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Further Considerations in the Design of
Decimators and Interpolators

RONALD E. CROCHIERE, MEMBER, IEEE, AND LAWRENCE R. RABINER, FELLOW, IEEE

Abstract—In this paper several issues concerning the design and imple-
mentation of multistage decimators, interpolators, and narrow-band
filters are discussed. In particular, the question of designing these sys-
tems in terms of minimum storage rather than minimum computation
rate is examined. It is shown that a design which uses finite impulse
response (FIR) filters for each stage, and which is minimized for storage
is essentially minimized in terms of computation rate as well. The
problem of further improvements in designing decimators and inter-
polators by taking advantage of DON'T CARE frequency bands is also dis-
cussed. For the early stages in a multistage design it is shown that fairly
significant reductions in filter order can be achieved in this manner. A
third issue in the design process is the question of practical schemes for
efficient implementation of multistage decimators and interpolators in
both hardware and software. One such efficient implementation is dis-
cussed in this paper. Finally, the problem of designing multistage
decimators and interpolators using elliptic infinite impulse response
(IIR) filters is discussed. It is shown that multistage IIR designs can be
somewhat more efficient computationally than single-stage designs;
however, the storage efficiency of the multistage lIR design is worse
than that of the single-stage hR design.

I. INTRODUCTION

JN earlier papers [1], [2] a general theory of multistage
decimators and interpolators for sample-rate conversion and
narrow-band filtering was discussed. In this paper we ex-

pand upon some of these ideas and discuss further issues in the
design of decimators and interpolators. In particular, in Sec-
tion II we address the issue of designing multistage decimators
and interpolators for minimum storage as opposed to designing
for minimum computation. It is shown that the two solutions
are relatively close and that a design which is minimized on the
basis of storage is essentially minimized in terms of computa-
tion as well. A complete set of design curves for minimum
storage are given to complement similar curves in [1]

In Section III we discuss further improvements of multistage
decimators by using multistopband ifiter designs in place of
low-pass filters. It is shown that additional gains in efficiency
up to about 25 percent are possible with this approach.

In Section IV we discuss further issues of implementing
finite impulse response (FIR) decimators and interpolators in
both software and hardware. A block diagram is presented
illustrating a basic strategy for such an implementation.
Finally, Section V deals with the use of infinite impulse re-
sponse (IIR) filter designs in the implementation of multistage
decimators and interpolators. Design curves are presented and
compared with those for FIR designs.

Much of the discussion in this paper is a continuation and a
direct extention of concepts developed in [1] , [2] . For the
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sake of brevity we will not repeat any of that discussion, but
will assume that the reader is familiar with this work. The
notation used in this paper is that which was established in
[1] . Also, as shown in [1] ,the design relations for decimators
and interpolators are dual and the same set of design curves
apply to both designs. Therefore, the subsequent design rela-
tions and curves in this paper, although formulated for deci-
mators, apply equally to the design of interpolators as well.

II. MINIMIZATION OF STORAGE VERSUS
MINIMIZATION OF MULTIPLICATIONS

In [1] , [2] we considered the total number of multiplica-
tions and additions (MADS) as a criterion for optimization in
a multistage decimator or interpolator design. It was also
observed that a considerable savings in the total number of
storage locations of a single-stage implementation could be
accrued using a multistage implementation. In this section we
consider the problem of designing multistage decimators and
interpolators for minimum storage instead of minimum
computation.

The development of the problem is nearly identical to that
of minimizing the amount of computation. It can be assumed
that the total number of storage locations (for both coefficient
and data storage) in the multistage design is approximately
proportional to the sum of the lengths of the filters in each of
the stages. That is,

K
NTGNi, (1)

where NT is the total number of storage locations necessary,
N1 is the length of the FIR filter for the ith stage, K is the total
number of stages, and G is a proportionality constant which
depends on whether we are implementing a decimator, inter-
polator, or low-pass filter, and on the particular manner in
which it is implemented. From [1, eq. (20)] 1 it was shown
that N1 can be expressed as

Dc,,, 5K' s)''t
2 -

1- flD1
1=1

(2)

where D is the total sampling rate reduction for the multistage
decimator, Af (f5 - 4)/ft, 4 is the passband edge and f5 is
one-half of the final sampling rate. K is the total number of

tNotc: There is a typesetting error in [1, eq. (20)]. It should read as
in (2) of this paper.
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stages and D( ) is a function of and the passband and
stopband tolerances, respectively, for the filters in each deci-
mation stage (see [1]).

