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On the Properties of Frequency Transformations 
for Variable Cutoff Linear 

Phase Digital Filters 

R. E. CROCHIERE AND L. R. RABINER 

Akrrucr-In a recent paper by Oppeuheim, Mecklenbrauker, and 
Mersereau [l] a class of variable cutolff linear phase digital filters has been 
proposed. The implementation of this class of filters is achieved by 
replacing a subnetwork in a prototype network such that it performs a 
frequency mapping of the prototype filter response. By varying a small 
number of coefficients in the subnetwork the frequency transformation can 
be varied. In this letter we examine the characteristics of this transforma- 
tion in greater detail and discuss the range of parameters over which it can 
be useful. 

I. INTROIDUCTION 

It has been shown in [l] that a variable cutoff linear phase 
digital filter can be implemented by replacing appropriate sub- 
networks in a Taylor structuree [2] by a subnetwork which 
performs a frequency transformation of the original (prototype) 
network. This frequency transformation can be varied by vary- 
ing a small number of coefficients in the subnetwork. The order 
of this transformation can be of any degree desired, however, 
only the first-order transformation leads to a structure which is 
canonical and which monotonically maps a region of the origi- 
nal frequency domain into the entire transformed frequency 
domain. For these reasons the first-order transformation is of 
greatest interest. In this letter wle examine the characteristics of 
this first-order transformation and discuss the range of parame- 
ters over which it is useful. 

II. THE GENERAL FIRST-‘ORDER TRANSFORMATION 

As shown in [l] the first-order transformation takes the form 
of a straight line in the cos-‘w, cos-D plane and can be 
expressed as 

-4, 
cos fl= -- +-+osld 

AI I 
(1) 

where w corresponds to the frequency of the prototype filter. Q 
corresponds to the frequency of the transformed filter and A, 
and A, are parameters of the transformation which can be 
varied. Since the transformation maps part of the w domain to 
all of the D domain the magnitude of the slope, ]d(cos Q)/d(cos 
w)] = 1 l/A,j, must be greater than one. If this slope is positive the 
transformation will be defined as a forward transformation (i.e., 

increasing w maps to increasing a) and if it is negative the 
transformation will be referred to as an inverted transformation 
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Fig. 1. Plots of Q versus da/do for values of A, from 0.1 to 1.0 and y = 0. 

(i.e., increasing w maps to decreasing s2). Therefore, 

O<A,< 1, forward transformation (24 
-l<A,<O, inverted transformation. (2b) 

A, in combination with A, determines the frequency of invari- 
ance of the transformation. That is, the frequency q which maps 

to Oi such that oi = Oi for the forward transformation or oi = rr - 
Qi for the inverted transformation. Given a desired frequency of 
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Fig. 2. Plots of Versus dQ/dw for q=n/4. Fig. 3. Plots of D versus dD/do for oi-?r/2. 

invariance, w,, and a desired slope l/A,, A, becomes 

A,=(]-JA,J) coswi. (3) 

Thus y and d(cos. Sl)/d(cos w) can be chosen in accordance 
with a two term Tayler expansion about the frequency of invari- 
ance. 

Another important consideration in the transformation is the 
unwarped frequency slope dQ/dw. This function is useful in 
characterizing the spread of the transformation at a given 
frequency. It is helpful, for example, in determining the spread 
of the transition band in a low-pass to low-pass mapping or the 
spread of the passband (and transition bands) in a variable 
bandpass mapping. 

An interesting anamoly occurs in this slope at y when tii 
approaches 0 or ~7. It can be shown that at the frequency of 
invariance, dSi?/dwl, =d(cos G)/d(cos a)= I/AI for wi#O, m, 
but when oi = 0, 7~ the slope abruptly changes to 
dil/dw& = I/a. While this anomaly has no practical con- 
sequence in the transformation it suggests that one must be 
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careful about the notion of using the slope at wi as a measure of 
the spread of the transformation. 

