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A Pattern Recognition Approach to
Voiced—Unvoiced—Silence Classification with

Applications to Speech Recognition
BISHNU S. ATAL, MEMBER, IEEE, AND LAWRENCE R. RABINER, FELLOW, IEEE

Absb-act—In speech analysis, the voiced-unvoiced decision is usually
performed in conjunction with pitch analysis. The linking of voiced-
unvoiced (V-UV) decision to pitch analysis not only results in unneces-
sary complexity, but makes it difficult to classify short speech segments
which are less than a few pitch periods in duration. In this paper, we
describe a pattern recognition approach for deciding whether a given
segment of a speech signal should be classified as voiced speech, un-
voiced speech, or silence, based on measurements made on the signal.
In this method, five different measurements axe made on the speech
segment to be classified. The measured parameters are the zero-crossing
rate, the speech energy, the correlation between adjacent speech
samples, the first predictor coefficient from a 12-pole linear predictive
coding (LPC) analysis, and the energy in the prediction error. The
speech segment is assigned to a particular class based on a minimum-
distance rule obtained under the assumption that the measured param-
eters are distributed according to the multidimensional Gaussian prob-
ability density function. The means and covariances for the Gaussian
distribution are determined from manually classified speech data in-
cluded in a training set. The method has been found to provide reliable
classification with speech segments as short as 10 ms and has been used
for both speech analysis-synthesis and recognition applications. A
simple nonlinear smoothing algorithm is described to provide a smooth
3-level contour of an utterance for use in speech recognition applica-
tions. Quantitative results and several examples illustrating the per-
formance of the methOd are included in the paper.

I. INTRODUCTION

THE NEED for deciding whether a given segment of a
speech waveform should be classified as voiced speech,
unvoiced speech, or silence (absence of speech) arises in

many speech analysis systems. A variety of approaches have
been described in the speech literature for making this deci-
sion [1] -[6] - Methods for voiced-unvoiced (V—UV) decision

usually work in conjunction with pitch analysis. For example,
in the well-known cepstral pitch detector [2], the V—UV deci-
sion is made on the basis of the amplitude of the largest peak
in the cepstrum. There are two disadvantages in this approach
to V—UV decision. First, the decision is based on a single
feature—the degree of voice periodicity. Voiced speech is
only approximately periodic; sudden changes in articulation
and the idiosyncracies of vocal cord vibrations can produce
speech waveforms which are not periodic. In such cases, a
feature such as the amplitude of the largest cepstral peak will
fail to distinguish voiced speech from unvoiced. In practice,
additional features, such as the rate of zero crossings of the
speech waveform, the ratio of low to high-frequency energy,
etc. must be included in the decision procedure. Second,
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the V—UV decision is tied to the pitch detection which may be
acceptable for speech synthesis applications. But, for other
applications, such as speech segmentation or speech recogni-
tion, the linking of V—UV decision to pitch detection can
result in unnecessary complexity as well as in poorer perfor-
mance, particularly at the boundaries between voiced and un-
voiced speech. For pitch detection, a large speech segment,
30-40 ms long, is necessary, which can result in unwarranted
mixing of voiced and unvoiced speech. By separating the
V—UV decision from pitch detection, it is possible to perform
the V—UV decision on a much shorter speech segment, thereby
enabling one to track fast changes in speech from one class to
another.

In this paper, we describe a method which uses a pattern
recognition approach for classifying a given speech segment
into three classes: voiced speech, unvoiced speech, and silence.
The pattern recognition approach provides an effective
method of combining the contributions of a number of speech
measurements—which individually may not be sufficient to
discriminate between the classes—into a single measure capable
of providing reliable separation between the three classes. The
method presented here is essentially a classical hypothesis.
testing procedure based on the statistical decision theory. In
this method, for each of the three classes, a non-Euclidean dis-
tance measure is computed from a set of measurements made
on the speech segment to be classified and the segment is as-
signed to the class with the minimum distance. The distance
function is chosen so as to provide minimum classification
error for normally distributed measurements. The normal
distribution has important advantages due to its computa-
tional simplicity. The decision rule in this case is completely
determined by the mean vector and the covariance matrix of
the probability density function for each class. Results based
on the computed one-dimensional distributions of the chosen
measurements suggest that the assumption of normal distribu-
tion is a reasonable one.

The success of a hypothesis-testing procedure depends, to
a considerable extent, upon the measurements or features
which are used in the decision criterion. The basic problem
is of selecting features which are simple to derive from speech
and, yet, are highly effective in differentiating between the
three classes: voiced speech, unvoiced speech, and silence. The
following five measurements have been used in the implemen-
tation described in this paper.

1) Energy of the signal.
2) Zero-crossing rate of the signal.
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1) Zero-crossing count, N, the nulnber of zero crossings in
the block.

2) Log energy Es—defined as

E=10*log10 (e+ s2n) (2)

where e is a small positive constant added to prevent the com-
puting of log of zero. Obviously, e << mean-squared value of
the speech samples. In our implementation, speech samples
ranged between ±2048, and e was set to 10.

3) Normalized autocorrelation coefficient at unit sample
delay, C, which is defined as

Cl = (3)

4) First predictor coefficient, a1, of a p-pole (p = 12 typi-
cally) linear predictive coding (LPC) analysis using the covari-
ance method.