We will assume in this development that L1 = 1, i = 1, 2,
- , K. That is, the decimator (or interpolator) has integer

decimation (or interpolation) ratios, D1, at each stage. For
designs with noninteger ratios, the integer L1 must be greater
than one and, as seen from (2), this implies a much larger value
for N. This serves as a strong inducement against using stages
with noninteger decimation ratios (in addition to the reasons
given in [1]).

Using (1) and (2),NT can be expressed as

NrGD ()
1

Noting that D—D1,D2,-" ,DK, Nr can be further ex-
pressed in the form of a product of functions,

NTGD,, (p-,

where

TT(D,zf,K;D1,D2, -- ,D,1)
2D K-i D•=
K-i 2-sf I

LfflD 1-
2D RDJ

As shown in [1], D (/K, ) is a relatively weak function
of K. The more interesting function is T. NT can be mini-
mized for a given K by minimizing T as a function of the D1's
and then choosing the value of K which minimizes NT. To
minimize T as a function of the D1's an optimization routine
(in this case the Hooke and Jeeves algorithm [31) is used.

Fig. 1 gives plots of the minimum T as a function of D and
Lf and Fig. 2 gives plots of the corresponding decimation
ratios for minimum storage designs. For comparison, the
dotted lines in Fig. 1 correspond to values of T when the
design is minimized for multiplications. For a one-stage im-
plementation the two designs are obviously identical and for
a two-stage implementation they are essentially indistinguish-
able on the curves in Fig. 1. For three- and four-stage imple-
mentations, savings in storage of at most 2 :1 are possible
using a minimized storage design instead of a minimized mul-
tiplication design. Thus the two solutions are relatively close
and their difference becomes smaller as f becomes small.

In comparing the decimation ratios of a minimized storage
design (Fig. 2) to those of a minimized multiplication design
[1, Fig. 71, it is seen that the minimized storage design favors
slightly lower decimation ratios for the lower numbered stages
and slightly larger ratios for the higher numbered stages.

In comparing the number of required multiplications in a
minimum storage design to that of a minimum multiplication
design it was found that the cUrves are essentially indistin-
guishable from those of [1, Fig. 6]. Thus a design that is
minimized in terms of storage is essentially minimized in terms

of the number of multiplications as well. This is a conse-
quence of the fact that minima for S are relatively broad
minima whereas minima for T are slightly narrower.

A final important conclusion which can be drawn in compar-
ing curves of S and T ([1, Fig. 61 and Fig. 1) for large values
of D is that, in terms of multiplication rate, only small gains in
efficiency are obtainable by using more than two or three
stages; however, substantial gains in efficiency of storage are
still possible by going to three and four-stage designs.

Together, the curves in Figs. 1 and 2 and those in [11 pro-
vide a useful set of guidelines for choosing practical D1 values
for a wide range of decimator or interpolator designs. All of
these curves are based on the approximation to filter order

(3) given by [1, eq. (11)]. A similar set of curves was generated
using [1, eq. (9)J2 and they were found to be essentially in-
distinguishable to those presented here and in [1] , thus justi-
fying the use of this approximation.

III. FURTHER IMPROVEMENT OF DECIMATOR OR
INTERPOLATOR DESIGNS USING MULTIPLE STOPBAND

FILTER DESIGNS
(4a)

In the original design procedure for multistage decimators
and interpolators the digital filter at each stage was designed as
a low-pass filter whose job was to eliminate the frequency
bands which would either alias back into the baseband (for a
decimator) or appear as images of the baseband (for an inter-
polator). In this section it is shown how, for some of the

(4b) stages, the low-pass filter can be replaced by a multiband
digital filter of lower order than the original low-pass filter—
thereby reducing the overall computation for the multistage
design.

Fig. 3 shows the filtering requirements for the ith stage of a
multistage decimator. The initial sampling frequency is fr(il)
and the final sampling frequency iSfrj, defined as

= fr(i-i)
(5)

where D1 is the decimation rate for the ith stage. The base-
band is defined as the region from f 0 to f=f. The bands
which are aliased back into the baseband after sample rate re-
duction are shown as dotted regions in Fig. 3. Each of these
bands is centered at integer multiples of the final sampling
frequency for the stage, i.e.,ffrj, 2fri - - , and is of width
2f. The regions between the dotted bands are DON'T CARE
regions (and are denoted with a in Fig. 3) in that the fre-
quency response of the filter can be largely left unspecified
and unconstrained in these bands.