III. PLOTSOFTHETRANSFORMATIONANDITSSLOPE 

Fig. 1 shows a series of plots of both Q versus w and dfi/dw 
versus w for several values of A, and oi. In particular, Fig. l(a) 
and lb show these functions for wi equal to 0 and for A, varying 
from 1.0 to 0.1 in steps of 0.1. Similarly, Figs. 2 and 3 show pairs 
of plots for wi = 17/4, and 77/2, respectively. In each of the plots 
the left vertical scale applies to forward transformations and the 
right vertical scale applies to inverted transformations (with 
appropriate negative values of A J. Several interesting properties 
of the transformation can be seen in these plots. First it can be 
seen that as the invariance frequency, 4, increases from 0 to 
17/2, the set of frequencies in the w domain which maps into the 
region 0 < G? < 71 decreases for a fixed value of A ,. This means 
that as wi increases, the transformation spreads out the 
frequency response from a small region of the o scale to the 
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entire frequency region of the Q scale. As wi increases beyond 
wi = n/2, this effect reverses itself. 

Another observation that can be made is that the derivative 
function (&/do) is approximaltely constant over some range of 
w and then sharply increases ats w comes close to the point (s) 
which map to 0 = 0 and/or 0 := V. This property of the deriva- 
tive is an interesting one in that the function dQ/do can be 
interpreted as the ratio between the transition region of the 
transformed filter (AF’) to the transition region of the original 
filter (AF), i.e., 

AF’ df2 
xF=z. (4) 

This leads to the observation that for the transformation to be of 
some practical use, the derivative dfJ/dw should be as close to 1 
as possible. For all practical purposes the transformation is 
reasonably good for the range 1 < dQ/dw,< 2 and may be 
acceptable for many applications with considerably larger values 
of dQ/dw. The curves of Figs. l(b), 2(b), and 3(b) are especially 
useful in showing the regions where dQ/dw falls below some 
desired value. It can also be observed from these plots that the 
point of minimum dQ/dw does not occur at frequency y except 
when wi = 0, n/2 and rr. 

In summary we have attempted to characterize the transfor- 
mation proposed in [l] and show the useful parameter range and 
frequencies over which it can be applied and also the limitations 
which are encountered. 
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Synthesis of Recursive Digital Filters 
with Prescribed Attenuation and 

Group-Delay Characteristics 

RAMAMUFLTY NEDUNURI 

Absfrcrct-A method of synthesizing recursive digital filters with pre- 
scribed attenuation and group-delay characteristics is presented. The 
method depends on the fact that tlhe introduction of complex transmission 
zeros into the transfer function of the filter network allows independent 
control of both attenuation and Igroup-delay responses of the filter. An 
example is presented which clearly demonstrates the improvement in 
attenuation response obtained when complex transmission zeros are in- 
troduced into the transfer function of the filter. ’ 
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I. INTRODUCTION 

In the design of electronic systems (both analog and digital), 
we often require filters with prescribed attenuation and group- 
delay characteristics. One method of solution to this problem is 
to design a filter which satisfies the prescribed attenuation 
requirements only and then equalize the group-delay response of 
the filter by means of separate all-pass networks. However, in 
the case of analog filters, it is found that a more economical 
solution is obtained by synthesizing filters with complex trans- 
mission zeros [l], [2]. The introduction of complex transmission 
zeros into the transfer function of the filter allows independent 
control of both attenuation and group-delay responses of the 
filter and thus enables the designer to satisfy simultaneously 
prescribed constraints on attenuation and group delay. 

In this paper we shall show that the above method can also be 
used in the synthesis of digital filters. In Section II we first 
describe a procedure for the synthesis of recursive digital filters 
with prescribed transmission zeros; the procedure is similar to 
that used in the synthesis of analog filters [3]. In Section III we 
give an example which clearly demonstrates the advantages of 
introducing complex transmission zeros into the transfer func- 
tion of the filter network. 

II. SYNTHESIS PROCEDURE 

Once the transmission zeros of the filter network are specified, 
the problem is to determine the poles of the transfer function 
such that the attenuation response has an equal-ripple behavior 
in the passband. This is done through the transformation 

where 

s=a+j/? 

z=x+jy=epT 

p=a+jw 

T= sampling period = 1 /f, 

f, = sampling frequency 

w,, w2 = cutoff frequencies. 

It is not hard to see that this transformation maps the passband 
w1 <w < o2 onto the imaginary axis to > p > 0 in the s plane. 
The procedure is as follows. 

1) Transform all the p-plane transmission zeros into the s 
plane. If pi = ui +joi is a transmission zero, we have 

and 

si = q + j& = Vm 

where 

B,= (Oi-ui)ILi 
I 

vi’ + pf 

ui = cash ai T cos wi T - cos o,T 

vi=coshuiTcoswiT-coso,T 

pi = sinh ai T sin y T. 


