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the equations being solved, which is also true of the reflection
coefficients. Further, if the covariance matrix is Toeplitz, and
the vector of dependent variables consists of autocorrelation
terms, the Cholesky K-parameters are equivalent to the usual
reflection coefficients.
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A Study of Techniques br Finding the Zeros of Linear Phase
FIR Digital Filters

C. E. SCHMIDT AND L. R. RABINER

Abstract—Since the majority of the zeros of standard finite-duration
impulse-response (FIR) linear phase digital filters (e.g., low pass, band-
pass, etc.) are located on the unit circle in the z -plane, it ispossible to
exploit this information in devising an efficient method for accurately
solving for the locations of these zeros. To perform this task, three
standard algorithms for finding the roots of a polynomial were eval-
uated. These methods were the bisection method, the modified false
position method, and the Newton-Raphson method. Using a conver-
gence criterion based on the value of the function (rather than the
uncertainty in the position of the root), it was experimentally found
that the Newton—Raphson method was the most accurate in deter-
mining the location of the roots, as well as being the most computa-
tionally efficient of the three methods. A second study was made
to compare methods for determining all the zeros of the filter (i.e.,
the zeros off the unit circle, as well as those on the unit circle). Two
sophisticated algorithms (the Jenkins—Traub Three-Stage Algorithm,
and the Madsen-Reid Algorithm based on Newton's method) were
used in this study as well as a deflation method in which the unit
circle roots were first located, and then used to form a deflated poly-
nomial which was used to find the roots which occurred off the unit
circle. It was found that for polynomials of degree greater than about
100, both the Jenkins-Traub and Madsen-Reid methods were far

superior (in terms of accuracy in locating the roots off the unit circle)
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to the deflation method because of inaccuracies incurred in deflating

high-order polynomials. It was also found that the accuracies of both

the Jenkins-Traub and Madsen-Reid methods were comparable; how-
ever, the Madsen—Reid method was between two and four times faster
than the Jenkjns-Traub method for the examples tested.1

I. INTRODUCTION

The problem of accurately locating the roots of high-order
polynomials (of degree greater than 1100) is an extremely
difficult one. Such high degree polynomials often occur when
working with linear phase finite-duration impulse-response
(FIR) digital filters. It is the purpose of this correspondence
to report on the results of an experimental study of several
methods for accurately and efficiently solving for the loca-
tions of the roots of high-order FIR digital filter polynomials.

II. UNIT CIRCLE ROOTS

Since the majority of the zeros of standard FIR linear phase
digital filters are located on the unit circle in the z-plane, the

problem of finding these zeros can be trivially reduced to a
problem of finding the real zeros of a real polynomial in the
following way. The filter polynomial can be evaluated on the
unit circle, giving the frequency response

- (N-1)/2
2h(n)cos(wn), (I)

where N is the filter impulse-response duration, h(n), n
—(N — 1)J2,- - , (N — 1)12 is the impulse response, and
(because of the linear phase)

h(n)=h(- n), n0,l,---, (2)

Equation (1) shows that the problem of finding the roots of
the filter occurring on the unit circle is readily converted to
a problem of finding real zeros of a real valued function (i.e.,

values of o. such that H(e1") = 0).
A wide variety of techniques are available for solving this

problem. Three such methods were chosen for investigation.
These were the bisection method, the modified false position
method, and the Newton-Raphson method [1]. All these
methods use iterative techniques to bound the locations of

the roots as tightly as possible. Thus an initial estimate as

to the location of a root was required, as well as a criterion

for deciding when to terminate the search for the root. The

initial estimates of root locations were obtained by evalu-
ating H(eJW) on a reasonably large grid of points using a
standard fast Fourier transform (FF1). The convergence
criterion was to terminate the search when the function

magnitude fell below a specified value (epsilon) at either the
estimate of the root, or at both endpoints of the interval in
which the root was bound.

Table I presents a comparison of both the accuracy [Table
1(a)] and efficiency [Table 1(b)] of these three methods in
locating the unit circle roots of three polynomials of degrees
48, 96, and 198, respectively.2 The Newton—Raphson method
was the most accurate of the methods across all three poly-
nomials, and for both values of epsilon, the convergence
criterion. The Newton-Raphson method was also uniformly

1The authors have been made aware of the fact that a newer imple-
mentation of the Jenkins—Traub method has been published in Assoc.
Comput. Mach. Trans. Math. Software, vol. 1, no. 2, June 1975. This
implementation should run somewhat faster than the earlier method
cited in this report.

2A more complete set of comparisons has been made and is available
on request from C. E. Schmidt, Bell Laboratories, Rm. 2D—525, Murray
Hill, NJ 07974.