When realized as a conventional low-pass filter the specifi-
cations of Fig. 3 are the following:

1 _pIHi(e1(2 (-'))J<l +&,
0 Hj(e1(2r1)I 6 fri - f f 0.5f(1.1), (6)

2These curves had to be generated for specific values of and cS as
N1 could no longer be simply factored into a product of and 6 and
a product of the Di's. The use of [1, eq. (9)J also greatly compounded
the difficulty of the optimization routine in finding a minimum as un-
desired local minima outside of the range feasible solutions were intro-
duced by inclusion of the term f(& i, 62) F.
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Fig. 1. Plots of minimized values of T as a function of K, D, and f where f is 0.5, 0.2, 0.1, 0.05, 0.02, and 0.01 for
plots (a)—(f), respectively.

(d)



CROCHIERE AND RABINER: DESIGN OF DECIMATORS AND INTERPOLATORS 299

K=I

= 0.02

1000

1 100

10

= 0.01

K =2

K =1

I I iiltiil I I ijiiiiI I
10 100 1000

0

Ce)

10 100
D

tf =0.5
K=N0. OF STAGES
= STAGE NO.

1000

(f)

K=1 1=1

1000

T 100

10

Fig. 1. (Continued.)

1000

D1 100

10

(a)

Fig. 2. Plots of optimum decimation ratios of minimized storage designs as a function of K, D, and f where f is 0.5,
0.2, 0.1, 0.05, 0.02, and 0.01 for plots (a)—(f), respectively.
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J[21tf/frq_11where H.(e ) is the required filter response. How-
ever, when the width of the DON'T CARE bands becomes com-
parable to the width of the individual stopbands of Fig. 3,
fairly significant reductions in filter order can be achieved by
designing a multiband filter with the specifications

1 +6,.,

0 Hj(e 27f/fJ(j.j))1 6s fri is fri +f
0 s Hj(e f/fr(i_l)II)1

2frifsf'2fri+fs.

(7)

As can be seen by comparing (6) and (7), the specifications for
the passband and the transition band are identical. The differ-
ences occur primarily in the placement of the DON'T CARE
bands following the initial stopband.

To illustrate the possible reductions in filter order which can
be obtained by using this multiband approach to the design of
the individual filters, Fig. 4 shows two curves of the percent-
age decrease in filter order (N) as a function of normalized
stopband cutoff frequency for stages with decimation ratios
of 5 [Fig. 4(a)] and 10 [Fig. 4(b)] . The percentage decrease
is defmed as the percentage reduction in N going from the low-
pass case to the multiband case. The curves of Fig. 4 are mea-
sured curves (i.e., they are not theoretical computations) for
actual designs with 6,, set to 0.001 and 6, set to 0.0001. The
data points on these curves are shown separately, and a
smooth curve is used to show the trend in the data. The num-
bers to the right of each data point are the filter impulse re-
sponse durations (in samples) for the low-pass, and multiband
designs, respectively. For all of the designs of Fig. 4, the pass-
band edge 4 was set equal to the stopb and edge f3 to eliminate
one variable in the plots. It is readily shown, that the results
of Fig. 4 are essentially independent of the exact relation
betweenf,, andf2 for most practical ranges off,., andf.

Fig. 4(a) shows that as the normalized stopband cutoff fre-

quericy becomes smaller (i.e., the width of the DON'T CARE
bands becomes larger), the percentage decrease in N rises fairly
rapidly. The interpretation of this result is that when the ith
stage is an early stage in a multistage design, where the normal-
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Fig. 3. Multiband filtering specifications for the ith stage of a multistage decimator or interpolator.
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ized stopband cutoff frequency will be small, there are signifi-
cant reductions in filter order which can be achieved by using
the multiband design approach. However, when the ith stage
is a latter stage in the chain (i.e., the normalized stopband
cutoff frequency is relatively large), the percentage reduction
in filter order obtained by using a multiband design is small.

Fig. 4(b) shows similar results for a stage with a decimation
ratio of 10. By extrapolating to the limits of the curves of
Fig. 4 (as F becomes 0), it can be shown that a decimation
ratio of D1 can be obtained using a simple filter--in particular
a filter whose impulse response is a rectangular window of
duration D1 samples will suffice for most practical cases.
Goodman [4], [5] has exploited this result in proposing some
extremely simple structures for realizing multistage decimators'
and interpolators.

