
Absfraa One of the most difficult problems in speech analysis is 
reliable discrimination among silence, unvoiced speech, and voiced 
speech which has been transmitted over a telephone line. Although 
several methods have been proposed for making this 3-level deci- 
sion, these schemes have met with only modest success. In this 
paper a novel approach to the voiced-unvoiced-silence detection 
problem is proposed in which a spectral characterization of each of 
the 3 classes of signal is obtained during a training session, and an 
LPC distance metric and an energy distance are nonlinearly com- 
bined to make the final discrimination. This algorithm has been 
tested over conventional switched telephone lines, across a variety 
of speakers, and has been found to have an error rate of about 5%, 
with the majority of the errors (about 2/3) occurring at the boun- 
daries between signal classes. The algorithm is currently being used 
in a speaker independent word recognition system. 

I. Introduction 
The problem of reliably discriminating among voiced speech, 

unvoiced speech, and silence is one of the most difficult problems 
in speech analysis. There are several reasons why this is so. One 
problem is the large dynamic range of the speech signal itself in 
which a 20-40 db variation of signal level is not uncommon within 
the speech of a single talker. Compounded with this is a 20-40 db 
variation in level among talkers. Another problem is that some- 
times the acoustic waveform does not provide accurate information 
about the signal classification [1] - e.g., the vocal cords are vibrating 
(i.e., the signal is voiced speech) but no periodicity is seen in the 
acoustic waveform. Finally all these problems are compounded by 
the degradations of telephone lines which include bandlimiting, 
nonlinear phase distortion, center clipping and noise addition. 

Classically the method for discriminating among these three 
signal classes is to use a level test to discriminate silence from 
speech, and then discriminate between voiced speech and unvoiced 
speech by a logical decision based on the values of certain meas- 
ured features of the signal - e.g., energy, zero crossings etc. [2] 
When used in conjunction with pitch detection, features of the 
pitch detector are often used to supplement the voiced-unvoiced 
decision [3-6]. Recently Atal and Rabiner [71 proposed a statistical 
decision approach to voiced-unvoiced-silence classification in which 
a set of measured features were combined using a non-Euclidean 
distance metric to give a reliable decision. This method was optim- 
ized for telephone line inputs by Rabiner et at., [8]. Their results 
showed that reliable discrimination between voiced and nonvoiced 
speech could be obtained over telephone lines using the statistical 
approach; however the overall error rate for the 3-class decision was 
fairly high (l1.7%) over telephone lines. 

Based on the results of reference 8, it was felt that an alterna- 
tive approach was required to lower the error rate for telephone line 
inputs. The problem with combining a set of features is that they 
can only partially represent the information present in the signal. 
To obtain a complete representation of the signal properties 
requires a classification procedure based on the signal waveform, or 
its spectrum. A novel approach was recently suggested by McAuley 
[9] in which a matched digital Wiener filter was designed for each 

of the signal classes, and the signal was processed by each of these 
fitters. Based on the signal output from each of the filters, a dis- 
tance was computed representing how closely the input signal was 
matched to the filter, and the minimum distance was used to make 
the final classification. Although this approach shows promise it 
requires a large amount of signal processing, and has not as yet 
been extensively tested. 

An alternative procedure is suggested in this paper in which 
an average signal spectrum is measured (from a training set of 
data) for each of the 3 signal classes, and an LPC distance is used 
to measure similarity between the test signal and each of the refer- 
ence patterns. Additionally an energy distance is calculated and the 
LPC and energy distances are nonlinearly combined to make the 
final class decision. The advantages of this technique are that all 
the spectral information in the signal is used in the classification 
algorithm, and that the LPC distance computation nonuniformly 
weights the spectrum in measuring overall similaity. In this way a 
fairly robust, reliable discrimination is obtained. 

11. Description of the Algorithm 
Figure 1 shows a block diagram of the signal processing used 

in the algorithm. The input signal s(n) is sampled at a 6.67 kHz 
rate (to .accomodate the 3.2 kl-Iz cutoff of the telephone line) and 
high pass filtered at approximately 200 Hz to remove any dc, low 

frequency hum, or noise components which might be present in the 
signal. An 8-pole LPC analysis is performed on each continguous 
15 msec (100 samples) section of signal using the covariance 
method of analysis. A total of 67 analyses per second are per- 
formed. In addition to the LPC parameters, the log energy of the 
15 msec section is computed. For notational purposes we refer to 
the LPC set for the i' frame as 

a, = (a(l),a(2) a(8)) (1) 

and the log energy for the jfi frame as 

101og10 x2(n) (2) 

where x(n) is the highpass filtered signal and n,, is the index of the 
initial sample in the i" frame. 
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The next step in the method is the computation of distances 
to the stored patterns for each of the 3 signal classes. Both an 
energy, and an LPC distance are computed. The energy distance is 
simply a normalized Euclidean distance of the form 

D(j) = E,-) () 
cTE(J) 

where j=1,2, and 3 represent silence, unvoiced speech, and voiced 
speech respectively, and E(j) is the average log energy (as 
obtained from a training Set of data) of the Jib signal class, and 
0E(J) is the Standard deviation of the log energy for the I" signal 
class. 