5) Normalized prediction error, E, expressed in decibels,
which is defined as

3) Autocorrelation coefficient at unit sample delay.
4) First predictor coefficient.
5) Energy of the prediction error.

The choice of these particular parameters is based partly on
the experimental evidence that the parameters vary consis-
tently from one class to another and partly on our knowledge
of the method in which voiced and unvoiced speech sounds are
generated in the human vocal tract. We will discuss these
reasons in greater detail later in this paper when we describe
the nature of the dependence of these parameters on different
classes of sounds. Of course, the above set of measurements
is not the only possibility and, quite likely, a better choice
could be realized by careful evaluation of different parameter
sets. The above set of parameters does, however, represent
a good compromise between the complexity of their measure-
ment procedures and their ability to discriminate between the
three classes reliably across a wide variety of speakers.

The organization of the remainder of this paper is as follows.
In Section II, we describe the basic algorithm for making the
voiced—unvoiced--silence (VUS) decision. We also discuss the
methods for computing the means and covariances of the
probability distributions for the three classes. In Section III,
we provide some quantitative results about the performance
of the algorithm, and discuss its application in an experimental
digit-recognition system. An error detection and correction
method is also described to correct isolated errors in the VUS
contour. Finally, we present several examples of.VUS con-
tours obtained during the course of the digit recognition
experiments.

II. SPEECH MEASUREMENTS AND DECISION ALGORITHM

A block diagram of the analysis and decision algorithm is
shown in Fig. 1. The speech signal is low-pass filtered to
4 kHz, sampled at 10 kHz, and each sample is quantized with
an accuracy of 12 bits. Prior to analysis, the speech signal is
high-pass filtered at approximately 200 Hz to remove any dc,
low-frequency hum, or noise components which might be
present in the speech signal. The high-pass filter has two poles
and two zeros and its transfer function is given by

1— 2z +z2
H(z) =

1 — 2e_aT cos (bT)z +e_2aT -2' (1)

where

a = 130' 2rr,

b = 200 -
271,

r= io.
Following high-pass filtering, the speech is formatted into
blocks of 100 samples (an interval of 10 ms at 10 kHz sam-
pling frequency), with each block spaced 100 samples apart.
For each block, we define s(n), n 1, 2, - . - ,N, to be the nth
sample in the block. The samples N, N— 1, N— 2, etc. of the
previous block are numbered 0, —1, —2, etc. Thus s(0) is the
last sample of the previous block.

A. Measurements

(4)

(5)

is the (i, k) term of the covariance matrix of the speech
samples, and the ak's are the predictor coefficients. The pre-
dictor coefficients are obtained by minimizing the mean-
squared prediction error E defined as

1 N I P 12
E = [s(n) + a s(n -

k)j
- (6)

n=i k=l

Note that, p samples of the previous block are required for
computing the covariance term 0(1, k) in (5). In (4), the quan-
tity inside the absolute sign is positive by definition; however,
roundoff errors in the computation may yield a small negative
value which can result in the computing of the log of a nega-
tive number. Once again 10_6 is added for reasons identical
to ones mentioned for (2).

Before proceeding to a detailed discussion of the decision
algorithm, it is worthwhile discussing the expected nature of
variation of each of the above parameters for the three classes.
Measured distributions of these parameters for the different
classes are shown in Figs. 2—6. These results will be discussed
later in Section lI-C.

The zero-crossing parameter, N, s an indicator of the fre-
quency at which the energy is concentrated in the signal spec-
trum. Voiced speech is produced as a result of excitation of
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Fig, 3. Theoretical and measured probability density functions for the
energy measurement.

approximately 12 dB/octave thereby producing a concentra-
tion of energy at low frequencies in the speech signal. Voiced
speech usually shows a low zero-crossing count—typically in
the range 0 to 30. Unvoiced speech is produced due to excita-
tion of the vocal tract by a noise-like source at a point of con-

1ST LPC COEFFICIENT—4 SPEAKERS

Fig. 5. Theoretical and measured probability density functions for the
first LPC coefficient measurement.

striction in the interior of the vocal tract. While the spectrum
of the noise source is flat, the vocal-tract response usually in-
creases with frequency. Thus, the unvoiced speech has a con-
centration of energy at high frequencies and shows a high zero-
crossing count—typically in the range 10 to 100.

Fig. 1. Block diagram of the analysis system.
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Fig. 6. Theoretical and measured probability density functions for the
LPC error measurement.

The zero-crossing count for silence can vary considerably
from one speaking environment to another reflecting the vari-
able characteristics of the room noise. Quite often, the spec-
trum of room noise is concentrated at low and middle fre-
quencies. In such cases, the zero-crossing count for silence
would be expected to be lower than for unvoiced speech, but
quite comparable to that for voiced speech.

The energy parameter, E2, depends upon many factors such
as the sensitivity of the microphone and the amplifiers, the
quantizing characteristics of the analog/digital (A/D) con-
verter, etc. Generally speaking, the energy of voiced sounds is
much higher than the energy of silence. The energy of un-
voiced sounds is usually lower than for voiced sounds, but
often higher than for silence.

The parameter C1 is the correlation between adjacent speech
samples, and, by definition, varies between -l and +1. Due to
the concentration of low-frequency energy in voiced sounds,
adjacent samples of voiced speech waveform are highly corre-
lated and the parameter C1 is close to unity. On the other
hand, the correlation is close to zero for unvoiced speech.

