energy computations
are performed 100 times/s, i.e., once per 10 ms interval.

The pitch-detection algorithm which was implemented in
digital hardware is similar to the center-clipped autocorrelation
method studied by Sondhi [1], but with one important mod-
ification. In the method proposed by Sondhi the speech is

Manuscript received August 7, 1975; revised October 27, 1975.
J. J. Dubnowski and L. R. Rabiner are with Bell Laboratories, Murray

Hill, NJ 07974.
R. W. Schafer is with the Department of Electrical Engineering,

Georgia Institute of Technology, Atlanta, GA 30332.
11t should be noted that some special purpose extremely fast proces-

sors such as the fast digital processor (FDP) and the digital voice ter-
minal (DVT) at the M.LT. Lincoln Laboratories, andthe programmable
signal processor (PSP) at Sylvania, have been built which are capable of
running most pitch detection algorithms in real time. Generally these
processors are either expensive, or are not commercially available.

center clipped and then autocorrelated. In the hardware
implementation the speech is both center clipped and infi-
nitely peak clipped, thereby reducing the speech samples to
two-bit data words. Thus computation of the autocorrelation
function is simplified in complexity from a sum of products
to a simple logical combination of two-bit data words. This
modification to the Sondhi method serves to minimize both
computation time as well as hardware complexity, thereby
enabling the algorithm to be implemented in real time in
special purpose digital hardware. A number of additional
threshold parameters have been incorporated in the hardware
for the following purposes: to help make a voiced-unvoiced
decision, to adapt to the wide dynamic range of speech, and
to distinguish speech from background silence. These param-
eters will all be described later in this paper.

In the next section a detailed discussion of the pitch-detec-
tion algorithm, and the various parameters which give the
algorithm flexibility, is presented. In Section III the specific
hardware structure is described. Finally, in Section IV a brief
discussion of a performance evaluation of the algorithm is
given.

II. Tiw PITCH-PERIOD ESTIMATION ALGORITHM

One of the difficulties in making a reliable estimate of the
pitch period across a wide range of speech utterances and
speakers is the effect of the formant structure on measure-
ments related to the periodicity of the waveform. Thus for
reliable pitch detection, it is highly desirable that the effects
of the formants be greatly reduced, or entirely eliminated, if
possible. The technique of removing the spectral shaping in
the waveform due to the formants has been called spectral
flattening [1]. Sondhi has proposed two methods for per-
forming this spectral flattening—a filter bank method and the
technique of center clipping. For the filter bank method the
signal is filtered by a bank of bandpass filters which span the
bandwidth of the signal. The signal at theoutput of the filter
is normalized to unit amplitude (spectrally flattened) by divid-
ing it by its short-time energy. The total spectrally flattened
signal is obtained by adding the individually flattened channels
with the appropriate delays. Although this method works very
well in many cases, there are several drawbacks to practical
implementations of this method. First, the method requires a
considerable amount of hardware for filtering and equaliza-
tion. Second, there are cases where the flattening produces
very bad results. These cases occur when no pitch harmonic
is contained within an individual bandpass filter. In this case
the filter output is low level; therefore the equalized output
is essentially high-level noise which tends to obscure rather
than aid the pitch detection process.
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An alternative way of spectrally flattening a signal is the pro-
cess of center clipping in which signal values below the clip-
ping level are set to zero, whereas those above the clipping
level are offset by the clipping level. Fig. 1 shows the input—
output characteristic of the center clipper used by Sondhi [1]
and an illustration of how the center-clipping method effec-
tively acts as a spectral flattener. It can be seen from Fig. 1
that if the clipping level is appropriately set, most of the wave-
form structure, due to the formants,. can be entirely elim-
inated. Thus a center clipper effectively yields a spectrally
flattened signal whose periodicity is much easier to measure
than the comparable nonflattened signal.

The method used to estimate the pitch period in the hard-
ware implementation is based on a modification of this center-
clipping method. Fig. 2 shows a block diagram of the pitch-
detection algorithm. The analog input speech signal is first
low-pass filtered to a bandwidth of about 900 Hz, and then
converted to digital form by a 12-bit analog-to-digital (AID)
converter. The signal at the output of the converter s(n) is
then sectioned into overlapping 30 ms sections for processing.
(Since the pitch period computation is performed 100 times
per second, i.e., every 10 ms,.adjacent sections overlap by 20
ms.)

