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ABSTRACT 

In this paper we discuss a number of issues 
concerning the design of optimal decimators, 
and interpolators and their application to 
narrow band filtering. We show that a design 
which is optimized for minimum storage is 
essentially optimum in terms of its number of 
required multiplications and additions as well. 
We then discuss a practical scheme for effi- 
ciently implementing decimators and inter— 
polators. 

I. INTRODUCTION 

In the area of digital signal processing, 
there often arises the need for efficiently 
converting between different sampling rates. 
The process of decimating or lowering Abe 
sampling rate of a signal x(n) by an integer 
ratio B is depicted in Fig. 1. The original 
sampling rate is denoted as r and the final 
sampling rate is fr/MS To avoid aliasing at 
the lower sampling rate, fr/B, it is necessary 

to first filter the original signal x(n) with 
a lowpass filter whose cutoff frequency is 
equal to fr/(2M) giving the signal w(n). The 
sampling rate reduction is then achieved by 
forming a new sequence y(n) by extracting 
every Mth sample of w(n). 

The process of interpolating a signal x(n) by 
an integer ratio L is similarly depicted in 
Fig. 2. In this case the sampling rate of the 
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Figure 2: Illustration of the interpolation 
process. 

signal x(n) is increased by the factor L by 
inserting L—l zero valued samples between each 
sample of x(n). This creAtes a signal w(n) 
(with sampling rate Lfr) whose frequency com- 
ponents are periodic in the original sampling 
frequency ±'r. To eliminate these periodic 
components and retain only the base—band fre- 
quencies it is necessary to filter the signal 
w(n) with a lowpass filter, whose cutoff fre- 
quency is fr/2. The resulting signal y(n), 
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with sampling rate Lfr, is then the desired 
interpolated signal. It will be assumed in 
this paper that the above filters are linear 
phase FIR filters for reasons explained in 
Refs. 1,2. 

II. OPTIMUM DESIGN OF MULTISTAGE DECIMATORS 
FOR SAMPLING RATE REDUCTION 

In Section I a general one—stage technique for 
changing the sampling rate of a signal was 
shown. For large changes in sampling rate, 
however, it is generally more efficient to 
reduce the sampling rate with a series of 
decimation stages rather than making the 
entire rate reduction with one stage. In this 
way the sampling rate is reduced gradually 
resulting in much less severe filtering 
requirements on the lowpass filters at each 
stage. 3 

The basic multistage process for sampling 
rate reduction with K stages is illustrated 
in Fig. 3a and a frequency domain interpreta- 
tion of this process is given in Fig. 3b. 
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Figure_3: (a) Illustration of a K-stage deci- 
mators, and (b) a frequency response interpre- 
tation of this process. 

The initial sampling rate is ro and the final 
sampling rate is rK with intermediate sam- 
pling frequencies designated as rl'r2' 

The sampling rate reduction achieved 
by each stage is D1, il,2,. . .,K and the 
intermediate sampling frequencies are denoted 
as ri The overall sampling rate reduction 

x(n) 

ft 
Figure 1: Illustration of the decimation 
process. 
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achieved by this process is D = r0/frK. 
From the sampling theorem, we recognise that 
the highest frequency in y(n) is f5 < 
The passband of the filters in each stage 
extends from 0 to f0, where f < f5, and the 
overall passband tolerance is 1 + 5. The 
stop band tolerance is . 
Thus far, we have established the basic 
framework for a multistage decimator. Given 
that the parameters ro' f, and 
are known, the next consideration is that of 
optimizing the design for maximum efficiency. 
The parameters that we have at our disposal 
are K, and Di, i = l,2,...,K. The function 
to be minimized can be either the total corn— 
putation, RT, or the total storage, NT, of 
the design. It can be shown that they are of 
the forms 

and 

NT FO,).T(fP,f,K,Dl,D2,...,DK).G 

(1) 

(2) 

To optimize the multistage design (i.e., to 
minimize RT or NT) we can choose a value for 
the number of stages, K, and then find the 
decimation ratios (Di's) which minimize the 
relevant quantity. By comparing values of RT 
or NT for several choices of K (typically 
from K = 2 to K = LI) the overall design can 
be optimized. 

By way of example of the results obtained by 
performing the above optimization on NT, 
Fig. LI shows a plot of the function T of 
Eq. (2) as a function of D, the overall deci- 
mation ratio for the frequency design con- 
straint Af = (f5_f)/f5 = 0.1. For compari- 
son, the dotted curves in Fig. )-t correspond 
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to values of T when RT is minimized. For 
K = 1, and K = 2 (i.e., 1 and 2 stage designs) 
the two designs are essentially identical. 
For 3 and LI stages, a savings in storage of 
at most 2:1 is possible using a minimized 
storage design instead of a minimum cornputa— 
tion design. It was also found that the 
total computation for designs minimized in 
terms of storage was essentially the same as 
the total computation for designs minimized 
in terms of computation. 