The LPC distance is based on the measure proposed by 
Itakura [101, and is of the form 

D (j) (a—m1)(cb)(a—m,)' 
(a4)a) 

where n1 is a mean vector of LPC coefficients, (again obtained 
from a training set of data) for the •J signal class, and 4) is the 
matrix of correlations for the current frame. The denominator 
term in Eq. (4) is simply the residual error of the LPC analysis. 
The LPC distance measure of Eq. (4) is essentially a covariance 
weighting of the LPC coefficients, and has been shown to provide a 
sensitive measure of similarity between frames with different sets 
of LPC coefficients [11-12] - hence its suitability for voiced- 
unvoiced-silence classification. 

Based on the two sets of distances, Dh(J) and D(j), j=l,2,3 
and a small amount of logic, the final signal classification is made. 
Figure 2 shows a flow diagram of the classification algorithm, The 
most variable of the three signal classes is silence so the algorithm 
first makes a decision as to whether the signal is silence based on 
the energy distances, and 1 frame of memory. Thus the first step is 

to classify the signal as silence if DE(l) is smaller than both Df(2) 
and DE(3) and if the value of DE(l) is less than 3 (standard devia- 
tions from the mean), or if the previous frame was classified as 
silence. This first step is based on the observation that energy is a 
much more reliable feature for classifying a signal as silence than 
the LPC distance. 

If the minimum energy distance is not that of silence, a check 
is made to see if DL(j) 3 for all j, in which case either the one 
frame of memory is used to guide the decision, or the minimum 
combined distance is chosen. There are at least two ways of com- 
bining the two distances. One simple way is to sum the distances to 
give 

D5,(J) DE(J) + D,,(j) 
The second way of combining the distances is multiplicatively to 

0PR oh (j) = D U) J.3, (j) 
Theoretically the proper way of combining D,(i) and D5(j) would 
be to account for the correlation between E and a. Because of the 
covariance weighting of the a's such a combined distance was not 

Based on the combined distance, the signal class is chosen 
based on either memory (if either combined distance is a 
minimum) or strictly on the DSIJM(J) distance as shown in Figure 

At this point in the algorithm we have completely eliminated 
silence as the signal classification in that the signal has either been 
classified as silence, or it hasn't in which case only the unvoiced or 
voiced speech classes remain. The remainder of the algorithm is a 
series of steps which use D(j), DEU), and DSUM(I) to decide 
whether to classify the signal as unvoiced or voiced speech. For 
cases in which D,,(J) and DFU) are both minimum for the same 
value of j, the signal class is chosen as that value. Otherwise the 
final decision is based on the exact values and relationships between 
D(2), D(3), DE(2) and DE(3), as shown in Figure 2. 

2.1. Training the algorithm 
In order to compute the energy and LPC distances for each 

signal class, a set of reference frames_must be used to train the 

algorithm - i.e., to provide values for E(j), cr1(j) and rn, in Eqs. 
(3) and (4). 

The way in which these quantities are computed is as follows. 
Consider a set of frames with each frame manually classified as 

silence, unvoiced, or voiced speech. Thus for each frame we have 

E,, a, and k, where k=1,2, or 3 depending on the manual 

SET 
Lo 

(4) 
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used. 
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2. 

Flow diagram of algorithm for combining energy distance and 
LPC distance to make signal classification. 
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classification. The quantities (j), °(j) and m1 are obtained as 

E,2 

= 
—4— j,) 

(9) 

where N1 is the number of frames in the training set for which 
k, = j, and 1 is the total number of frames in the training set. 

Figure 3 shows LPC spectra derived from the m's of Eq. (9). 
The spectra were obtained from the relation 

M(e') = 20log10 — 1 
(10) 

1 — m,(k)e(A 
k'.I 

Examination of the "average' spectra for the 3 signal classes 
(Figure 3) shows a strong similarity between the spectra for silence 
and unvoiced speech, and some fairly prominent differences for 
voiced speech sounds. For voiced sounds a large spectral range (34 
db) is obtained, with a noticeable trend in the spectral shape due to 
a prominent first formant, and quite broad second and third for- 
mants. 

Aside from the computational issues involved in training the 
method another important issue is the selection of a reasonable set 
of data which is representative of each of the 3 signal classes to be 
discriminated. For the class of silence no major difficulties exist. It 
is important to obtain a sampling of telephone lines to get a good 
distribution of telephone silence. For unvoiced sounds the training 
set excluded extremely weak fricatives since these were not 
effectively transmitted over telephone lines. All other unvoiced 
sounds (bursts, fricatives, etc.) were included in the training set. 
For voiced sounds efforts were made to include representative 
examples of each of the classes of voiced sounds, e.g., vowels, 
voiced fricatives, nasals etc. In particular, the training set used in 
the results to be presented in Section III consisted of 218 frames 
(15 msec each) of silence, 108 frames of unvoiced speech, and 279 
frames of voiced speech. 

0 3.33 
FREQUENCY 1kHz) 

Figure 3 

Average spectra for 3 signal classes from the training data. 