The first stage of processing for each section is the compu-
tation of the clipping level for that section. Because of the
wide dynamic range of speech, the clipping level must be care-
fully chosen so as to prevent loss of. waveform information
when the waveform is either rising in amplitude or falling in
amplitude during the section. Such cases occur when voicing
is just beginning or ending, as well as during voicing transi-
tions, e.g., from a vowel to a voiced fricative, or a nasal. The
way in which the clipping level CL is chosen is as follows. The
30 ms section of speech is divided into three consecutive 10
ms sections. For the first and third 10 ms sections the algor-
ithm finds the maximum absolute peak levels. The clipping
level is then set as a fixed percentage of the smaller of these
two maximum absolute peak levels. The percentage that is
actually used is a parameter of the pitch-detector hardware;
however, extensive computer simulations have shown that a
value of around 80 percent is appropriate for most cases. It
should be noted that in Sondhi's original work, the percentage
chosen for setting the clipping level was about 30 percent [1]
This was due to Sondhi's method of setting the clipping level
based on the peak absolute value over the whole 30 ms sec-
tion. To avoid losing low-level voiced information a low-
clipping level was required. This more sophisticated method
of .choo sing the clipping level has eliminated this ,problem.

Following the determination of the clipping level, the speech
section is then both center clipped, and infinite peak clipped,
resulting in a signal which assumes one of three possible
values—+l if the sample exceeds .the positive clipping level,
— 1 if the sample falls below the negative clipping level, and 0
otherwise. Fig. 3 shows a plot of the input-output character-
istic for the combination center clipper, infinite peak clipper.
The use of infinite peak clipping following the center clipper
greatly reduces the computational complexity of the autocor-
relation measurement which follows the clipping. This is be-
cause no multiplications or additions are required in the corn-

Fig. 1. Input—output characteristic and typical operation of a center
clipper (after Sondhi).

putation of the autocorrelation function of the clipped signal..
The next stage in the processing is the autocorrelation com-

putation. The autocorrelation for the clipped 30 ms section is
defmed as

299—rn

x(n)x(n÷m) m=M1,M1+1, -,i'In0
(1)

where M is the initial lag and is the final lag for which the
autocorrelation is computed. (These parameters are variables
in the hardware and can be set by the user. Typical values of
M and M are 25 and 200, respectively, corresponding to a
pitch range of 400 Hz down to 50 Hz.) Additionally, R (0)
is computed for appropriate normalization of the autocorrela-
tion function. Since the individual terms in (1) are of the
form x(n)x(n + m), and since x(n) can only assume the values,
+1, 0, or — 1, then each combination of (I) can assume the
values

x(n)x(n + m) = 0 if x(n) = 0, or if x(n + m) = 0

lifx(n) x(n+m) ±1
-1 ifx(n)=-x(n+m)=±1. (2)

Thus, a simple combinatorial logic circuit is all that is required
to compute the individual terms in the autocorrelation func-
tion, and an up—down counter is all that is required to accumu-
late the actual autocorrelation value -

Fig. 4 shows an example of the processing for a typical 30
ms section of speech. At the top of this figure is shown the
low-pass filtered waveform, and the clipping thresholds ±CL,
for this example. At the middle of this figure is shown the
clipped speech. Finally, at the bottom of Fig. 4 is shown the
autocorrelation function of the clipped speech. The range
in which the pitch period generally lies is shown by the dotted
lines at m = 20 and m = 200. For this example the pitch
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EXTERNAL
INITIAT ION

Fig. 2. Block diagram of the overall pitch detector built in digital hardware.
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period of the section is about 40 samples, or 4 ms, or a pitch
frequency of 250 Hz.

It should be noted that in the computation of the autocor-
relation function (1) it is assumed that samples outside the
current 30 ms section are zero. This effectively weights the
autocorrelation function by a linear taper which starts at
1 for m = 0 and goes to 0 at m 300. This effect is clearly
seen in Fig. 4 where the peaks of the autocorrelation function
linearly taper to zero. The use of a linear taper on the auto-
correlation function effectively enhances the peak at the pitch
period with respect to peaks at multiples of the pitch period,
thereby reducing the possibility of doubling or tripling the
pitch-period estimate because of higher correlations at these
lags than at the lag of the actual pitch period.