To illustrate some specific design examples, Figs. S and 6
show comparisons between a low-pass filter and its equivalent
multiband design for two different sets of specifications. For
Fig. 5 the decimation ratio was D1 = 5, the passband cutoff fre-
quency (normalized) wasf = 0.0475, and the stopband cutoff
frequency (normalized) was f =0.05. Values of cp = 0.001
and 6 = 0.0001 were used. Fig. 5(a) shows the low-pass filter
meeting the design specifications, and Fig. 5(b) shows the
multiband filter meeting the same specifications. The loca-
tionsof the DON'T CARE bands are quite clear from this figure.
In this example the reduction in filter order from the low-pass
design (N = 41) to the multiband design (N = 39) was small be-
cause of the relatively wide width of the baseband.

Fig. 6 shows the resulting filters for an example with D = 10,

4 = 0.00475, f5 = 0.005. The reduction in filter order from
the low-pass design (N = 45) to the multiband design (N = 33)
is quite significant in this example.

The following examples illustrate the overall effect on the
computation rate of substituting multiband filters for low-pass
filters.

Example 1: Consider the design of a two-stage decimator
(D 10) with specifications

4=0.025 ö=O.Ol
f=0.05 =0.00l

frn1.0 D=10.

In [2] ii was shown that a practical implementation of this
decimator had decimation rates of D1 = 5,D2 = 2 for the two
stages. Thus the filter orders for a low-pass design were
N1 = 25, N2 = 27 for the two stages. The total multiplication
rate for the two-stage decimator was shown to be [2]

RiD 13/5 = 2.6 first decimation stage

If the low-pass filter in the first stage is replaced by a multi-
band filter, the required filter order is reduced to N =22. For
the second stage, no reduction in filter order is possible since

= 2 and for a 2:1 reduction the low-pass and multiband
designs are identical. Thus for the overall decimator the total
multiplication rate becomes

(b)
Fig. 5. Comparison between (a) a low-pass filter and (b) its equivalent

multib and design forD1 5.

RiD = 11/5 = 2.2 first decimation stage

R2D = 14/10 = 1.4 second decimation stage

RT = 3.6 multiplications/s.

The net savings in multiplications is 0.4 or a 10 percent savings.
Example 2. Consider the design of a three-stage decimator

(D = 100) with specifications

4=0.00475 , =0.001

f3=0.005 6.=0.0001

f=1 D=l00.
In [2] it was shown that a practical implementation of this

tCJ
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R2D = 14/10 = 1.4

RT =4.0
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multiplications/s.
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Fig. 6. Comparison between (a) a low-pass filter and (b) its equivalent

multiband design forD1 10.

decimator had decimation rates of D1 = 10, D2 = 5, D3 = 2,
with filter order N1 = 50, N2 44, N3 = 356 for the low-pass
filters. The total multiplication rate for the decimator was
shown to be

RiD = 25/10 = 2.5 first decimation stage

R2D 22/50 = 0.44 second decimation stage

R3D = 178/100 = 1.78 third decimation stage

RT = 4.72 multiplications/s.

By replacing the low-pass filters of the first two stages with
equivalent multiband designs, the filter orders can be reduced
to N1 38 and N2 = 38. Thus the overall multiplication rate

becomes

RiD 19/10 = 1.9 first decimation stage

R2D 19/50 = 0.38 second decimation stage

R3D = 178/100 = 1.78 third decimation stage

RT = 4.06 multiplications/s.

The net savings in multiplications is 0.66 or about 14 percent.
In summary, we have shown that for the early stages in a

multistage design of decimators (or interpolators) a small, but
significant, amount of savings in the required multiplication
rate can be obtained by careful design of the digital filters re-
quired to remove the signal components which alias into the
baseband. In particular, we have shown that the resulting
design is a multiband digital filter with DON'T CARE bands be-
tween each of the bands of interest.

One interesting question which arises out of this discussion is
whether or not it is beneficial to increase the number of stages
in the design so as to exploit the computational advantages of
the multiband approach to the fullest. This question is not a
simple one to answer. Goodman [4], [5] has found that
when using a large number of stages to implement a large deci-
mator, the individual filters can be economically realized using
simple prototypes, e.g., rectangular, or Hamming window
designs. The argument against using a larger number of stages
in the design is that the system complexity in terms of extra
control and timing logic increases, Thus there are distinct
tradeoffs here, and each specific application must be treated
and studied independently.

N. ADDITIONAL CONSIDERATIONS IN THE
IMPLEMENTATION OF FIR DECIMATOR AND

INTERPOLATOR DESIGNS

In [11 a practical scheme for implementing a general
interpolator/decimator stage was presented. It involved the
storage of the coefficients in a "scrambled" order such that
both the data and coefficients could be sequentially addressed
in the computation of the output samples. In this section we
show how this scheme for a single stage can be incorporated
into the overall structure of a multistage decimator or inter-
polator. We will restrict this discussion to the case of integer
decimators and interpolators.

