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Sorn,e Preliminary Experiments in the Recognition
of Connected Digits

LAWRENCE R. RABINER, FELLOW, IEEE, AND MARVIN R. SAMBUR

Abstract—This paper describes an implementation of a speaker in-
dependent system which can recognize connected digits. The overall
recognition system consists of two separate but interrelated parts. The
function of the first part of the system is to segment the digit string
into the individual digits which comprise the string; the secOnd part of
the system then recognizes the individual digits based on the results of
the segmentation. The segmentation of the digits is based on a voiced-
unvoiced analysis of the digit string, as well as information about the
location and amplitude of minima in the energy contour of the utter-
ance. The digit recognition strategy is similar to the algorithm used by
Sanibur and Rabiner [1] for isolated digits, but with several important
modifications due to the impreciseness with which the exact digit
bOundaries can be located. To evaluate the accuracy of the system in
segmenting and recognizing digit strings a series of experiments was
conducted. Using high-quality recordings from a soundproof booth the
segmentation accuracy was found to be abOut 99 percent, and the rec-
ognition accuracy was about 91 percent across ten speakers (five male,
five female). With recordings made in a noisy computer room the
segmentation accuracy remained close to 99 percent, and the recogni-
tion accuracy was about 87 percent across another group often speakers
(five male, five female).

I. INTRODUCTION

ONE of the most interesting areas of speech recognition is
the problem of digit recognition. Although the applica-
tions to telephony alone would justify serious considera-

tion of digit recognition methods, there are a wide variety of
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additional applications where voice input to a machine is ex-
tremely useful [2] - Among these applications are banking by
voice, data input to a computer, and inventory and stock
record keeping by machine.

Traditionally the approach to research in digit recognition
has been to study the issues involved in recognizing isolated
digits, spoken by a designated or one of a set of designated
speakers [1] , [3] —[7] - Although Martin has amply demon-
strated the wide range of applications for such systems it is
clear that for many applications of digit recognition (e.g., in
telephony), these restrictions are highly undesirable.

Earlier work by Sambur and Rabiner [1] showed that a
digit recognition accuracy on the order of 97 percent could be
achieved with isolated digits across a broad range of male and
female speakers. It was felt that these high scores justified ex-
perimentation with speaker independent systems for recogniz-
ing continuous digits.' It is the purpose of this paper to discuss
such a system and to present results of experiments in recog-
nizing strings of connected digits.

Fig. 1 shows a block diagram of the digit recognition scheme.
The recorded digit string is first subjected to an endpoint
analysis to determine where in the given recording interval the
speech data occurs. The endpoint analysis is based on self-
normalized measures of the energy and zero crossings of the

1The authors have recently become aware of similar work in the area
of digit recognition at Perception Technology, Inc., Winchester, MA,
Dialog Systems, Inc., Cambridge, MA, and Texas Instruments, Inc.,
Dallas, TX.
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Fig. 1. Block diagram of the overall digit recognition system.

speech waveform, as described by Rabiner and Sambur [8],
Following endpoint alignment, the speech signal is analyzed
100 tinies/s, giving the following parameters:

1) Zero crossings
2) Log energy
3) Linear predictive coding (LPC) coefficients
4) LPC error
5) Autocorrelation coefficients

The measured parameters are then used in a statistical pattern
recognition approach to give a voiced-unvoiced-silence con-
tour of the utterance [9]. The voiced-unvoiced-silence con-
tour is used along with some statistical information about the
contour, and the speech energy measurements to segment the
connected digit string into the individual digits. For the work
to be described here it was assumed that all inputs were
strings of three connected digits. This restriction on the
number of digits could easily be removed with affecting any
of the results to be presented. However, it is required that the
number of digits in the string be specified.

Once the digits have been segmented, preliminary tests are
made to check if the boundaries chosen by the segmentation
algorithm might be grossly incorrect. In particular, classifica-
tion tests on possibilities for any of the digits being 6, or
1, or 9 are made. Depending on the results of these tests
the boundary locations of the individual digits are adjusted
accordingly.

The final stage in the method is the digit recognition algo-
rithm. This algorithm is similar in philosophy, but greatly
different in details of implementation from the digit recog-
nition algorithm described in [1]. The differences are due
primarily to the coarticulation effects which are present with
connected digits, but which are absent for isolated digits. In
addition, there is a great deal less accuracy in the location of
the digit boundaries for connected digits than there was for
isolated digits. Thus a fairly large amount of processing is
often required to make the final digit recognition.

The digit recognition system of Fig. 1 has been tested
across a variety of speakers and transmission conditions.
Experimental results have yielded about a 91 percent correct
recognition score for ten subjects with recordings made in
a soundproof booth using a high-quality microphone. For
recordings made in a noisy computer room, an accuracy of

87 percent correct digit recognition was achieved across
another group of ten speakers. Informal experiments showed
the system to be capable of working on telephone line data
if some modifications were made in the detailed recognition
rules, and in the training data for the voiced—unvoiced—silence
decision algorithm.

The organization for this paper is as follows. In Section II
we discuss the method used to segment the connected digit
string into the individual digits. Included in the section is a
discussion of the various parameters which were used in the
voiced—unvoiced—silence analysis, and for segmentation. In
Section III the algorithm used to recognize the individual
digits is described. Also described in this section is the method
by which the digits are preliminarily classified to eliminate
gross boundary errors, and the method of adjusting the bound-
aries based on the classification results. In Section IV an ex-
perimental evaluation of the overall recognition algorithm is
described. Confusion matrices are included to show the types
and distribution of recognition errors across the digits, and
across different speakers. Finally, in Section V a general
discussion of the problems of connected digit recognition is
given.