The first LPC coefficient is usually thought as a number
coming out of LPC analysis. It can be shown that it is identi-
cal (with a negative sign) to the cepstrum of the signal at unit
sample delay [7], [8]. Thus o is the negative of the Fourier
component of the log spectrum at unit sample delay. Since
spectra of the three classes—voiced, unvoiced, and silence—
differ considerably, so does the first LPC coefficient. It can
vary from a value of about —5 for voiced speech to a value of
about 1 for unvoiced speech.

The normalized prediction error is a measure of the nonuni-
formity of the spectrum. More precisely, it is the ratio of the
geometric to the arithmetic mean of the spectrum [9]. The
more nonuniform the spectrum is, the smaller is the prediction
error. The spectrum of voiced speech has a well-defined
formant structure which results in smaller prediction error as
compared to unvoiced speech or silence. The parameter E
defined in (4) can vary from 0 to about 40 dB. It may be
pointed out that it is the only measurement among the five
which does not use the low-frequency predominance of voiced

speech and the high-frequency predominance of unvoiced
speech to differentiate between the classes. The prediction
error depends solely upon the variation of the spectrum from
one frequency to another and not the location of these fre-
quency components.

The five parameters discussed above are correlated with each
other. These correlations vary between the parameters and be-
tween the classes. The decision algorithm discussed in the
next section makes use of these correlations to optimally com-
bine their contributions in differentiating between the classes.

B. Decision Algorithm

As shown in Fig. 1, the five measurements are used to
classify the block of signal as either silence, unvoiced, or
voiced speech. To make this decision, a classical minimum
probability-of-error decision rule is used in which it is assumed
that the joint probability density function of the possible
values of the measurements for the ith class is a multidimen-
sional Gaussian distribution with known mean m, and covari-
ance matrix W, where i 1, 2, 3 corresponds to class 1
(silence), class 2 (unvoiced), and class 3 (voiced), respectively.
The assumption of normal distribution for the measurements
can be justified from several considerations: first, for the deci-
sion rule to be correct, it is not necessary that the distribution
be exactly normal. In the case of unimodal distributions, it is
sufficient that the distribution be normal in the center of its
range—a property often found to be true for physical measure-
ments. Moreover, as mentioned earlier, the decision rule is op-
timum for a class of probability densities which are related to
the Gaussian density through arbitrary monotonic functional
relationships. Finally, the decision rule based on the normal
distribution requires information only about the first two
moments of the distribution. Accurate estimation of higher
order moments is usually difficult in practical situations.

Let x be an L-dimensional column vector (in our case, L = 5)
representing the measurements, that is, the kth component of
x is the kth measurement. The L-dimensional Gaussian
density function for x with mean vector m1 and covariance
matrix Wj is given by

g1(x) = (21r)_142 p—1/2 exp [— (x — mj)t pJT1 (x — m,)],

(7)

where W1 is the inverse of the matrix W,1 IWI is the deter-
minant of J4', and the superscript t denotes the transpose of a
vector. The decision rule which minimizes the probability of
erroneous classifications states that the measurement vector x
should be assigned to class i if

pg(x)�p1g1(x) forall ij, (8)

where p- is the a priori probability that x belongs to the ith
class [10]. Since my is a monotonically increasing function
of its argument y, the decision rule of (8) can be considerably
simplified and rewritten as follows.

11t is assumed that W is a nonsingular matrix. A singular Wj implies
that one of more measurements axe linear combinations of the remain-
ing measurements. Such redundant measurements can be identified by
determining the eigenvectors of W1 with zero eigenvalue.

SILENCE

UNVuCED

OICED
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Decide class I if

d1(x)=(x-m1)tW1(x-m1)+-lnIW,I-lflPt
<d1(x) forall i/=j.

The last two terms on the right side of (9) do not depend on
the measurement vector x, and can be thought of as a constant
term representing a certain bias towards the ith class. As a
practical matter, we have found that such a bias term—even if
it is carefully selected for the measurements—does not provide
any significant advantage over a decision rule based exclusively
on the first term on the right side of (9). Thus, instead of the
decision rule of (9), the quantity or distance measure d1,
defined as

(xm1)tW1(xm1)
is computed and the index i is chosen such that is mini-
mized. Finally, based on the individual distances a'1, d2, and
d3, a probability measure F1, i = 1, 2, 3 is created by the rule

- d2d31 a'1a'2 +dd3 +d1d3

- d1d3P2 -
a'1 d2 + d2 a'3 + a'i d3

and

- d1d2
P3 -a'1a'2 2a'3 +a1a'3.

The higher the probability measure P for the class having the
minimum distance , the more assurance the algorithm has
that it has chosen the correct class. These probabilities are
useful for correcting isolated classification errors. For
example, they have been used to aid a smoothing algorithm
which has been applied to the analysis data in the speech
recognition experiments.

C. Estimation of the Means and the Covariances

In order to use the above decision algorithm, a training set of
data is required to obtain the mean vector and the covariance
matrix for each class. This training set is created by manually
segmenting natural speech into regions of silence, unvoiced
speech, and voiced speech. The speech segments are sub-
divided into 10-ms blocks and the set of measurements defined
in Section lI-A is made on each block of data. These measure-
ments, along with the manual classification of the interval, are
saved in a training set file. If we let x1(n) denote the measure-
ment vector for the nth block of the class (i = 1, 2, or 3) and
N1 denote the number of 10-ms blocks manually classified as
class i in the training set, then, the mean vector m1 and the co-
variance matrix Wj of class i are given by

1 N1
m1 = x•(n),

and

1 N1
x,(n)x(n)- m•m.

,n=1

The minimum value of N1 necessary to ensure nonsingularity
of the covariance matrix W1 is obviously L. In practice, how-
ever, a much larger value of N1 is esirable for several reasons.