A general block diagram for the implementation of a three-
stage decimator in cascade with a three-stage interpolator is
shown in Fig. 7(a) and its corresponding control sequence is
given in Fig. 7(b). Together, the cascade results in the imple-
mentation of a low-pass filter. To realize only a decimator or
interpolator, appropriate parts of this structure can be par-
titioned off from the main structure.

The decimator has three data buffers (S1D, S2D, and S3D)
for storage or internal data for its three stages. These storage
buffers are of durations N ,N, and N words, respectively.
These lengths are derived according to the relationship

N;=Q1D1>N1 i=l,2,3, (8)

where Q1 is an integer (defined in [1]), N1 is the filter length
for the ith stage and D. is its decimation ratio. Each data
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MAIN I/O DATA BUFFER

buffer is partitioned into Q, blocks of data of length D.
Three additional buffers hold the coefficients for the filters
in each of the three stages. The interpolator has six data
buffers associated with it, three (SlI, S21, and S31) of lengths
Qi, Q2, and Q, respectively, and three (Til, T21, and T31)
of lengths D1, D2, and D3, respectively. In addition, stage i
has a buffer for the "scrambled" coefficients which are par-
titionéd into D1 blocks of Q samples each. The operation of
this structure is depicted by the control sequence in Fig. 7(b).
The data buffers can be thought of as shift registers although
they do not have to be implemented in this way. The process
begins by reading D1 samples from the main input/output

(I/O) buffer into S1D. One output sample is then computed
from stage one of the decimator and stored in S2D. This
process is repeated D2 times until D2 samples have been
computed and stored in S2D. One output is then computed
for stage 2 of the decimator and stored in S3D. The above
process is repeated D3 times until D3 samples have been
stored in S3D at which point one output sample is calculated
from stage 3 of the decimator. This completes one cycle of
the decimator;D D1D2D3 samples have been read from the
main I/O buffer and one output sample has been computed.
A similar computation cycle can now proceed for the inter-
polator. The output sample from the decimator is stored into

SAMPLES .•____ D _____ I o _____
SAMPLES SAMPLES

NI=QIDI

'1,2,3

h1(n) (SCRAMBLED)

SAMPLES

D2 I..J,ui D
SAMPLES I SAMPLES

h2(n) (SCRAMBLED)
COEF. VECTOR

Q2 —44.--- 2
SAMPLES SAMPLES SAMPLES

N2 SAMPLES

$21 Q2 —A'.1 STAGE 21
SAMPLES

S30

— N3 SAMPLES——

STAGE 3D

DECIMATION

STAGE 31

INTERPOLATION

(a)

Fig. 7. (a) Block diagram for implementing a three-stage decimator followed by a three-stage interpolator and (b) its
corresponding control sequence.
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(b)
Fig. 7. (Continued.)

S31. D3 output samples are computed from stage 3 of the
interpolator and temporarily stored in T31. One sample from
T31 is then stored in S21 and D2 output samples are computed
from stage 2 and stored in T21. SlI is then updated by one
sample from T21 and D1 outputs are computed and stored in
the main I/O buffer. This is repeated until all D2 samples in
T21 are removed. T21 is then refilled by updating S21 with
one sample from T31 and computingD2 more samples. Upon
completion of the interpolator cycle one input was trans-
ferred into the interpolator and D output samples are com-
puted and stored in the main I/O data buffer. The process
can then be repeated on the next block of D samples.

The above process was described as a serial process and
represents a straightforward approach for a software imple-
mentation. If high-speed and/or special-purpose hardware
are used, the structure in Fig. 7(a) is also particularly attrac-

tive as it easily lends itself (with slight modification) to various
degrees of parallel processing and pipelining. For example, in
the interpolation stages all D• outputs of a stage i can be com-
puted in parallel [6]. Similar degrees of parallelism are pos-
sible in the implementation of the decimator stages. Pipe-
lining is also an attractive possibility with this structure since
it is essentially a completely feed—forward structure [7]. Each
stage can be separately implemented in hardware. In this case
it may be more attractive to choose the design such that the
amount of computation is equally divided among the stages
rather than minimizing the total computation or total storage.
Another feature of this structure which could be used in a
pipeline scheme is that, because of the duality of the decima-
tion and interpolation stages, many of the same control and
timing signals used for the decimator could also be used for
the interpolator as well.