II. CONNECTED DIGIT SEGMENTATION

In order to recognize the digits in the input string, it is
necessary to accurately segment the input into the individual
digits. Segmentation of speech is inherently an extremely
difficult problem. However, for connected digit strings this
problem is much more readily solved than for continuous
speech in general. This is because by restricting the speech
to be a string of digits known properties of the 10 possible
digits can be used to accurately locate the digit boundaries.
For example, it is easily shown that an interval of unvoiced
speech or silence within the digit string denotes the beginning
or end of a digit, i.e., there are no internal unvoiced or silence
regions within the 10 digits (0_9).2 Another observation about
the digits is that, with a couple of exceptions, the energy
contours of the digits have no internal local minima. Thus,
excluding the noted exceptions, local minima of the energy

2Digits 6 and 8 can have internal silence or unvoiced regions. Such
cases are treated directly using preliminary digit classification rules as
discussed in Section Ill-B.
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contour also are strong indications of digit boundaries within
the digit string.

A. Voiced-Unvoiced Analysis

Based on the observations given above about the digits, a
segmentation algorithm was studied which relied on an accu-
rate voiced—unvoiced—silence analysis of the digit string, and
the energy contour of the utterance. The voiced-unvoiced—
silence analysis was made using a pattern recognition approach
described by Atal and Rabiner [9]. The way in which this
algorithm works is as follows. Each 10 ms interval of the ut-
terance is classified as voiced speech, unvoiced speech, or
silence, based entirely on measurements made on the signal
during the prescribed interval. The classification of the in-
terval into one of the three possibilities (voiced—unvoiced—
silence) is based on a classical hypothesis-testing procedure
in which a non-Euclidean distance is computed from the
given set of measurements, for each of the hypotheses, and
the minimum distance determines which class is selected.
The classification algorithm had to be trained, a priori, to
obtain the necessary statistics of the measurements for each
of the three classifications.

The measurements which were used in the digit recognition
experiment were the zero crossing count (number of zero
crossings per 10 ms interval), the log energy of the interval,
the first autocorrelation coefficient, the first LPC coefficient
in a two-pole LPC analysis, and the LPC error of the two-pole
analysis. These measurements differ from the ones described
in [9] in that a two-pole LPC analysis was used rather than a
12-pole LPC analysis. The two-pole analysis was used because
it was required in the final digit recognition phase of the sys-
tem, and rather than perform two distinct LPC analyses, the
method was trained on the two-pole analysis data. Addi-
tionally, the two-pole LPC analysis reduced the computation
time considerably over an equivalent twelve-pole LPC analysis.

As mentioned above, the voiced—unvoiced classification
algorithm requires a priori training to obtain the statistics for
the measurements used in the analysis. Although the training
is speaker independent (as long as a reasonable sampling of
different speakers is used in the training set), the training is
not independent of the transmission medium. Since three
different transmission mediums were used in formal and
informal evaluations of the recognition system, three sets
of training data were used. The three conditions were the
following.

1) Recordings made in a double-walled, soundproof booth
using a high-quality microphone. This condition is called the
high-quality speech.

2) Recordings made in a noisy computer room using a high-
quality microphone. This condition is called the room-
quality speech.

3) Recordings made over a dialed up telephone line using a
telephone handset. These recordings went through the local
Bell Laboratories PBX. This condition is called the telephone-
quality speech.

Tables I—Ill show the training statistics for each of the five
measurements, for each of the three classes, and for each of
the three speech conditions. Table I is for high-quality speech;

Table II for room-quality speech; and Table III is for tele-
phone-quality speech. Each of these tables shows the mea-
sured means, standard deviations, and covariance matrices
for the five measurements, for each of the classes, i.e., silence
(L = 1), unvoiced speech (L = 2), and voiced speech (L = 3).
Several observations can be made about the behavior of the
measurements for these three conditions. It can be seen that
the distributions of the five measurements for the room- and
high-quality conditions are essentially the same for voiced
and unvoiced speech; however significant changes have oc-
curred in the distributions for silence. This result is what one
would anticipate since the transmission system (the micro-
phone) was the same in both cases; only the background
silence characteristics have varied. This result is most readily
seen in comparing the difference in means of the log energy
between voiced speech and silence for high- and room-quality
speech. For high-quality speech this difference is about
39.6 dB whereas for room-quality speech this difference is
about 33.4 dB. Also the silence correlation coefficient mean
is about 0.73 for high-quality speech, whereas it is about
0.91 for room-quality speech—a quite significant difference.

In comparing the distributions of the measurements for
telephone-quality speech (Table III) with high-quality speech
(Table I), many more differences are apparent. Although the
statistical distributions of the measurements for voiced speech
are quite similar, the strong band-limiting effects of a tele-
phone line and a telephone handset are quit& apparent for
unvoiced speech and silence. For example, the average num-
ber of zero crossings for unvoiced speech is 49.5 for high-
quality speech, whereas for telephone speech it is about 20.0.
Thus the effectiveness of the zero crossing measurement in
differentiating between voiced and unvoiced speech is greatly
reduced for telephone speech. The reason this measurement
is retained rather than replaced by a more effective measure-
ment is for uniformity in the use of the digit recognition sys-
tem. Since the same measurements are used for all three
recording 6onditions, the only change required in the recog-
nition system is the substitution of one training set of data
for another set.

For purposes of illustration, Figs. 2 and 3 show plots of the
distribution of two of the measurements for silence, unvoiced,
and voiced speech for the room-quality speech. Also included
in these plots are Gaussian curves that have the same mean and
standard deviation as the measured data. Fig. 2 shows plots of
the distributions of zero crossings; whereas Fig. 3 shows plots
of the distributions of the first LPC coefficient in the two-pole
LPC analysis. The differences in mean and standard deviations
of the measurements, for the different classes, are readily
obvious from these plots.