In addition to pitch, the hardware also makes a computa-
tion that represents the energy for each section. The actual
computation used (which will be denoted as the energy of the
section) is

99
Is(n)L (3)n0

i.e., the energy is computed as the sum of the absolute values
of the speech samples over a 10 ma interval.

Additionally, based on peak signal levels, a silence level
threshold can be chosen. This threshold serves to distinguish
low-level background noise from speech. The silence level
threshold is obtained by measuring the peak signal level for
50 ms of background silence. This silence level threshold is
stored in a register and is then compared against the peak sig-
nal level in a given 30 ms section. If the peak level falls below
the silence level threshold, the 30 ms section is classified as
background silence, and no pitch-period computation is per-
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Fig. 3. Input—output characteristic of the combination center clipper,
infinite peak clipper.
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Fig. 4. Example of clipped Speech and its autocorrelation function.
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formed. This silence level threshold can be reset either manu-
ally or under program control whenever desired. Thus the
pitch detector has the capability of adapting to a variety of
background environments.

If the section of speech is not classified as background
silence (i.e., its peak level exceeds the threshold level) the
autocorrelation computation is performed and the autocor-
relation function is searched for its maximum value in the
interval m = M to m =Mf. Both the location and the value of
this maximum are saved. If the value of this maximum (rela-
tive to the autocorrelation at m = 0) exceeds a voiced—
unvoiced threshold (on the order of 0.30) the section is clas-
sified as voiced and the pitch period is the position of the
maximum peak. If the peak value falls below the threshold,
the interval is classified as unvoiced.

III. DIGITAL HARDWARE IMPLEMENTATION OF THE
PITCH DETECTOR

As discussed earlier, the pitch detector of Section II has
been implemented in digital hardware. The hardware is
divided into two distinct processors. The first processor per-
forms the adaptive clipping operation, and makes the energy
computation, whereas the second processor computes the
autocorrelation function and makes the final pitch period esti-
mate and voiced-unvoiced decision. These two processors
operate in parallel—thus while the current pitch-period esti-
mate is being computed, the next segment of speech is being
loaded and processed in the first processor. This pipelined
structure allows real-time operation at a 10 kHz sampling rate
with pitch and energy computations made every 10 ms (100
times a second).

Fig. 5 shows the hardware organization of the pitch
detector. The analog speech waveform is low-pass filtered
with a 900 Hz cutoff filter and converted to digital form by
a 12 bit A/D converter. The clipping level and energy compu.
tation are made simultaneously as each new 100-sample speech
segment is clocked into a 300 word buffer every 10 ms. The
300 word data buffer is processed by the clipper and the out-
put is shifted into the autocorrelation processor.

The autocorrelation computation is performed over the
preset lag interval. The block labeled pitch logic finds the
largest autocorrelation peak, and stores both the amplitude
and location of the peak. The amplitude of the maximum
peak is compared with an autocorrelation threshold to make
the final voiced—unvoiced decision.

Fig. 6 shows a detailed block diagram of the first processor.
Speech data are loaded into three 100 word X 8-bit MOS shift
registers. The use of three shift registers enables the processor
to make the peak signal computation as the data are received.
The two comparator-latch combinations monitor the signal
level from the first and last shift registers for the clipping-level
computation.

The minimum level control is an externally initiated func-
tion which scans a 512-sample sequence to determine the
maximum signal level. Since this function can be initiated at

any time, the .hardware is esentially capable of training itself
or adapting to any background environment.