START

DONE
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V. hR DESIGNS FOR MULTISTAGE DECIMATORS AND
INTERPOLATORS

Until now we have only considered the use of FIR filters
in the implementation of decimators and interpolators. One
reason for this is that FIR filters can be designed to have
exactly linear phase. However, if linear phase is not an im-
portant consideration, then hR filters can be considered as
an attractive alternative since they can generally be imple-
mented more efficiently than equivalent FIR designs. In
this section it is shown that an optimization procedure similar
to the one discussed in [11 can be used to design an optimal
hR multistage decimator, interpolator, or narrow-band filter.
In this discussion we will only consider the case of integer
decimation or interpolation stages. It is fairly straightforward
to extend the results to noninteger stages.

To formulate the problem it is useful to reexamine the
design of decimator and interpolator stages with integral
ratios of sampling rates. As shown in [1, Fig. I] , a decimator
with a decimation rate of M can be implemented by filtering
the input signal with a low-pass filter (in this case an hR
filter) and then decreasing the sampling rate by selecting one
out of every M samples of the output w(n) of the filter. Un-
like the FIR implementation, the output w(n) of the hR
filter (or all states of its recursive part) must be computed
for all values of n prior to decimating by M. In a multistage
decimator design the specifications on the low-pass filters
are the same as those discussed in [1] with D1 —M1 for the
ith stage. Similarly, for a 1 :L interpolator, the same design
specifications as discussed in [1] apply to the low-pass hR
filters at each stage. As in the FIR case, duality also applies
in the case of hR designs of decimators and interpolators
and, therefore, all design formulas and curves for multistage
fIR decimators also apply to multistage hR interpolators.

With the above concepts in mind we can now formulate
the relations for the multistage fIR decimator (or interpola-
tor). We will assume that the hR filters are optimal elliptic
designs (obtained from biinearly transformed analog designs).
Then the filter order for stage i can be shown to be of the
form [8]

N1 =A(, 65) Bj(D,f,K;Di ,D2, - - ,Dk1) (9)

where A( ) is a function of the ripples and B1 is a function of
the cutoff frequencies and decimation ratios. The function
A1( )hastheform

Aj=A(j,6)

where

K ( ) the complete elliptic integral of the first kind
passband ripple tolerance

ö stopband ripple tolerance

and

K total number of stages.

The function B1( ) has the form

B1B1(D,f,K;D1,D2, -

— K(t1)
12

XWT-t?)
where

= transition ratio of the filter for the ith stage

/ itf
tanj

— \f(i—i)
/ir(frj fy)tan
\ fri—i

and using previous terminology

frifro/flh)J
(l3b)

f=(lLf)f5 (13c)

f5=h/(2D) (13d)

1K-i
DKD/ flD1. (l3e)

/ 1=1

Minimization of the Multiplication Rate

With the above expression for filter order, the problem of
minimizing a multistage fIR decimator or interpolator design
in terms of its multiplication rate can readily be formulated.
The multiplication rate for a single stage i is approximately
proportional to its hR filter order N1 times its (output)
sampling rate fr(i—i). For a K-stage design, the total multi-
plication rate of the decimator (or interpolator) RT can
then be expressed in the form

K
RTLG'Njfr(jl)

K N.D•
1

(14)

ii1L1 D

where G' is a proportionality factor which is dependent on
(10) the method of implementation of the IIR filter structure.

For example, in a conventional cascade structure, three
multiplications are required for the implementation of a
second-order section and, therefore, for this structure G'
is approximately - (and we must add one multiplication

(11) for the gain constant).
With the aid of (9) the above expression can be written in

the form(l )/(
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(iSa)

where

D,Lf,K;D1,D2," ,Dk.1)

=

The reader should note the similarity of this expression to
that of [1, eq. (18a) and (18b)]. It is seen that Rr can be
expressed as a product of a function of the ripples, the initial
sampling frequency, and a function of the cutoff frequencies
and decimation ratios. In a similar manner, RT can be mini-
mized by minimizing S as a function of the decimation (inter-
polation) ratios for each value of K and then choosing the
value of K which minimizes the product, The function
A(61)/K, 6) is tabulated in Table I for convenience.

The minimization of S can again be performed by an optimi-
zation routine such as the Hooke and Jeeves algorithm. This
optimization is not a trivial one. The evaluation of the elliptic
functions3 can be extremely sensitive numerically. Great care
must be used in controlling the range of parameter values to
avoid both arithmetic overflow and roundoff error, and also
in constraining the optimization search to be within the region
of realizable solutions.

Using the Hooke and Jeeves method, the above optimization
problem was solved. Plots of minimized values of S are given
in Fig. 8 and the corresponding optimum decimation ratios
and B1( ) values are given in Figs. 9 and 10, respectively.
These curves and Table I (which gives values for the function
A as 61) and 6 vary) can be used in a manner similar to that
of the FIR design curves as a guide toward selecting practical
integer values of decimation ratios for decimator (or inter-
polator) designs.