B. Digit Segmentation Rules
The digit segmentation algorithm is based on the results of

the voiced—unvoiced—silence analysis discussed in the previous
section, and also uses the energy measurements to aid in
locating the digit boundaries. Fig. 4 shows a flow diagram
of the digit segmentation algorithm. Based on ND, the num-
ber of digits in the input string (ND = 3 throughout this
paper), the algorithm searches for two external boundaries
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TABLE I
MEANS, STANDARD DEvIATIoNs, AND COVARIANCE MATRICES FOR

HIGH-QUALITY SPEECH

Log LPC
Zero Energy First Auto- First Log Error

Crossings (Decibels) correlation LPC (Decibels)

1) Silence

Mean 23.270 9.448 0.728 —0.955 6.672
Standard Deviation 7.672

1.000
3.424 0.120

—0.557 —0.900
0.205
0.669

3.403
—0.749

Covariance Matrix —0.557
—0.900
0.669

—0.749

1.000 0.5 29
0.529 1.000

—0.805 —0.671
0.946 0.741

—0.805
—0.671
1.000

—0.859

0.946
0.741

—0.859
1.000

2) Unvoiced

Mean 49.532 25.365 0.024 —0.046 11.436
Standard Deviation 8.89 1

1.000
5.747 0.260
0.068 —0.921

0.400
0.895

2.892
—0.092

Covariance Matrix 0.068
—0.921
0.895

—0.092

1.000 —0.032
—0.032 1.000
—0.007 —0.978

0.943 0.143

—0.007
—0.978

1.000
—0.200

0.943
0.143

—0.200
1.000

3) Voiced
Mean 12.589 49.679 0.880 —1.469 26.793
Standard Deviation 5.367

1.000
6.095 0.085
0.371 —0.821

0.289
0.450

4.241
—0.271

Covariance Matrix 0.37 1
—0.821
0.450

—0.27 1

1.000 —0.309
—0.309 1.000
—0.041 —0.711

0.525 0.447

—0.041
—0.711

1.000
—0.780

0.525
0.447

—0.780
1.000

MEANS, STANDARD
TABLE II

DEVIATIONS, AND COVARIANCE MATRICES FOR
ROOM-QUALITY SPEECH

Zero
Crossings

Log
Energy First Auto-

(Decibels) correlation
First
LPC

LPC
Log Error
(Decibels)

1) Silence

Mean 12.167 18.138 0.911 —1.388 13.061
Standard Deviation 3.739

1.000
3.928 0.053

—0.239 —0.591
0.180
0.524 •

2.372
—0.499

Covariance Matrix —0.239
—0.591
0.524

—0.499

1.000 0.124
0.124 1.000

—0.281 —0.802
0.863 0.5 15

—0.281
—0.802

1.000
—0.682

0.863
0.515

—0.682
1.000

2) Unvoiced .

Mean 49.860 30.568 0.007 —0.041 13.086
Standard Deviation

I

16.093
1.000

4.860 0.441
0.361 —0.971

0.482
0.948

2.161
0.331

Covaxiance Matrix 0.361
—0.971
0.948
0.331

1.000 —0.370
—0.370 1.000

0.366 —0.977
0.954 —0.341.

0.366
—0.977

1.000
0.319

0.954
—0.341
0.319
1.000

3) Voiced
Mean 12.858 51.522 0.878 —1.490 28.373
Standard Deviation 5.491

1.000
5.745 0.109
0.208 —0.778

0.379
0.635

4.715
—0.471

Covariance Matrix 0.208
—0.778

0.635
—0.471

1.000 —0.055
—0.055 1.000
—0.158 —0.838

0.487 0.627

—0.158
—0.838

1.000
—0.847

0.487
0.627

—0.847
1.000
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Fig. 2. Theoretical and measured probability density functions for the
zero crossing measurement for room-quality speech.

and (ND - 1) internal boundaries. The external boundaries
are generally the endpoints of the digit string as determined
in the endpoint analysis. However the speech interval used
for analysis is 100 ms longer both at the beginning and at the
end of the utterance to account for possible endpoint location
errors which can be corrected by the more sophisticated
voiced-unvoiced-silence analysis. Thus the external bound-
aries are almost always located within 100 ms of the begin-
ning and end of the analysis interval—as depicted in Fig. 1.

Fig. 3. Theoretical and measured probability density functions for the
first LPC coefficient in a two-pole analysis for roomquality speech.

The internal boundaries are located using the procedure
outlined in Fig. 4. First, all strong local minima of the energy
contour of the utterance which occur in voiced regions are
located and tagged. These minima are only possible candidates
because the energy of the utterance can exhibit a strong dip
both because of a word boundary, and because of a voiced
fricative, e.g., /v/ in seven.

The next step in the algorithm is to locate one boundary in
each nonvoiced region within the utterance, e.g., one digit

TABLE III
MEANS, STANDARD DEVIATIONS, AND COVARIANCE MATRICES FOR

TELEPHONE-QUALITY SPEECH

Zero
Crossings

Log
Energy

(Decibels)
First Auto-
correlation

First
LPC

LPC
Log Error
(Decibels)