III. Evaluation Tests 
To evaluate the method a total of 6 speakers (3 male, 3 

(7) female) each spoke 2 utterances over dialed-up telephone lines. 
None of the 6 speakers were in the training set, and each individual 
utterance was made over a different telephone line. A manual 

(8) classification was made for each 15 msec frame based on both the 
acoustic waveform, and a phonetic transcription of the utterance. 
Two independent manual classifications were made and each 15 
msec frame was given one of the following classifications: 

1. Certain - Both manual classifications were in agreement. 
2. Uncertain - The manual classifications did not agree with 

each other, or the individual classifications were in 
doubt. The uncertain intervals were given either a sin- 
gle or a double classification based on the individual 
results 

A total of 1549 frames were used in the test Set. Table I 
gives an analysis of the results obtained on three data sets. For 
notational purposes we refer to TS1 as the set of data containing 
only frames for which the classification was certain, TS2 as the set 
of data containing all single class decisions, and TS3 as the total set 
of data (i.e., including the frames for which a double classification 
was made). The notation SU etc., in Table 1 refers to the case 
when the signal was silence and was classified as unvoiced. Thus 
SS, UU, and VV, denote correct decisions. For TS1 an overall 
error rate of 4.6% was obtained, for which about 75% of the errors 
occurred at a boundary frame - i.e., one in which a transition 
occurred between signal classes. Such frames are prone to error 
since they invariably contain a mix of the signals which occur on 
both sides of the boundary. 

When the single classification uncertain frames were included 
in the test set (TS2) the error rate was 6.3%, of which about 64% 
of the errors occurred at signal boundaries. Finally the overall 
error rate for T53 was 6.3%. 

If the categories of silence and unvoiced speech are merged to 
give the category nonvoiced speech (NV) then an overall error of 
2.5% is obtained for TS1 and an error rate of 3.6% is obtained for 
TS2. Table 2 shows a breakdown of the errors for this 2-class deci- 
sion. 

Finally, Figure 4 shows a typical example illustrating the 
operation of the method. Part a of this figure shows the raw 
analysis contour; part b shows the results of nonlinearly smoothing 
the analysis contour using a median smoother [13]; parts c, d, and 
e show plots of the probability of correct classification based on the 
particular distance used for each signal class - i.e., for silence the 
energy distance is generally used, whereas for unvoiced or voiced 
speech the LPC distance is generally used. The probability measure 
is obtained as 

P = 
D,D,, + D,D,, + D,,D, 

(ha) 

ss su sv us uu uv vs vu vp 

TS1 93.0 6.0 1.0 4.5 90.7 4.9 0.3 2.0 97.7 

TS2 92.6 6.4 1.0 6.7 84.6 8.7 0.2 2.4 97.4 

(a) Percentage Error Rates for Test Utterances 

SS SU SV US UU UV VS VU VV 

TS1 265 17 3 11 233 12 2 16 769 

TS2 277 19 3 20 254 26 2 20 808 

(b) Breakdown of Number of Occurrences of Each of 
the Signal Classifications 

Table I 

Analysis of the Signal Classification Errors 
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Analysis results for utterance 'Every salt breeze comes from 
the sea" by a female talker, 

Table 2 
Analysis of the Signal Classification 

Errors for a 2-Class Decision 
Re/èrences 

NV-NV NV-V V-NV V-V NV V Overall 

TS1 97.0 3.0 2.0 98.0 3.0 2.0 2.5 

TS2 95.2 4.8 2.7 97.3 4.8 2.7 3.6 
(a) Percentage Error Rates for 2-Class Decision 

NV-NV NV-V V-NV V-V NV V Overall 

TS1 516 15 18 769 531 787 1318 

TS2 570 29 22 808 599 830 1429 

(b) Number of Occurrences of Each of the Signal Classifications 

D D. 

P(u)=DD+DD+DD (lib) 

D.D DD +DD,+DD. (lic) 

where D,, D,, and D, denote the distances for silence, unvoiced, 
and voiced speech respectively. Figure 4 shows the results for a 
female speaker for the utterance "Every salt breeze comes from the 
sea". For this utterance a total of 11 errors were recorded. All 
these errors occurred at boundaries between signal classes. The 
results of nonlinear smoothing corrected a couple of the boundary 
errors, and converted a short unvoiced interval between two silence 
interval into silence. Otherwise the contour was unchanged. 

IV. Summary 
We have presented a new approach to the problem of reliably 

discriminating among the signal classes of silence, unvoiced, and 
voiced speech over telephone lines. We have tried to combine 
some analytical measures of similarity (the LPC distance and the 
energy distance) with some logic for combining these measures in a 
meaningful way to give a robust signal classification. A novel 
aspect of the analysis is that all the information in the signal is used 
in computing similarity - not just a small set of features. 

The algorithm was tested using a number of different speak- 
ers, telephone lines, and utterances. Overall error rates of about 
5% were obtained, based on manual classification of the frames. 
This result compares favorably to error scores obtained using sta- 
tistical decision techniqoes on telephone line utterances 81. 
Currently the algorithm is being used as an analysis tool in research 
on speaker independent recognition .f words. [14] 
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