Several interesting observations can be made from these
curves and tables. As in the FIR case, the function of the
ripples A(o/K, 6) (see Table I) is a weakly varying function
of K and again most of the interesting observations can be
made from curves of the S function. From plots of S in Fig. 8
we observe that improvements in efficiency of approximately
two or three are possible for moderate values of D (20—50)
by using a multistage design and gains of up to about eight
are possible for large values of D and small values of f.
Although these gains are not as striking as those for FIR
designs (which can be orders of magnitude), they do represent
modest improvements. Another conclusion that can be
drawn from the curves in Fig. 8 is that little, if any, improve-
ment in efficiency can be gained by using a three-stage hR
design over a two-stage hR design and, therefore, two stages,
at most, are sufficient for most purposes.

The curves in Fig. 10 represent B, values for the optimized
designs. By noting from (9) that N1 =AB,, it is clear that the

3See Hastings [9] for the evaluation of J( ( ).
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B1 values represent the normalized (e.g., N1/A) filter orders.
We can observe from these curves that the order of the final
stage of a two- or three-stage design is essentially equal to
that of a one-stage design. This occurs because the orders of
the hR filters are determined by the ratio fp/f3 (the unwarped
transition ratio) as opposed to FIR designs whose orders are
determined by the difference f - f,,. As the sampling fre-
quency is reduced it is clear that the transition ratio tK [see
(13a)] of the final stage K remains essentially unchanged
(except for a slight warping due to the bilinear transformation)
and, therefore, NK and Bk remain essentially unchanged as
K is increased. The filter orders for the earlier stages of a
multistage design are of course lower as seen in Fig. 10.

It can also be seen that the sum of the filter orders for a
multistage design, i.e., the total required storage, will always
be greater than that of a one-stage design. Therefore, a multi-
stage hR decimator or interpolator is always less efficient, in
terms of storage, than a single-stage hR design. Thus, unlike
the FIR design where both computation and storage could be
reduced, the multistage hR design represents a tradeoff be-
tween computation and storage.

An Example

To illustrate the use of the IIR design tables and curves we
will choose a decimator with the following specifications:

These are the same specifications that were used for the
100:1 filter example in [2] and in the 100:1 decimator
example in Section HI.

TABLE I
TABULATION OF

(15b)

JK-i

/ 1=1

D= 100
f = 0.00475

= 0.001

fro = 1
f=0.005

= 0.0001.



308 IEEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, AUGUST 1976

50 fo5 50
fs-fp

E -0.2

i:

0.1 tliil tiiii I IIIiiiI I II. I I IIiiiii I II I IIIiiIl I

1 10 100 1000 1 tO 100 1000
D 0
(a) (b)

5.0 fo.i 5.0 f = 0.05

fl I 1111111 I II 11111 I I 1111111 ii 0.1 II 11111 I iIiiiiI I
10 100 1000 I 10 100 1000

D D

(dl

5.0
= tf=o.o2 5.0 6f=ooi

0.1 I II I II I. o_j I 1111:1 I uliiiil I I 1111111 I Iii
1 10 100 1000 1 10 100 1000

0 0
(e) (f)

Fig. 8. Plots of minimized values ofSas a function of K,D, and fwhere f is 0.5, 0.2, 0.1, 0.05, 0.02, and 0.01 for
plots (a)—(f), respectively.
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Fig. 9. Plots of optimum decimation ratios for hR decimator and interpolator designs as a function of K, D, and Af
where fis 0.5,0.2,0.1,0.05, 0.02, and 0.01 for plots (a)—(f), respectively.
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Fig. 10. Plots of B values for hR designs as a function of K,D, and fwhere f is 0.5, 0.2, 0.1, 0.05, 0.02, and 0.01
for plots (a)—(f), respectively.

For a one-stage hR design it can be seen from Table I that
A = 8.50 and from Fig. 10(d), B1 = 1.61. Therefore the
theoretical filter order is 13.7 [from (9)] and actual value of
14 must be used. For a cascade implementation this will
require a multiplication rate of (1 ÷ 14 X 3/2)fr0 or 22
mults./s.