1) Silence

Mean
Standard Deviation

Covariance Matrix

13.804
4.554
1.000

—0.242
—-0.771
0.499

—0.437

14.711
4.99 1

—0.242
1.000
0.158

—0.665
0.939

0.891
0.068

—0.771
0.158
1.000

—0.597
0.417

—1.374
0.189
0.499

—0.665
—0.597

1.000
—0.830

11.495
3.463

—0.437
0.939
0.417

—0.830
1.000

2) Unvoiced

Mean
Standard Deviation

Covariance Matrix

19.987
5.707
1.000
0.095

—0.857
0.746

—0.159

29.819
8.224
0.095
1.000

—0.054
—0.236
0.942

0.788
0.096

—0.857
—0.054

1.000
—0.883
0.231

—1.305
0.173
0.746

—0.236
—0.883

1.000
—0.531

16.332
3.702

—0.159
0.942
0.231

—0.531
1.000

3) Voiced

Mean
Standard Deviation

Covariance Matrix

12.858
5.213
1.000
0.361

—0.886
0.676

—0.256

51.319
6.17 1
0.361
1.000

—0.316
0.094
0.598

0.896
0.069

—0.886
—0.3 16

1.000
—0.837
0.372

—1.651
0.173
0.676
0.094

—0.837
1.000

—0.670

29.289
3.726

—0.256
0.598
0.372

—0.670
1.000

ZERO CROSSINGS-ROOM QUALITY SPEECH

40
NUMBER OF ZERO CROSSINGS PER lOnlsec INTERVAL

0

01
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To illustrate the operation of the segmentation rules, Figs.
5—9 show several examples of digit strings which were seg-
mented using the rules discussed above. In each of these
figures parts (a), (b), (c), and (d) show plots of the zero
crossing contour, the log energy contour, a statistical mea-
sure of the certainty of the voiced—unvoiced—silence analysis,
and the voiced-unvoiced—silence contour of the utterance,
respectively. The statistical parameter shown in (c) is a
measure of the probability that the decision made by the
voiced—unvoiced—silence analysis is correct, and it varies from
0 to 1.0. The voiced-unvoiced-silence contour of (d) is a
3-level contour where level 1 is silence, level 2 is unvoiced
speech, and level 3 is voiced speech.

Fig. 5 shows the segmentation boundaries for the digit
string /721/. The initial boundary was placed at the begin-
ning of the first unvoiced region, i.e., the Is! is seven. The
second boundary was placed at the initial interval of the
second unvoiced region—corresponding to the /t/ in two. The
third boundary was placed in the region of a local minimum
of the log energy contour within the second voiced region.
The exact boundary location is not at the absolute minimum
of the log energy, but instead occurs somewhere within the
region of the minimum. The exact location is determined by
a series of complex decisions which will not be discussed.
Although the correct location of the third boundary is not
readily determined, it has been found that precise location of
the boundaries within voiced regions is not required for
reliable digit recognition. The final digit boundary is located
at the beginning of the last silence region.

It should be pointed out that another possible candidate
for a boundary location in Fig. 5 is at the strong local mini-
mum in the log energy contour. at the /v/ in seven. However,
the segmentation rules were able to eliminate this case quite
readily and instead choose the minimum in the second voiced
region.

Fig. 6 shows a somewhat more complicated digit string—the
string /191/. This input is all voiced—thus there are no con-
venient boundaries in unvoiced regions. In addition the
local minima in the log energy plot are not very strong ones
(e.g., the energy dips are not large ones), and the widths of
these minima are quite large. Thus the choice of boundary
locations was made at the next to last step in the segmenta-
tion algorithm. Listening tests showed that the location of
these boundaries within the all-voiced regions was not critical
due to the high degree of coarticulation in the speaking of
such all-voiced digit strings.

Fig. 7 shows results for the segmentation of the digit string
/650/. For this case there were three unvoiced regions and
one boundary occurred at the beginning of each region. How-
ever the second boundary should actually be within the
unvoiced region—not at the beginning of it. The dashed line
in the figure shows where the boundary was moved by the
preliminary classification algorithm which classified the
initial digit as a six, and classified the following digit as one
which might begin with an unvoiced region.

Finally, Figs. 8 and 9 show the three-digit sequence with
which the segmentation rules had the most difficulty. It
was the digit string /387/. Fig. 8 shows the segmentation

FINAL CHEC1
ON BOUNDARIES

DONE

Fig. 4. Flow diagram for the digit segmentation algorithm.

boundary must occur with a silence, or unvoiced interval. The
boundary locations are placed at the first nonvoiced interval
within the region. The only exceptions to this rule (i.e., that
the digit boundary occurs at the beginning of the nonvoiced
region) are six, which ends in an unvoiced region, and eight,
which ends in an interval of silence, and is sometimes fol-
lowed by a stop burst at the release of the /t/. Methods of
correcting the boundary locations for these cases are de-
scribed in Section III where preliminary classification rules
are used to adjust the boundaries within nonvoiced regions.

The first two steps in the flowchart of Fig. 4 showed ways
of choosing candidates for the digit boundaries. The next
step is to eliminate one boundary whenever two boundary
candidates are too closely spaced (i.e., less than 150 ms
apart). Appropriate logic decides which boundary candidate
to eliminate in such cases.

The next step in the segmentation strategy is to compare
the number of boundary candidates to the required number
of internal boundaries. If there are too few choices, weaker
minima of the energy contour are located and added as bound-
ary candidates. If there are too many boundary candidates,
checks are made for digits like seven, etc., for which spurious
boundary candidates often occur and such boundary candi-
dates are eliminated,

When the correct number of boundary candidates has been
obtained, a final check is made on the boundaries for internal
consistency, e.g., checks are made to insure each digit con-
sists of only a single voiced region, etc.
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U)

U)0
U)0

Fig. 8. Improper segmentation of the utterance /387/.
when the digit string was spoken fast, and Fig. 9 shows the
segmentation when the digit string was spoken slowly and
with emphasis on the /38/ rather than on the /7/.

The difference in emphasis is reflected in the relative dura-
tions of the frication in the initial /3/, and in the duration of
the voiced regions of the /38/. The segmentation rules were
not correct in placing a boundary at the /v/ in seven for the
data of Fig. 8, whereas there was little difficulty segmenting
the data of Fig. 9. It is also seen that the log energy during
the voiced region of the /38/ of both Fig. 8 and Fig. 9 show
no strong (or even weak) minima, indicating the presence of a

boundary. However, for the data of Fig. 9, the relative dura-
tions strongly implied the presence of a boundary in the initial
voiced region; even though no good location for the boundary
could be found. For the data of Fig. 8, the relative durations
implied the presence of a boundary in the second voiced re-
gion; hence the segmentation error.

An evaluation of the segmentation accuracy was made using
200 sequences of three digits recorded by ten different
speakers in the computer room. Out of the 600 digits, only
four were improperly segmented. An improper segmentation

/ 72) /AER

(a)

J

U)
(7z
U)

0
ID

0
U)

NJ

7-
(7
U)

z(ii
(00-J

/650/AER

/fr Ib)

I

(C)

)

i ) )d)

0 0.5 1.0 1,5

TIME (sec)

Fig. 5. Typical measurement contours and the resulting boundary lo-
cations for the utterance /721/.