(9) First, for a training set to be representative of the entire popu-
lation, it must include a variety of speech utterances spoken
by a number of speakers. Second, manual segmentation of
speech into the three classes is not always perfect. The influ-
ence of segmentation errors can be minimized by using a large
training set. It is also necessary for the satisfactory operation
of the algorithm that the recording conditions—frequency
response of the recording system, background noise conditions,
etc.—remain reasonably stable. A new set of training data is
usually needed if there are drastic changes in the recording
conditions. In practice, a good training set for voiced or un-
voiced speech can be obtained without difficulty. The greatest
difficulty is encountered in the characterization of the
"silence" class which is strongly dependent on the speaking
environment.

Table I shows the means, standard deviations, and the nor-
malized covariance matrices2 for the three classes for a typi-

a1 cal set of training data. The index i refers to the class; i = 1

is silence, 1 2 is unvoiced speech, and i = 3 is voiced speech.
(1 ib) These recordings were made using a dynamic microphone in a

double-walled soundproof booth and stored on magnetic tape
using a high-quality analog tape recorder. Approximately 6 s
of speech for each of 4 speakers (2 male, 2 female) were used

(1 ic) in the training set. The columns in Table I correspond to the
five measurements discussed earlier. The off-diagonal terms of
the covariance matrices are a measure of the correlation be-
tween the different parameters. If the measurements were all
independent and uncorrelated, then all off-diagonal elements
would be 0. It can be seen that the magnitudes of the off-
diagonal elements vary from 0.00 to 0.96, indicating varying
degree of correlations between the different parameters.

The means and standard deviations of Table I characterize
completely the assumed one-dimensional normal probability
density functions for each of the measurements, for each
class. These normal distributions are compared with the actual
computed one-dimensional distributions for each of the five
measurement variables in Figs. 2.-6, respectively.

Fig. 2 shows the results for the zero-crossing measurements.
It can be seen that a simple Gaussian fit to the data is quite
good for all three classes. As mentioned earlier, high zero
crossings tend to distinguish unvoiced sounds from silence and
voiced sounds. However, the distributions overlap indicating
that the zero crossings alone—as in the case for the other four
parameters too—cannot separate the three classes.

Fig. 3 shows the results for the log energy measurement. In
this case the Gaussian fit for both silence and voiced speech is
not quite as good. The actual distributions are decidedly
skewed and therefore a symmetrical distribution is not com-
pletely appropriate. As seen from Table I, the difference in

(12) mean between the log energy for voiced speech (50.6 dB) and
for silence (10.8 dB) provides an underbound. to the estimate

2The term in the ith row and jth column of the normalized matrix
(13) is obtained by dividing the corresponding term of the matrix W by the

squaxe-root of the product of the ith and jth diagonal terms.

(10)
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TABLE I
TYPICAL MEANS, STANDARD DEvIATIoNs, AND COVARIANCE MATRICES

FOR THE THREE CLASSES (FOUR SPEAKERS USED IN TRAINING SET)

Zero
Crossings

Log
Energy

First Auto-
correlation

First
LPC

LPC Log
Error

1) Silence(i1)
Mean 25.663 10.781 0.649 —0.935 4.976
Standard

Deviation 7.534 4.715 0.158 0.234 1.994
Covariance

Matrix 1.000
—0.032
—0.842

0.386
—0.629

—0.032
1.000

—0.098
—0.558
0.580

—0.842
—0.098

1.000
—0.442
0.596

0.386
—0.558
—0.442

1.000
—0.710

—0.629
0.580
0.596

—0.710
1.000

2) Unvoiced (1 = 2)
Mean 49.914 23.439 0.007 —0.107 3.661
Standard

Deviation 12.680 6.985 0,365 0.618 1.763
Covariance .

Matrix 1.000
0.471

—0.959
0.909

—0.019

0.471
1.000

—0.454
0.437
0.447

—0.959
—0.454

1.000
—0.947

0.028

0.909
0.437

—0.947
1.000

—0.044

—0.019
0.447
0.028

—0.044
1.000

3) Voiced (1=3)
Mean 12.775 50.608 0.881 —2.256 18.944
Standard

Deviation 5.546 5.530 0.090 0.582 6.151
Covariance

Matrix 1.000
0.250

—0.882
0.276

—0.626

0.250
1.000

—0.200
--0.130
—0.051

—0.882
-0.200

1.000
—0.380
0.728

0.276
—0.130
—0.380

1.000
—0.603

—0.626
—0.051
0.728

—0.603
1.000

of the signal-to-background noise ratio of the recording en-
vironment. It can also be seen from Fig. 3 that high values
of log energy tend to separate voiced speech from silence
and unvoiced speech.

Fig. 4 shows results for the first autocorrelation coefficient.
For voiced speech, the distribution is particularly skewed.
These results suggest that a suitable nonlinear function of the
autocorrelation coefficient, such as the inverse hyperbolic
tangent, would be more appropriate here. The distributions,
for silence and unvoiced speech, are well approximated by the
Gaussian. For unvoiced speech, the distribution has a partic-
ularly large variance.