Once the clipping level is determined, the center clipper per-
forms the entire clipping function of the pitch detector dir-
ectly on the 300 samples stored in the shift registers. The
output of the clipper is stored directly in a 512 word X 2 bit
bipolar memory of the second processor as shown in Fig. 7.
Two counters and a memory address selector are used to
access the data for the autocorrelation computation. Counter
B and counter A provide the memory addressing associated
with x(n) and x(m + n) in computing the autocorrelation.
Counter B is initially set to zero prior to each computation
and is incremented after each data access. Counter A is loaded
from the starting address counter prior to each computation
and is also incremented following each data access. The
completion of the computation for an autocorrelation ele-
ment is indicated by the comparison of counter A's output
with the data range stored in the range latch. This generates
a "correlation element complete" signal which increments the
starting address counter. While the memory is being accessed,
data output pass through the combinatorial logic and the
result appropriately clocks the up-down counter. This ac-
cumulated count is compared against the max count from
any past autocorrelation element computation when the cor-
relation element complete signal occurs. If the new computa-
tion is higher, it is stored in the max peak latch and the ad-
dress from the starting address counter is stored in the pitch
latch. In this way when the entire autocorrelation has been
computed, as indicated by comparing the incremented
starting-address counter with the end of correlation lag, the
value remaining in the max peak latch represents the largest
autocorrelation peak and the respective value stored in the
pitch latch corresponds to the pitch period. The additional
comparison made with the voiced—unvoiced threshold clears
the pitch latch if the maximum autocorrelation peak does not
exceed the threshold, thereby indicating unvoiced speech.

The hardware described above used about 150 IC chips.
Aside from the MOS shift registers, and the fast bipolar mem-
ory, all other circuits are standard speed T2 L logic.

IV. DISCUSSION AND SUMMARY

The hardware pitch detector described in Section III has
been built and interfaced to the NOVA computer facility of
the Acoustics Research Department. An extensive perfor-
mance evaluation was made of the capabilities of this and sev-
eral other pitch-detection algorithms using software simula-
tions [9]. To test the performance of these algorithms, a
speech data base, consisting of eight utterances spoken by 3
males, 3 females, and 1 child was constructed. Simultaneous
telephone and close talking microphone recordings were made
of each of the utterances. For each of the utterances in the
data base a "standard" pitch contour was semiautomatically
measured using a highly sophisticated interactive pitch detec-
tion program [10]. The "standard" pitch contour was then
compared with the pitch contour that was obtained from each
of the programmed pitch detectors. A set of measurements
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were made on the pitch contours to quantify the various types
of errors which occur in the pitch detection process. Included
among the error measurements were the average and standard
deviation of the error in pitch period during voiced regions,
the number of gross errors in the pitch period, and the average
and standard deviation of the error in locating the onset and
offset of voicing. By pooling the various error measurements,
the individual pitch detectors could be rank-ordered as a
measure of this relative performance.

Since the details of the performance evaluation are available
in [9] , we will only summarize the results obtained for the
pitch-detection algorithm described in this paper.

The errors made in measuring the pitch period during voiced
regions were divided into two categories. The first category
included all cases where the magnitude -of the difference be-
tween the standard value of the pitch period, and that mea-
sured by the pitch detector, was less than 10 samples. The
second category included all cases where the magnitude of the
difference in pitch periods was 10 samples or larger. These
errors were referred to as gross pitch-period errors. For the
first category of errors, namely the fine errors in pitch period,
the average pitch-period error was in the range of —0.3 to
0.1 samples across the different speakers, and across the dif-
ferent recording conditions. The standard deviation of the
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Fig. 5. Hardware structure of the pitch detector.
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pitch-period error varied from 0.4 to 1.0 samples across speak-
ers and conditions. Both these error scores are essentially
within the measurement accuracy of the pitch period. Thus
the conclusion can be drawn that, for the cases where gross
errors are excluded from the measurement, the autocorrela-
tion pitch detector can determine the correct pitch period
quite accurately.

In the case of gross errors, the autocorrelation pitch detector
runs into difficulty primarily for low.pitch speakers where the
pitch period is quite long. The errors that occur here are due
to the fixed frame size of 300 samples used in the analysis.
When the pitch period exceeds 150 samples, the analysis frame
size is not large enough to hold two full periods of speech;
thereby increasing the chance of a gross error in locating the
correct pitch period. In the study of [9], the two low-pitch
speakers used in the study both showed a large number of
gross errors in the pitch period (for both the telephone and
microphone recordings). All other speakers had only occas-
sional gross errors in the pitch period (i.e., one gross error/s on
average). A nonlinear smoothing algorithm [11] was used in
the study of [9] to isolate and correct these gross errors, as
well as isolated errors in the voiced—unvoiced decision. After
processing by the nonlinear smoothing algorithm, essentially
all gross pitch-period errors were corrected except for the
case of the low-pitch male speaker where some of the errors

occurred in clusters, and therefore were essentially not cor-
rectable by a median-type smoother.