/191 /LRR

(a)

TIME (sec)

Fig. 7. Typical measurement contours and the resulting boundary lo-
cations for the utterance /650/.

/387/LRR
(7z
(/)
U)0
U)
C-)

U)

N

U)

7-
(7

- U)
Diz
Di
C,0-J

7-
F—

-J
U)

U)0
U)0

V
U
S

(a)

J

. .__.i________i________i_____.l__i

;Lt
)c)

I I I

C))
C,
U)

U)0
U)0
0
U)
Lii
NJ

U)
-c
7-
CD
U)
Ciz
Ui
C,0-J

C—
F—

-J
U)
(0
U)0
U)
U-

V
11

S

)b)

CI :1
0 05 0

TIME )sec(

Id)

1.5 2.0

N
)c)

--)—--)—-,

Fig. 6. Typical measurement contours and the resulting boundary lo-
cations for the utterance /191/.

0 05

)d)

1,0

TIME )sec)

.5



RABINER AND SAMBUR: RECOGNITION OF CONNECTED DIGITS 177

was defined as one in which a distinctly audible part of the
preceding digit was included within the boundaries of the
current digit being segmented. All of the errors occurred in
cases similar to the one illustrated in Figs. 8 and 9. Thus a
segmentation accuracy of about 99 percent was obtained on
these three-digit strings.

III. DIGIT RECOGNITION ALGORITHM

The next stage in the. implementation of the recognition
system is the identification of the digits within the boundaries
determined by the segmentation algorithm. The digit recog-
nition strategy that was used is similar to the one discussed by
Sambur and Rabiner [1] for recognizing isolated digits but
with several important modifications. The modifications are
necessary to account for certain limitations in the segmenta-
tion algorithm. These limitations include:

1) impreciseness of the exact digit boundaries,
2) ambiguities in the assignment of boundaries for digits

ending in unvoiced sounds, and
3) incorrect unvoiced—voiced decisions. -.

In addition, the effects of coarticulation must be incorporated
in the recognition of connected digits. Before discussing the
new aspects of the digit recognition algorithm, we shall briefly
review the structure of the isolated digit scheme since this
forths the framework of the present system.

A. Philosophy of Recognition
In the system for recognizing isolated digits, the approach

was to describe the digits in terms of the six broad speech
categories listed in Table IV. A set of robust measurements
were then used to classify the sounds into the above catego-
ries. By robust measurements, we mean acoustic parameters
that give a general indication of the gross nature of each
phoneme without being overly dependent on the individual

Digit Sequence of Sound Classes

0 VNLC-FV—VLC--BV
1 VLC-MV-*VLC
2 UVNLC-FV-*BV
3 UVNLC-VLC-*FV
4 UVNLC-BV-*MV
5 UVNLC-MV-*FV-+VNLC
6 UVNLC-FV-UVNLC
7 UVNLC-FV--VNLC—FV-VLC
8 FV-*UVNLC
9 VLC-MV--FV-÷VLC

aAfter Martin [3]

speaker's voice characteristics. The robust measurements
selected were:

1) Zero-crossing rate (ZCR), which is defined as the number
of zero crossings in a fixed-frame length (on the order of
lOms).

2) Energy, which is defined as the sum of the squared values
of the speech waveform in a given frame.

3) Normalized error obtained from a two-pole LPC analysis
of a given speech frame.

4) Pole frequency (or frequencies) obtained from a two-pole
LPC analysis of a given speech frame.

To enable the system to perform without having to be
trained every time a different speaker wishes to use the sys-
tem, the technique of self-normalization was introduced.
Self-normalization implies that the system does not use
fixed threshold levels in the decision process, but instead
calculates the appropriate decision thresholds from the speech
input itself. Thus, for example, in the case of setting thresh-
olds on ZCR to determine whether a sound is noise-like or
nasal, a statistical description of the ZCR was made for each
isolated digit. The statistical description consisted of mea-
suring the mean of the ZCR and its standard deviation over
the region of strong energy (i.e., the region where the energy
exceeded 10 percent of the maximum energy of the utter-
ance). Based on ZCR measurements, one criterion for classi-
fying a segment as noise-like was if its ZCR exceeded a level
one standard deviation above the mean during the segment.
Fig. 10 shows the ZCR measurements for the word "seven."
Indicated in this figure are the average ZCR and a range of
one standard deviation around this average. During the
initial Is!, the ZCR is significantly above the threshold, as
anticipated.

The technique of "self-normalization" also implies that the
decision process should avoid the use of absolute decisions
and instead classify sounds according to the transitional nature
of the various measurements. It was shown that for speech
sounds, the relative magnitude of the normalized error gen-
erally increases from sonorants to vowels and then to frica-

/387/LRR TABLE IV a
SOUND CLASSES CHARACTERISTIC OF THE DIGITS

VNLC
UVNLC

VLC
FV
MV
BY

Voiced, noise-like consonant.
Unvoiced, noise-like conSonant.
Vowel-like consonant.
Front vowel.
Middle vowel.
Back vowel.

TIME (see)

Fig. 9. Proper segmentation of the utterance /387/.
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tives. Within the three vowel types, the back vowels have
the lowest relative normalized error and the front vowels have
the highest. By observing the relative changes in the pole fre-
quency and normalized error, important information about
the structure of the voiced region of the word can be obtained.
As an example, Fig. 11 shows the normalized error and pole
frequency throughout the word "two." After the frication
region, which is marked by high normalized error and low
energy, the normalized error uniformly decreases. Thus the
constituent structure of the voiced section is changing from
a front vowel to a back vowel.