Figs. S and 6 show the results for the first LPC coefficient
for a 12-pole analysis, and the log energy of the resulting pre-
diction error. In almost all cases, the Gaussian fit to the distri-
bution is a reasonable one.

Before proceeding to show some examples of how the al-
gorithm worked in some typical cases, it is worthwhile discuss-
ing the, limitations imposed by the necessity for training the
algorithm. Strictly speaking, the training data is particular to
one set of recording conditions. Thus, whenever, the trans-
mission system varies or the background noise level varies, a
new set of training data is required. If the recording condi-
tions differ considerably from one occasion to another, it
may be possible to adapt the algorithm by continuously updat-
ing the training data based on some measure of the relative
distances to each of the classes. Whether or not the algo-
rithm can successfully adapt is as yet unclear; however, it is

worth investigation. It is also our experience that the train-
ing data obtained from one speaker can be used for another—
even from male speakers to female speakers. A second limita-
tion in the training is the necessity for manually locating the
regions of silence, unvoiced, and voiced speech in an utter-
ance—a task which could be both tedious, and time
consuming. It is also difficult to locate the exact time at
which the speech become,s voiced or unvoiced. This does not
however present a major problem because the times at which
speech changes from voiced to unvoiced, or vice versa, need
not be accurately pinpointed. In fact, using only intervals
where the character of the signal is completely clear in the
training set tends to enhance the capability of the method,
rather than detract from it. This is so because the distance
measure essentially provides a smooth transition between
voiced and unvoiced and silence. Thus, one need not include
these ambiguous cases in the training set.

A. Numerical Evaluation

III. RESULTS

The algorithm has been tested on a wide variety of speech
material for both speech synthesis and segmentation applica-
tions. The V—UV decision has performed satisfactorily as a
part of a speech analysis—synthesis system based on linear
prediction [4]. We present in this section some numerical
results regarding the performance of the algorithm for classify-
ing speech into the three classes. We will also present results
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about the comparative performance of each of the five individ-
ual speech measurements.

For the results presented in this section, the experimental
speech data was divided into a training set and a testing set.
The training set was used to compute the means and the Co.
variance matrices for the three classes. The speech data in the
training set consisted of two utterances "Should we chase
those young outlaw cowboys?" and "Few thieves are never
sent to the jug" spoken by a male speaker. The testing set
was used to evaluate the performance of the algorithm. The
speech data in the testing set consisted of two utterances: a
sentence "It's time we rounded up that herd of asian cattle"
spoken by a male speaker different from the one who spoke
the utterance in the training set and another sentence "High
altitudes jets whiz past screaming" spoken by a female speaker.
The speech material was recorded in an anechoic chamber with
a condenser microphone. The average signal-to.noise ratio for
voiced speech was 34 dB and for unvoiced speech was 14 dB.

Fig. 7 shows the waveform of a portion of the speech data
used in the training set. Manually classified regions corre-
sponding to the three classes are also marked on the figure
with the symbol "V" indicating voiced speech, the symbol
"U" indicating unvoiced speech, and the symbol "5" indicat.
ing silence. The mean and covariance matrix data for the three
classes is shown in Table II. The algorithm was first run on the
training set itself to see how well it performs with the data on
which it was trained. The results are presented in Table 111(a)
in the form of a matrix of incorrect identifications (confu-
sion matrix). The total number of 10-ms long voiced, un-
voiced, and silent segments in the training set were 313, 57,
and 76, respectively.

The algorithm was next used on the speech data in the test
set. The total number of 10-ms long voiced, unvoiced, and
silent segments in the test set were 375, 82, and 94, respec-
tively. The confusion matrix for this case is presented in Table
111(b). Most of the errors occurred at the boundaries between
the different classes. Since the classification was made on the
basis of consecutive 10-ms long speech segments, a segment at
the boundary often included data from two classes. The
voiced speech generally has a higher energy than either the un-
voiced speech or the silence and, therefore, the classification
decision shows a bias towards voiced speech for boundary seg-
ments. This accounts for the relatively fewer number of errors
in the case of voiced speech as compared to unvoiced speech.
An example of the speech waveform showing the various
voiced, unvoiced, and silence regions as determined by the al-
gorithm is shown in Fig. 8.

The algorithm was used on the speech data in the test set
using only one of the five measurement parameters at a time.
The total number of errors found for each class for each of the
five parameters is shown in Table IV. For comparison, the
corresponding errors where all of the five parameters are used
is also shown on the last row of Table IV. It can be seen that
none of the parameters by itself is capable of identifying a
class with sufficiently high accuracy. The performance of the
five parameters when used in combination is quite good in
view of the fact that most of the errors occur at the bounda-
ries between the different classes.

s

Fig. 7. Example of speech waveform, showing manually classified re-
gions, used in the training data. The symbol "V" indicates voiced
speech, the symbol "U" indicates unvoiced speech, and the symbol
"S" indicates silence.

The performance of any of the parameters is not equally
good for discriminating between all of the three classes. It is
of interest to know the distribution of errors for pairwise dis-
crimination between the different classes. These errors are
shown in Table V for the five parameters for three kinds of
confusions: V—UV, UV-S, and V—S. The ranking of the
parameters is different for the three cases. The autocorrela-
tion coefficient C1 and the prediction error are among the
best candidates for V—UV decision. The zero-crossing param-
eter is not far behind for this decision. On the other hand,
signal energy E comes out as the leading parameter for dis-
crimination between speech and silence. These results are not
very surprising and would have been expected from the nature
of voiced and unvoiced sounds.