TABLE I

Bisection Modified False Newton-Raphson Polynomial
Epsilon Method Position Method Method Degree

.378x10'

.378xt0
.l8x10'°
.l5xl0°

.l8xl0 .llx104 48

.2lxl0 ,25xl07 48

.527xlO'i

.527x10'
.lOxllY4
.98xl0'-

,70xl05 .48x105 96
.l4xlO° .92xl0—a 96

.430xl0'

.430xl0'
.45xl05
,50x107

.oxio .28x105 198

.80x107 .51x108 198

(a)

Average Error (radians) of Unit Circle Roots

Epsilon

Bisection
Method

Modified False Newton-Raphson Polynomial
Position Method Method Degeee

.378x107
,378xlO

.94
1.57

.49 .42 48
1.09 .59 48

,527xl07
.527xl07

3.04
6.11

1.58 1.39 96
3.82 1.99 96

.430xl0—
,430xl0

14.11
25.81

6.29 5.92 198
15.98 9.13 198

Computation Time (Seconds) for Finding Unit Circle Rootn

the most efficient of the three methods tested. The reason
the Newton-Raphson method converged more rapidly to the
actual root location was because it used the function deriva-
tive to make successive estimates of the root location, whereas
the other two methods relied entirely on the function value.
The increased computation for evaluating the derivative was
more than compensated by the faster convergence of this
method.

The results in Table I show the average error in the root
location (in radians) across all the unit circle roots. Fig. 1
shows a plot of the actual error in each of the unit circle
roots for the 198th degree polynomial using the Newton—
Raphson method. Although the average error for this case
was 0.5 X 10—8, the peak error was about l0.

III. ROOTS OFF' THE UNIT CIRCLE

Although the majority of the roots of the FIR filter poly-
nomials were on the unit circle, it was also important to be
able to locate the roots which occurred off the unit circle.
Three methods were investigated which could determine all
the roots of the polynomial. Two of the methods were
sophisticated algorithms for solving for complex roots of a
real function. These were the Jenkins—Traub Three-Stage
Algorithm [21, and the Madsen—Reid Algorithm based on
Newton's method [31. Neither of these methods made special
use of the property that the majority of the roots of the
polynomial were on the unit circle in the z-plane. The third
method used the Newton-Raphson method to find the unit
circle roots, and then deflated the polynomial to obtain a
fairly low-order polynomial from which the roots found off
the unit circle were obtained using either of the above
methods.

Table H shows a comparison of the accuracy in determining
both the unit circle roots and the roots found off the unit
circle (in terms of average magnitude error), and it also pro-j
vides a comparison of the computation times of the three
methods for five different filter polynomials. Due to mac-

curacies occurring in deflating high-order polynomials, the
deflation method provided entirely inadequate root locations
for the polynomials of degree greater than 48. However, both
the Jenkins—Traub and Madsen—Reid methods provided ex-
tremely accurate results, even for a 248th degree polynomial.

In comparing, computation times, it was found that the
Madsen—Reid method was from 2—4 times more efficient
than the Jenkins—Traub method, as seen in Table II.
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TABLE II

Average Error (Radiono) for Unit Circte Roots

Average Mognitode Error for Rooto off Ihe Unit Circle

i'egeee 48 Degree 96 Degree 148 Degree 198 Degree 248

.76 sec. 2.7 sec. 6.5 sec. 11.8 sec. 16.1 soc.

1.92 sec. 10.6 sec. 27.5 sec. 41.8 sec. 97.4 0cc.

.97 soc. 3.8 sec. 8.7 sec. 15.7 sec. 25.t sec.

Computation Time for Finding all the Polynomial Roots

IV. SUMMARY

This study has compared three simple methods for finding
unit circle roots of an FIR filter polynomial and shown the
Newton-Raphson method to be more accurate and efficient
than the bisection method or the modified false position
method. However, when one is interested in all the roots
of the polynomial, the gains in speed obtained by knowledge
that most of the roots are on the unit circle are offset by in-
accuracies in deflating the polynomial to solve for the remain-
ing roots. The study has also shown that two readily available,
sophisticated root-finding methods were both capable of
accurately determining the locations of the roots of poly-
nomials up to the 248th degree, the largest one tested. Finally,
it was found that the Madsen—Reid method was significantly
more efficient than the Jenkins—Traub method for the ex-
amples tested.
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On the Sensitivity of Charge-Coupled Device Transversal
Filter Response to Charge-Transfer Inefficiency

H. SUNDBERG, R. CAVIN, III, AND J. HOWZE

Abstract—The design of charge-coupled device (CCD) transversal
discrete-time filters with approximately linear phase and satisfying
general magnitude constraints is considered. The charge-transfer ineffi-
ciency of the CCD is included in the problem formulation and an effec-
tive sensitivity analysis procedure is given for the charge-transfer ineffi-
ciency parameter.

I. INTRODUCTION

The charge-coupled device (CCD) functions as a shift
capable of storing and transferring analog data in the form of
charge packets from one stage in the chain to the following
stage. The capability of the CCD to store, and upon command,
transfer information to the folloving series element allows it
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