The final classification of the isolated digits was achieved
by a "hypothesize—verification" scheme. In this method,
the identity of the digit is first proposed and then the acoustic
parameters are checked to see if they are consistent with this
hypothesis. The sequence of consistency check was designed
to verify the most obvious characteristic and then to proceed
to the more difficult decisions. The essential strategy of the
connected digit recognition is the same as the isolated scheme,
but as noted above certain modifications •were necessary.
These modifications are described in the following subsections.

B. Preliminary Decisions

In Section lI-B it was noted that the segmentation algorithm
assigns a boundary location at the first nonvoiced interval
within an unvoiced region. This rule is clearly not adequate
for both the digit 6, which ends in an unvoiced region, and
for cases when the final /t/ in 8 is released.

To partially overcome the limitation of this rule, a pre-
liminary decision scheme was incorporated in the recognition
system. One function of the preliminary digit classifier was to
check for occurrences of the digit 6. The decision process
first selects possible candidates for the digit 6. A "6 candidate"
is defined as a digit with a voiced interval of less than 210 ms
in duration that is surrounded by nonvoiced intervals and does
not contain an internal boundary. Whenever a digit is pre-
liminarily identified as a 6 using the above tests, it is auto-
matically checked for the existence of a stop gap following
the voiced interval. The determination of the presence of a
stop gap is made by making measurements of the energy and
zero crossings during the following unvoiced interval. A sig-

Fig. 11. Complete set of measurements for the digit 2.

60 0
N

L
2cr ZCR

I-

nificant local minimum in the energy and zero crossing con-
tours at the initial portion of the unvoiced interval is a strong
indication of a stop gap. If the decision is that a stop gap
exists, the voiced region is checked for front vowel like charac-
teristics [1] and a positive indication confirms the digit as 6.

Assuming that a digit is classified as 6, there is still some
ambiguity in locating the proper initial boundary for the fol-
lowing digit (of course if 6 is the final word, no problem
exists). If the digit 6 is followed by 1, 9, or 8, then the
boundary location should be placed at the first voiced interval
following the 6; otherwise the location is within the preceding
unvoiced interval. To resolve this ambiguity, a preliminary
decision box has been incorporated to detect the digits 1 or 9.

Basically the 1, 9 decision involves checking the voiced in-
terval following the digit classified as 6 to determine the
existence of nasal like segments. A self-normalized ZCR
threshold procedure was used as one indication of a nasal-like
sound. The statistics of the ZCR were calculated in the
voiced interval under investigation over those segments in
which the energy exceeded 10 percent of the maximum energy
in the interval and for which the two-pole frequency exceeded
375 Hz. The first criterion for a nasal-like sound to meet is
that the ZCR rate should fall below a level one standard
deviation below the average ZCR for three consecutive in-
tervals. In addition, the nasal-like segment should exhibit a
"relatively" low normalized error and the two-pole frequency
should exhibit abrupt changes at the nasal-like boundaries.
Fig. 12 shows the measured parameters for a typical pronoun-
ciation of the word "nine." The nasal segments of the word
are clearly consistent with the characteristics verified by the
decision rule.

To arrive at the final decision for the existence of the digits
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Fig. 10. Energy and ZCR for the digit 7.
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Fig. 12. Complete set of measurements for the digit 9.

1 or 9, the initial and final regions of the voiced interval must
exhibit nasal-like characteristics. To avoid any possible con-
fusion with the digit 7, an additional check is made any sig-
nificant dips in the energy contour. These dips are strongly
characteristic of the sound /v/ in 7. If the voiced interval con-
tains a boundary location, this boundary location is allowed
to float or wobble to account for a certain impreciseness in
assigning internal boundaries in voiced regions. The wobbling
of the boundaries is restricted to a range of ±30 ms and each
possible boundary is checked for adjacent nasal like segments.

The preliminary recognition scheme does nOt check for the
existence of the digit 8, but it is implicitly recognized in the
final decision algorithm that the digit 8 is possible after the
detection of the digit 6. In addition, if the digit 8 is recog-
nized in the final decision algorithm and an unvoiced interval
follows the recognized digit, it is implicitly assumed that the
unvoiced interval is due to the release of the /t! and a 1 or 9
check is undertaken. We now discuss the final digit recogni-
tion algorithm.

C. Digit Recognition
Fig. 13 illustrates the decision process used in the digit

recognition algorithm. As can be noted from this figure, the
results of the unvoiced—voiced analysis are not assumed to
be error free. Thus if the initial segment of the bounded in-
terval is classified as voiced, the decision is not automatically
restricted to the digits 1, 9, and 8. Instead these •digits are
postulated as the most likely candidates and the acoustic
parameters are then checked to verify these possibilities.
The likelihood that the digit is either 1, 9, or 8 is quantified
in terms of the probability (as measured in the voiced-unvoiced
analysis) that the initial section of the word is voiced and the
position of the word in the digit string. If the word is the
first digit then there is a good chance that the weak fricatives
/f/ and /th/ may not be classified as unvoiced.

Fig. 13. Decision tree for the digit recognition algorithm.

The decision boxes shown in Fig. 13 are, for the most part,
similar to the corresponding boxes used in the isolated digit
recognition algorithm [11. However, to account for the
effects of coarticulation, the use of transitional changes in
the second fonnant contour has been incorporated as a mea-
surement feature. Used in parallel with the measured transi-
tional changes in two-pole frequency and normalized error, an
accurate decision can be obtained. The transitional nature of
the second formant was derived by measuring F2 at 3 loca-
tions in the segmented digit. The locations used in the mea-
surement are the first point at which the probability of voicing
exceeds 80 percent for three consecutive intervals, the point
of maximum energy, and the first point after the maximum at
which the energy dips below 15 percent of the maximum
value. The formants were measured over a 20 ms interval by
computing a linear prediction spectrum [101 . A peak-picking
algorithm determined the second formant frequency. Fig. 14
illustrates the three LPC spectrums obtained for the digit 2.
For this digit a fairly large drop in the second formant can be
seen in comparing Fig. 14(a) and (c). Also, the third formant
falls somewhat during the voiced region.