The discrimination errors are a consequence of the fact that
the distributions of the parameters overlap as shown in Figs.
2—6. The effectiveness of each parameter can also be deter-
mined by obtaining a measure of separability of the classes for
a given data set. One example of such a measure of separabil-
ity is the "divergence" originally defined by Kuilback as a
measure of information [11], [12]. For Gaussian probability
density, the divergence is determined by the mean vectors and
the covariance matrix for each class. The divergence H be-
tween the classes i andj is given by [12]

Htrace(Wj- W)(P,/ - W)
+ trace (Wj1 + E4') (rn1- rn) (rn— rnj)t, (14)

where rn• is the mean vector and Wj is the covariance matrix
for the ith class. We will not discuss the properties of diver-
gence in detail here but will refer to the two references cited
above for more information. The divergence was computed
for each parameter for the three binary discrimination tasks
and is shown also in Table V. A high value of divergence is
indicative of a high degree of separability between the classes.
The rank-order of each parameter based on the divergence
measure is shown on the last column of Table V. it is inter-
esting to know that the two rank orders—one based on the dis-
crimination errors and the other based on the divergence—are
almost identical. Since the divergence can be computed

I —
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TABLE II
MEANS, STANDARD DEVIATIONS, AND COVARIANCE MATRICES FOR THE

THREE CLASSES FOR THE TRAINING DATA DESCRIBED IN SECTION
Ill-A (1 SPEAKER—2 UTTERANCES)

(a) Actual class Silence Unvoiced Voiced

Identified as
Silence 65 0 0
Unvoiced 9 56 3
Voiced 2 1 310

Total 76 57 313

(b) Actual class Silence Unvoiced Voiced

Identified as
Silence 91 7 3
Unvoiced 2 70 1

Voiced 1 5 371
Total 94 82 375

(a) Matrix of incorrect identifications for the three classes for the
speech data in the training set.

(b) Matrix of incorrect identifications for the three classes for the
speech data in the testing set.

directly from the means and covariance matrices, it offers a
convenient method of comparing the performance of differ-
ent parameters for a given classification task.

B. Examples of the Use of the Algorithm in a Speech
Recognition Application

One of the practical problems in using the classification al-
gorithm just described is the proper characterization of the
silence. This is because, in many applications, the silence

distribution is nonstationary. Thus, the ability of the algo-
rithm to correctly classify silence is extremely dependent on
how closely the properties of the actual silence matches the
trained distribution. Another problem is that different
speakers use widely varying talking levels. To make the
voiciHg decision as accurate as possible, the signal level is
scaled on a long-term basis such that the maximum level is
about 2048. However, this means that the background silence
level is also scaled so that, for a weak talker, the measured

Zero
Crossings

Log
Energy

First Auto-
correlation

First
LPC

LPC log
Error

1) Silence
Mean 23.743 11.156 0.629 —0.485 5.770
Standard

deviation 14.564 4.626 0.358 0.354 3.336
Covariance

matrix 1.000
0.241

—0.967
0.736

—0.272

0.241
1.000

—0.278
—0.162
0.737

—0.967
—0.278

1.000
—0.773

0.244

0.736
—0.162
—0.773

1.000
—0.417

—0.272
0.737
0.244

—0.417
1.000

2) Unvoiced
Mean 48.614 25.201 0.032 —0.402 6.206
Standard

deviation 14.911 7.367 0.411 0.543 2.796
Covariance

matrix 1.000
0.290

—0.981
0.888
0.033

0.290
1.000

—0.271
0.021
0.790

—0.981
—0.271

1.000
—0.915
—0.008

0.888
0.021

—0.915
1.000

—0.215

0.033
0.790

—0.008
—0.215

1.000
3) Voiced

Mean 11.224 45.324 0.912 —2.263 20.495
Standard

deviation 4.838 7.483 0.073 0.562 3.440
Covariance

matrix 1.000
0.361
0.819

—0.036
—0.526

0.361
1.000

—0.248
—0.649
—0.035

—0.819
—0.248

1.000
—0.159
0.576

—0.036
—0.649
—0.159

1.000
—0.197

—0.526
—0.035
0.576

—0.197
1.000

TABLE III



ATAL AND RABINER: PATTERN RECOGNITION APPROACH TO VOICED-UNVOICED-SILENCE CLASSIFICATION 209

..'—--i*--I- *.

: — —

:
u0'

,.
1IllwwvTh)

'-w •--w•'-

Fig. 8. Example of speech waveform showing the various voiced, un-
voiced, and silence regions as determined by the algorithm.

TABLE IV

Errors
Number Parameter Used Silence Unvoiced Voiced

1 N 34 52 35
2 E5 3 23 23
3 C1 24 51 22
4 i 39 60 10
5
6

Ep
all five parameters

19
3

48
12

4
4

Total number of identification errors for the different classes with
different sets of parameters. The total number of segments were 94 for
the silence, 82 for the unvoiced, and 375 for the voiced class.