Figure 5 shows a plot of the function S ver- 
sus P for optimized decimation rates for 
K = 1,2,3 and LI, and for Af = 0.1. It can be 

seen that for a D of 100, the relative compu- 
tation savings in going from a one—stage 
(K = 1) to a two—stage design is about 10 to 
1, whereas for a three—stage design the rela- 
tive savings over a one—stage design is about 
13 to 1. 

III. OPTIMAL DESIGN OF INTERPOLATORS AND 
NARROW BAND FILTERS 

The ideas discussed above can also be applied 
to the implementation of narrow band filters 
in the following manner. If a signal is deci- 
mated down to a low sampling rate and then 
interpolated back to the high rate, we have, 
in effect, lowpass filtered the signal. 
Obviously the same result can be obtained 
directly with a lowpass filter operating at 
the high rate, ro• It has been shown2 that 
the first method, that of decimation and 
interpolation, is generally a considerably 
more efficient way of implementing a narrow 
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where F0 is a fairly weak function of K, and 
0 is a proportionality constant. 
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Figure 5: Plot of minimized values of S as a 
function of K, D, and Af where Af is 0.1. 
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We have already shown that the decimation 
process can generally be implemented more 
efficiently as a multistage process than in a 
single stage. Similarly it can be shown by 
duality that the interpolation process can 
also be implemented more efficiently as a 
multistage process.2 Thus all the design 
curves for multistage decimators apply 
equally to the design of multistage inter— 
polators. 
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Figure 4: Plot of minimized values of T as a 
function of K, D, and Af is 0.1. 



band FIR lowpass filter than the standard 
direct form implementation at the high sam- 
pling rate. The savings is cm the order of 
5735 (see Fig. 5). 

IV. IMPLEMENTATION OF DECIMATORS AND 
INTERPOLATORS 

It has been shown2 that for a decimation 
stage, which lowers the sampling rate by a 
factor bf M, the computation of each output 
point y(m) cam be expressed in the form 

where N is the number of samples in the fil- 
ter impulse respomse, h(m). For am imter— 
polatiom stage which raises the sampling rate 
by a factor of L, the computation of each 
output point y(m) cam be expressed in the 
form 

Q— 1 

y(m) = h(kL+m®L)x([I - k) (4) 

where e demotes modulo, [] correspomds to 
the integer part of the number in the brack- 
ets amd Q = N/L is the number of momzero 
input samples of x(m) which emter the compu- 
tation. 

Figure 6a shows a block diagram of a three— 
stage decimator im cascade with a three—stage 
imterpolator, amd Fig. 5b shows the corre— 
spomdimg control sequemoe. To realize either 
a decimator, interpolator, or a lowpass 
filter with fewer stages, appropriate parts 
of this structure cam be partitioned off from 
the main structure. The implememtatiom of 
the deoimatiom stages is a straightforward 
application of Fq. (3). The implememtatiom 
of the interpolatiom stages requires scram- 
bling the filter coefficients (h(m)), so that 
sequential accesses of the ooeffioiemts can 
be used to compute each output sample as dis- 
cussed im Ref. 2. 

V. FURTHER IMFLEMENTATIDN ISSUES 

5.1 Multibamd Filters 

At each stage of decimation or interpolation 
a lowpass filter has beem used to remove 
appropriate frequency bands of the signal. 
For some of the stages im a multistage desigm 
the lowpass filter cam be replaced by a multi- 
band digital filter whose order is smaller 
than the order of the lowpass filter — there- 
by reducing the overall oomputatiom. 

By way of example, Fig. 7 shows a plot of the 
percentage decrease im filter duration usimg 
a multibamd design as a fumctiom of the rela- 
tive bandwidth of the equivalent lowpass 
filter for a stage with a decimation rate of 
5. It is seem that for a sufficiemtly marrow 
bandwidth, decreases on the order of 2 to 1 
cam be obtained. 

y(m) = h(k)x(nM_k) (3) 
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Figure_6: (a) A block diagram for implemen- 
tation of a tbree-atage decimator followed by 
a three—stage interpolator, and (b) its con- 
trol seguence. 
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Figure 7: Percentage decrease in filter order 
using a multiband filter design. 



5.2 lIE Filters 

The suitability of using hR filters instead 
of FIR designs for multistage implementations 
was also investigated. It was found that a 
multistage lIE design was only slightly more 
efficient computationally than a single stage 
hR design, and that it was always less effi- 
cient, in terms of storage, than the single 
stage hR design. 
VI. SUMMARY 

In this paper we have presented issues in the 
design of multistage decimators and interpo— 
lators. It was shown that designs which are 
optimized in terms of minimum storage 
requirements are essentially optimized in 
terms of computation as well. A practical 
scheme for implementing multistage decimators 
and interpolators was presented. Finally the 
use of multiband filter designs and IIR 
filter designs for decimators and interpola— 
tors was discussed. 
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