For a two-stage hR design it is seen from Fig. 9(d) that the
optimum (theoretical) decimation ratios are D1 = 14.5 and

= 6.9. From Table I and Fig. 10(d) we find thatA =8.72,
B1 = 0.39 and B2 = 1.6 giving theoretical filter orders of
N1 3.4 and N2 13.9. One practical choice of decimation
ratios is D1 = 20 and D2 = 5. This leads to theoretical filter
orders of N1 = 3.8 and N2 = 13.8 (these values cannot be ob-
tained from Fig. 10; see instead the tables in [8]). Actual
filter orders for this design are, therefore, 4 and 14 for N1
and N2 ,respectively.

Another practical choice of decimation ratios might be
D1 = 10 and D2 = 10. This results in theoretical filter orders
of N1 = 3.1 and N2 = 13.97 and actual values of 4 and 14,
respectively. With careful design, a third-order filter might
be substituted for N1 ,however.

The results for these three hR designs for the D = 100
decimation are tabulated in Table II. As seen in this table,

a good choice for the hR design might be the two-stage
approach with D1 =20 and D2 = 5. This results in a savings
in computation of 2.72 over that of a one-stage design. It is
achieved at the cost of four extra storage locations and the
added complexity of a two-stage design.

In order to compare the hR designs to FiR designs a two-
stage and a three-stage FIR decimator design are also in-
cluded in Table II. The design of the two-stage FIR decima-
tor was taken from [2] and the three-stage design is that
given in Section III. From this comparison we can observe
that the FIR designs are more efficient in terms of computa-
tion than the IIR designs, however, they require considerably
more storage for both data and coefficients.

VI. SUMMARY

In this paper we have discussed several of the important
issues which concern the detailed design and implementation
of multistage decimators, interpolators, and narrow-band
filters. It was shown that, when using FIR filters, multistage
decimators and interpolators which are minimized for storage
were essentially minimized in terms of computation rate as
well. This is because the minimum on the computation rate
was a broad minimum of the objective design function and
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TABLE II
COMPARISONS FOR A D 100 DECIMATOR

One Stage
(IIR)

Two Stage
(IIR)

Two Stage
(IIR)

Two Stage
(FIR)

Three Stage
(FIR)

Optimum Declination Ratios D1 = 100 D1 = 14.5
.02=6.9

D1 14.5
D2"6.9

D1 = 39.4
1)2=2.54

D1 = 16.09
D2=4.55
D3 = 1.36

Actual Decimation Ratios Used D1 = 100 Di = 20
1)2=5

D1 10
D2=10

D1 = 50
D2=2

D1 10
12=5
D3=2

Theoretical Filter Orders N1 = 13.7 N1 = 3.8
N2 = 13.8

N1 = 3.1
N2 = 13.97

— -.-

Actual Filter Orders Used N1 14 N1 =4
N2=14

N1 4
12—14

N1 = 423
N2=347

N1 = 38
N2=38
N3 = 356

Total Multiplication Rate 22 mults./s 8.1 mults./s 9.2 mults./s 5.98 mults./s 4.06 mults./s
Savings in Rate over One-Stage hR 1.0 2.72 2.39 3.68 5.42
Total Data Storage 14 18 18 798 436

did not vary significantly as the decimation ratiOs of the
individual stages were varied. Thus the optimum design
based on storage coincided with the broad optimum based
on computation.

A second issue in the design of optimal decimators and
interpolators was the question of minimizing FIR filter order
at each stage. It was shown that, for the early stages in a
multistage design, one could take advantage of the DON'T
CARE frequency bands which lay between each of the relevant
frequency bands to reduce the filter order required to meet
the given design specifications. It was shown that, for the
early stages in the design, reductions in filter order of up to
50 percent were achievable in this manner.

Another issue in the implementation of multistage designs
was the question of how to efficiently implement multistage
decimators and interpolators in both hardware and software.
In Section IV a modular structure was discussed which was
particularly suited for both hardware and software imple-
mentations. Techniques for pipelining the hardware structure
for maximum efficiency were also discussed.

Finally, the question of the suitability of using hR filters
in the implementation of multistage decimators and inter-
polators was discussed. It was shown that a multistage hR
design is only slightly more efficient computationally than a
single-stage hR design, and that it was always less efficient
in terms of storage than the single stage design. In comparing
the FIR and hR implementations of decimators and inter-
polators, it was shown that the storage required for hR im-
plementations was considerably less than for FIR irnplementa-

tions; however, the computation rates were comparable. In
addition, the FIR designs were linear phase designs whereas
the hR designs were elliptic designs whose phase was highly
nonlinear.

In summary, we have tried to discuss several of the issues
which affect the design and implementation of multistage
decimators and interpolators. We have tried to point out the
advantages and disadvantages of each of the alternatives which
can be used to design and implement these systems.
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