TABLE V
COMPARATIVE PERFORMANCE OF DIFFERENT PARAMETERS FOR THE THREE

BINARY DISCRIMINATION TASKS

Rank Rank
Order Order

Total Based Based
Binary Number of on on
Task Parameter Errors Errors Divergence Divergence

Voiced—Unvoiced

Unvoiced—Silence

Voiced—Silence

N
E5
C1i
Ep
AT
E5
C1
n1E
N
E5
C1i
E

10
38
4

32
7

49
11
53
66
60
62

0
40
11
4

3
5
1

4
2
2
1

3
5
4
5
1

4
3
2

37
7

90
11
22
3
7
3
0
0
7

38
19
18
19

2
5
1

4
3
2
1

3
4
5
5
1

3
4
2

energy of the silence is often much larger than the mean
energy for the silence distribution. This strongly biases the de-
cision rule away from silence—often to a voiced classification.

To compensate for these problems, a "smoothing" or correc-
tion algorithm is applied to the VUS contour to make the

results appropriate for experiments in continuous digit recog-
nition [13]. (It should be noted that for more stable back-
ground silence conditions, and some form of voice gain adjust-
ment (VOGAD), the required smoothing and error correction
algorithm would be considerably simpler.) For the continu-

V —U———
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ous digit recognition experiment [131,a subject spoke a three
digit sequence during a specified time interval. Thus, it is
assumed a priori in the smoothing algorithm that each contour
begins and ends with silence. After the speech begins, it is
generally sufficient to locate only the intervals of voicing and
unvoicing—even if there are internal silences (e.g., the stop
gaps in two, eight, and six, or pauses between words). In this
particular speech recognition application [131 the subsequent
processing is essentially insensitive to whether an interval is
classified as unvoiced or silence. Of course, this distinction
may be important for other applications.

Fig. 9 gives a flowchart of the smoothing algorithm. The
first step in the process is to examine the overall VUS contour
and to reclassify any low energy voiced intervals as silence.
An interval is called a low energy interval if it falls by a speci-
fied amount below the maximum energy during the utterance.
For example, if the maximum normalized log energy of the
utterance is 60 dB and the anticipated signal-to-noise ratio of
the system is 30 dB, any interval whose log energy falls below
30 dB is reclassified as silence. This step in the smoothing is
used primarily for weak talkers to overcome the inherent diffi-
culty discussed above.

The next step in the algorithm is to find regions of the VUS
contour with high probability of correct classification, based
on the probability measure discussed earlier. For each of these
highly reliable intervals, the endpoints of these regions are
then found. Next, long unvoiced regions are added to the list
of tentatively good regions, even if the probability score
does not exceed the threshold. A tentative check of the list of
regions is made and any overly short voiced intervals (i.e., less
than 30 ms in duration) are eliminated.

Next, the beginning and end silence regions are located.
These regions are chosen as the interval from the beginning
(end) of the contour until the first (last) interval which is reli-
ably classified as voiced or unvoiced.

The only remaining step is to smooth across the boundaries
between the regions in the list. The interpolation rule is fairly
simple. If the regions on both sides of the boundary are
voiced or unvoiced, and the duration of the boundary is less
than 50 ms, the boundary region is classified as voiced or un-
voiced as appropriate. If the boundary duration exceeds 50
ms, the boundary values are classified as silence.

The final step in the algorithm is to apply a median
smoother to the VUS contour. For most cases, the median
smoother is all that is required to smooth the contour—i.e.,
the preceding steps in the flowchart leave the contour un-
changed. However, such sophistication and checking is re-
quired for the unusual cases and thus is included for all cases.

Figs. 10—13 illustrate typical examples of VUS contours ob-
tained in the digit recognition experiment. In each of these
figures, there are five curves. The first curve is a plot of the
probability of correct classification of the VUS contour. The
fourth and fifth curves are the unsmoothed and smoothed
VUS contours. These contours can assume one of three levels
where level 1 is silence, level 2 is unvoiced, and level 3 is
voiced.

Fig. 10 shows contours for the digit sequence 852 by a
female speaker (SAW). The recordings were made in a rela-

V/U/S CONTOUR

RECLASSIFY LOW ENERG
LVOICED INTERVALS AS SILENCE

SEARCH FOR INTERVALS
WITH HIGH PROBABILITY

,,
FIND INTERVAL I

END POINTS

SEARCH FOR LONG
UNVOICED INTERVALS

ELIMINATE SHORT
VOICED INTERVAL

FIND BEGINNING
SILENCE REGION

FIND ENDING I

SILENCE FEGIONj

INTERPOLATE ACROSS
INTERVAL BOUNDARIES

IF APPROPRIATE

OTHERWISE SET TO SILENCE

LDIAN SMOOTHING

Fig. 9. Flowchart of the smoothing algorithm for the VUS contour.

(I)

(I)
U)0
0

/ 852 / SAW

I L7ITd)>

OO515
TIME (seconds)

Fig. 10. (a)—(e) Typical measurement contours for the utterance
/852/ spoken by a female speaker.

tively noisy computer room using a dynamic omnidirectional
microphone. It can be seen that the analysis made essentially
one error in classifying an unvoiced interval as voiced at the
beginning of the digit two. The smoothing algorithm corrected
this error and essentially left the rest of the VUS contour
alone.
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Fig. 11. (a)—(e) Typical measurement contours for the utterance
/712/ spoken by a male speaker.