The second category in the performance evaluation of [9]
was the accuracy in voiced-unvoiced boundary location. For
the autocorrelation pitch detector, the average error in lo-
cating the voiced-unvoiced boundary was on the order of
5 ms (half the average frame rate of 100 frames/s or 10 ms/
frame), and the standard deviation of the error was on the
order of 10 ms across all speakers and recording conditions.
Thus the error in locating the voiced-unvoiced boundaries was
on the order of the precision of the measurements.

The way in which these results are interpreted depends very
strongly on the intended application for the pitch detector.
The hardware pitch detector described hi this paper will be
used in a speaker verification system [7], and will be tested
in a linear predictive coefficient (LPC) vocoder simulation.

In summary, a fairly versatile real-time pitch detector has
been built in digital hardware. The pitch.detection algorithm
is based on a combination of center clipping and infinite peak
clipping, and uses a simplified autocorrelation analysis to esti-
mate the pitch period. Additional features incorporated in the
hardware include an energy computation, a simple threshold
comparison to eliminate low-level signals, and a final voiced—
unvoiced decision based on the peak value of the correlation
function.

AUTOCORRELATION RANGE PARAMETERS

CLIPPED

ADDRESS COUNTER

Fig. 7. Detailed hardware description of the autocorrelation and pitch-period logic.
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A Comparison of Three Methods of Extracting
Resonance Information from Predictor-Coefficient

Coded Speech
RANDALL L. CHRISTENSEN, WILLIAM J. STRONG, MEMBER, IEEE, AND E. PAUL PALMER

Abstract—Three methods of extracting resonance information from
predictor-coefficient coded speech are compared. The methods are
finding roots of the polynomial in the denominator of the transfer
function using Newton iteration, picking peaks in the spectrum of the
transfer function, and picking peaks in the negative of the second
derivative of the spectrum. A relationship was found between the
bandwidth of a resonance and the magnitude of the second derivative
peak. Data, accumulated from a total of about two minutes of running
speech from both female and male talkers, are presented illustrating
the relative effectiveness of each method in locating resonances. The
second-derivative method was shown to locate about 98 percent of the
significant resonances while the simple peak-picking method located
about 85 percent.

INTRODUCTION

MANY speech processing applications in use today re-
quire a knowledge of speech formant information.
Formants are significant parameters for characterizing

various speech sounds and as such are used in programs for
machine recognition of speech, in machine voice-response
systems, and in controlling terminal-analog synthesizers used
in speech synthesis by rule. Formant frequency information is
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needed to realize a formant vocoder, although other more
easily obtained parameters may be preferable if one is inter-
ested only in the vocoding problem. Formant frequencies are
"natural" parameters due to their relationship to the under-
lying vocal tract configuration, and for this reason, they have
an intuitive appeal for researchers in speech synthesis and
recognition. There is also evidence that formant information
is an efficient way to code speech sounds [11].

Both iterative and noniterative approaches have been used
for estimating formant frequencies. An iterative approach is
analysis by synthesis in which adjustments are made on the
parameters of a speech synthesis model until some desired
degree of matching is obtained between the actual speech
spectrum and the spectrum resulting from the model. Analysis
by synthesis permits great flexibility in making spectral
matches but requires extensive processing in its iterations.
Noniterative approaches are appealing because of their com-
parative computational efficiencies. These approaches often
depend on detecting spectral peaks and identifying them as
possible formants. Cepstral methods have been used to
obtain smoothed spectra which are peak picked via human
intervention [131 or by computer [121.

The recent application of linear-prediction methods to
speech analysis has made formant estimation more tractable.
The predictor-coefficient method matches the spectrum of a
variable, multiresonance digital filter, and the spectral enve-
lope of a speech segment so that the mean-squared error is