Since the complete details of the recognition algorithm are
quite involved, we will only discuss the most prominent
aspects of the decision rules for each box in Fig. 13. After a
digit has been classified as beginning with a frication region,
the energy contour is checked to determine if the energy
dipped below 15 percent of the maximum value and then
rose to a value at least 18 percent of the maximum. This
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Fig. 14. Application of formants in the final recognition decision.

dip is an almost unfailing characteristic of the /v/ in the
digit 7. Should such a dip occur, the ZCR of the digit is
checked to see if it falls below the average during the end
portion of the digit (after the second local maxima). If this
condition is fulfilled, the digit is classified as 7.

If there is no strong dip in energy, the variations in the
normalized error, the second formant and the two-pole fre-
quency are calculated during the voicing region. A decrease
in any two of these three measurements establishes the voiced
region as having a front vowel to back vowel indication. The
digits 0 and 2 are then the only candidates for recognition.
The digit 0 differs from the digit 2 in the character of the
energy contour and two-pole frequency. The digit 0 usually
has a small but significant dip in energy during the consonant
Ir/ and a corresponding dip in two-pole frequency.

If the transitions in the parameters mentioned above are
increasing rather than decreasing, the candidates for recogni-
tion are 3, 4, and 5. The digit 3 is characterized by it rela-
tively high value of F2 in the last measured formant location
(F2 > 1700 Hz). In addition, the two-pole frequency of the
digit 3 is frequently zero at some point in the interval after
the maximum energy, but before the energy dips below 20
percent of the maximum. This zero in the location of the
two-pole frequency is attributed to the high second formant
of the vowel ui in 3 [1] , and is almost never observed for
the other possible candidates (e.g., 4 and 5). The digit 5 can
be separated from the digit 4 by its higher F2 value in the end
region and its higher values of two-pole frequency and nor-
malized error. In addition, the two-pole frequency contour
of the digit 4 is more uniformly increasing than the contour
of 5.

When the candidates for recognition are 1, 9, and 8, the
first decision made is whether the digit is 1 or 9. This de-
cision has been discussed in the previous subsection. The
digit 9 is separated from the digit 1 by the impulsive nature of
the two-pole frequency and normalized error after the initial
nasal-like section. The digit is identified as 9 if a total jump in
two-pole frequency exceeding 200 Hz is obtained within
20 ms of the initial nasal-like section and the two-pole fre-
quency in the interval also exceeds 600 Hz. The identification

of the digit 8 is heavily dependent on formant measurements.
The criterion employed for recognition of the digit 8 is that
F2 must exceed 1650 Hz in the three measured intervals.
Based upon the Peterson and Barney [11] data, this criterion
should be easily realized for this particular vowel. Since the
digit 8 frequently begins with an unvoiced sound (8 is often
pronounced with an initial /h/), the condition F2 > 2000 Hz
for all three intervals is applied for the recognition of 8 when
the digit begins with an unvoiced sound. To aid in the recog-
nition of 8, a burst detection algorithm, based on energy con-
siderations, is also used.

It can be seen from the above discussion that the individual
recognition rules are not simply written down. The sequential
nature of the recognition algorithm implies vastly different
recognition criteria for the digits depending on the results of
earlier tests along the decision tree. The purpose of the above
discussion was to provide a rough idea of the major features
used to recognize the digits, without getting too involved with
the individual tests which are made in the parallel decision
mode.

IV. EXPERIMENTAL EVALUATION

The entire digit recognition scheme of Fig. 1 was experi-
mentally evaluated in two separate experiments. In one
experiment ten speakers recorded a sequence of 100 7-digit
telephone numbers read from a randomly generated list of
telephone numbers. These recordings were included in the
high-quality speech condition discussed in Section 11-A. From
these data 20 telephone numbers were chosen at random as
test data for each of the speakers. (The processing time per
utterance was several minutes. This limitation precluded
using a much larger data base for evaluating the system.) The
results of this experiment are described in Section IV-A.

The second experiment consisted of an evaluation of the
system using room-quality recordings. For this experiment
ten speakers (four of them were not in the first experiment)
recorded ten randomly selected groups of three digits each.
(Again the size of the data base was severely limited by the
processing time per utterance.) The results of this experi-
ment are discussed in Section IV-B.

Finally, an informal evaluation of the system was made
using telephone-quality speech Section IV-C provides a dis-
cussion of the additional problems created using telephone-
quality speech.

A. Experiment]
The results of the first experiment are shown in Tables V

and VI. Table V gives the error scores for each of the ten
speakers (five female, five male). The range of the individual
results is from 81.7 percent correct digit recognition, to 93.3
percent. The accumulated recognition scores for female and
male speakers were 91.3 percent and 90.7 percent correct
digit recognition, respectively. Thus the overall recognition
accuracy for the ten speakers was 91 percent.

Table VI shows an analysis of where the digit errors oc-
curred. This table shows the overall confusion matrix for the
experiment. The entries which are circled are the cases which

DIGIT TWO
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TABLE V
ERROR SCORES FOR EXPERIMENT 1

Women Correct Errors Percent Correcl

SAW 56 4 93.3
CAM 53 7 88.3

SP 55 5 91.7
lCD 56 4 93.3

BJM 54 6 90.0
Total 274 26 91.3

Men Correct Errors Percent Correct

JLH 56 4 93.3
RWS 55 5 91.7
MRS 56 4 93.3
AER 49 ii 81.7
LRR 56 4 93.3
Total 272 28 90.7

Overall 546 54 91.0

TABLE VI
CONFUSION MATRIX FOR EXPERIMENT

Expert incnt 1

Digit Recognized

0 1 2 3 4 5 6 7 8 9
Number
ofTries

Number
ofErrors
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had the highest number of confusions. It is seen from Table
VI that the following confusions occurred most frequently.

1) The digit 8 was recognized as the digit 3 eleven times out
of72 tries.