Fig. 11 shows contours for the digit sequence 712 spoken by
a male speaker (AER). Again, the analysis algorithm made
only one error in classification where an unvoiced interval was
classified as voiced; however, the smoothing algorithm
smoothed the silence interval preceding the error and reclassi-
fied it as unvoiced since the duration of the silence was veiy
short (30 ms). Otherwise, the remainder of the contour was
left unchanged by the smoothing algorithm.

Fig. 12 shows an example in which a 20 ms interval of
silence (the speaker burbied slightly prior to articulating the
digit sequence) was classified as voiced but the smoothing al-
gorithm reclassified this interval as silence since it was too
short, and it occurred at the beginning of the utterance. The

U)a)
d)IIII

TIME (seconds)

Fig. 13. (a)—(e) Typical measurement contours for the utterance
/681/ spoken by a female speaker.

digit sequence here was 311 spoken by another male speaker
(JLH). Finally, Fig. 13 shows an example in which the analysis
oscillated between silence and unvoiced at the beginning of
the digit sequence 681 spoken by another female speaker
(GB). Because of the constraint that the initial part of the
VUS contour be silence, and since the probability of correct
classification during the short unvoiced intervals was low, both
these short intervals were reclassified as silence. Also, the
short silence interval following the initial voiced interval was
reclassified as unvoiced by the smoothing algorithm since it
was of sufficiently short duration.

These four examples illustrate how the training data ob-
tained for a completely different set of utterances can be used
over a wide variety of speakers. For these examples, noneof
the speakers were used in the training set, yet the algorithm
still performed quite well. We have generally found this behav-
ior to be the case—i.e., when the recording conditions and the
background noise level remain relatively stable, the training
data can be used across a large number of speakers with no
apparent degradation.

IV. SUMMARY

A fairly general framework based on a pattern recognition
approach to VUS classification has been described in which a
set of measurements are made on the interval being classified,
and a minimum non-Euclidean distance measure is used to Se-
lect the appropriate class. Almost any set of measurements
can be used so long as there is some physical basis for assum-
ing that the measurements are capable of reliably distinguish-
ing between these three classes. Although a non-Euclidean
distance measure was used, other distance measures may be
equally appropriate. Finally, a smoothing algorithm was dis-
cussed which was appropriate for a digit recognition algorithm
in which errors in the analysis were corrected, and unusually
short intervals were eliminated. The classification algorithm
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Fig. 12. (a)—(e) Typical measurement contours for the utterance
/311/ spoken by a male speaker.



212 IEEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL. ASSP-24, NO. 3, JUNE 1976

has been extensively tested for both speech analysis—synthesis
and recognition applications over a wide range of recording
conditions and has been found to provide satisfactory results.

The major limitation of the method is the necessity for train-
ing the algorithm on the specific set of measurements chosen,
and for the particular recording conditions. For nonstationary
speaking environments, it may be preferable to adapt the
means and covariance matrices continuously.
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Tone Detection for Automatic Control of Audio Tape
Drives

JOHN J. DUBNOWSKI, JOSEPH C. FRENCH, AND LAWRENCE R. RABINER, FELLOW, IEEE

Abstract—This paper describes digital hardware for automatically
stopping a cassette recorder upon detection of a prerecorded tone.
This hardware is used in conjunction with experiments on computer
assisted voice wiring experiments being performed at Western Electric
locations [1]. For these experiments a sequence of instructions is auto-
matically recorded on a cassette tape by a computer voice response sys-
tem. At the end of each instruction, a tone is recorded. The hardware
detects this tone and stops the cassette recorder. The operator, after
performing the prescribed wiring instruction, manually restarts the cas-
sette recorder for the next instructiOn. The technique used to detect
the tone is a simple digital method comparing the axis crossings of the
signal to a fixed threshold. This threshold is determined based on
knowledge of the tone frequency, duration, and amplitude. When the
signal axis crossings exceeds this threshold during two consecutive
40 ms nonoverlapping intervals the tone is detected and the tape re-
corder is stopped. The method described is a robust one which is
rather insensitive to normal tape recorder problems, e.g., wow and loss
of signal level due to battery drainage. The tone detection hardware
requires nominal power and is portable.

INTRODUCTION

ONE very promising application of computer voice re-
sponse systems is in computer assisted wiring of elec-
tronic circuitry by voice. In essence, a complex printed

Manuscript received September 23, 1975; revised December 23, 1975.
The authors are with Bell Laboratories, Murray Hill, NJ 07974.

list of wiring instructions is replaced by a spoken sequence of
instructions on cassette tapes. During playback, alt the infor-
mation required to make the wiring connections is defined by
a verbal instruction. The advantage of this procedure is that a
craftsman is able to maintain continual visual contact with the
wiring assembly. This avoids any disorientation usually caused
by referring to printed wire-lists; thus, the operator's perfor-
mance should be improved through increased efficiency and a
reduction in errors. Furthermore, a training period is avoided
in which the operator must learn how to read complex wiring
diagrams.

A sequence of spoken instructions for wiring of electronic
assemblies appears to have many advantages over the more
conventional methods of wiring. To study the practical as-
pects of the feasibility of this method, the multiine computer
voice response system [2] of the Acoustics Research Depart-
ment has been used to generate a variety of spoken wiring
lists for experimental evaluation at several Western Electric
locations.

Along with the spoken wiring instructions, a tone cue is re-
corded to indicate the end of each instruction. By using spe-
cial hardware to automatically detect this tone and subse-
quently halt the cassette drive, the operator is free to execute
the latest wiring instruction without the added distriction of
halting the drive.