2) The digit I was recognized as the digit 9 seven times out
of 39 tries.

3) The digit 2 was recognized as the digit 0 five times out of
66 tries.

4) The digit 9 was recognized as either 0, 1, 2, 3, 5, or 8
twelve times out of 54 tries.

These results show that the greatest number of recognition
errors occurred when the digits 8, 9, 1, and 2 were spoken.
This result is anticipated by the discussion in Sections II and
III since these digits (especially in combinations) were the
most difficult to segment reliably. The uncertainty as to the
exact digit boundary led to higher reliance on the decisions
within the digit for accurate recognition results, thereby
leading to the results shown in Table VI.

Another source of error in this experiment was due to a
low-level type of breath noise that several speakers used
preceding initial eights. Because of the high-quality recording
method, the analysis classified this initial breath noise as a

tort interval of unvoiced speech preceding the digit string.
When the digit string began with an initial 8 (as occurred a
large number of times) the combination of breath noise and
eight caused the incorrect recognition of the eight as a three.
This accounted for more than 20 percent of the errors in this
experiment, as seen in Table VI.

B. Experiment 2
The results of the second experiment in which room-quality

recordings were used are shown in Tables VII and VIII. Table
VII gives the error scores for each of the ten speakers (five
female, five male) in this experiment. The individual recogni-
tion accuracy varied from 73.3 percent to 96.7 percent in this
experiment. The overall recognition accuracy was 86.7 per-
cent across the ten speakers. For the female speakers the
accuracy was 85 percent, whereas for the male speakers it was
88.4 percent.

Table VIII shows the confusion matrix for this experiment.
Although the amount of data is quite small, the following con-
fusions seem to occur most frequently.

1) The digit 1 was recognized as the digit 9 five times in 34
tries.

2) The digit I was recognied as the digit 4 four times in
34 tries.

3) The digit 2 was recognized as the digit 3 four times in
25 tries.

4) The digit 9 was recognized as either 0, 1,3,4, or S eight
times in 33 tries.

The confusions occurring with the digits 1 and 9 were
similar in nature to those which occurred in Experiment 1.
The eight confusions for initial 8's were essentially eliminated
in this experiment since the background noise level was
sufficiently high to classify any breath noise as silence. Thus
initial 8's were correctly recognized in most cases.

Although the room noise had some beneficial masking
effects (e.g., the 8—3 confusion mentioned above), it can
be seen that the higher noise level lowered the recognition
accuracy by about 4 percent.

C. Telephone Recognition of Digits
An informal test of the recognition system was made using

3-digit sequences recorded over switched telephone lines.
The purpose of the experiment was to see how much the
band-limiting effects of the telephone line degraded the sys-
tem performance using the same system as was used for
high-quality and room-quality conditions.

For this informal experiment the voiced-unvoiced analysis
used the training data of Table III. Two speakers (JLH and
SAW) were used in this test. In spite of the fact that the five
analysis parameters were not equally effective (and in some
cases not at all effective) in separating silence from unvoiced
speech from voiced speech, the analysis gave accurate results
for 19 of 20 digit strings. For these 19 digit strings the seg-
mentation program accurately (to within the stated limita-
tions) segmented all 19 strings. The recognition accuracy,
however, fell to about 64 percent for these 19 strings. An
analysis of the types of errors showed that the effects of the
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TABLE VII
ERROR SCORES FOR EXPERIMENT 2

Women Correct Errors Percent Correct

CES 22 8 73.3
CAM 27 3 90.0

IE 27 3 90.0
SAW 27 3 90.0

GH 22 5 81.5
Total 125 22 85.0

Men Correct Errors Percent Correct

REC 21 6 77.8
LRR 28 2 93.3
MRS 27 3 90.0
AER 29 1 96.7
JLH 25 5 83.3
Total 130 17 88.4

Overall 255 39 86.7

TABLE VIII
CONFUSION MATRIX FOR EXPERIMENT 2

Experiment 2

Number Number
0 1 2 3 4 5 6 7 8 9 of Tries of Errors
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band-limiting were particularly severe in the recognition
stages which relied heavily on zero crossings and the two-pole
analysis to classify the digits.

Although the general structure of the recognition stage
could still be used on the telephone speech, the individual
tests and decisions had to be greatly modified to account for
the loss of information in the recognition parameters. Work
on this aspect of the system is still in progress.

V. SUMMARY AND CONCLUSIONS

A system has been described for recognizing connected
digits. The system is speaker independent and therefore can
be used on speakers who have had no prior training in the
use of the system. An evaluation of the recognition accuracy
using strings of three connected digits showed scores of 91
percent correct recognition for high-quality speech, and
87 percent correct recognition for room-quality speech.

These recognition accuracies can be compared against

similar scores obtained in other digit recognition schemes.
Using isolated digits in a speaker independent scheme, Sambur
and Rabiner [1] obtained digit recognition accuracies of 97
percent and 94 percent for high-quality and room-quality
speech, respectively. The 6 percent degradation in the recog-
nition accuracy scores is due primarily to the coarticulation
effects which are present in connected digit strings which both
makes it difficult to accurately locate the digit boundary, and
makes the digit cues in the region of the digit boundaries
somewhat unreliable for accurate recognition.

Another comparison which can be made is with the results
reported by Martin [3] . Using 10 500 digits, Martin reported
recognition accuracies of from 86.8 percent to 92.4 percent
on strings of three digits. Although Martin used an order of
magnitude more data than in the present study and, therefore,
his recognition accuracies are statistically more reliable than
those reported on here the results appear to be quite com-
parable. Additionally, the types of errors made in both
studies are of a similar nature.

In summary, the digit recognition system discussed in this
paper shows considerable promise for applications where rec-
ognition of connected digits is required. More sophistication
in the digit recognition rules should help to raise the recogni-
tion accuracy. Additional flexibility is required to apply the
system to telephone-quality speech due to the degradations
caused by the band-limiting nature of the telephone line.
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