
CORRESPONDENCE 259

N-i
y(n)= h(m)x(n-m)

m =0

IeI2 <e r0 Vi. (18) REFERENCES

[1] B. Atal and S. Hanauer, "Speech analysis and synthesis by linear
Moreover, it has been shown [7] that for exact correlation data, prediction of the speech wave," J. Acoust. Soc. Amer., vol. 41,

pp. 293—309, 1967.
h—i [2] F. Itakura and S. Saito, "Analysis synthesis telephony based one = r0 fl (1 - k2) and —1 ki + 1. (19) the maximum likelihood method," presented at the 6th mt.
i=o Congr. on Acoust., Tokyo, Japan, 1968.

[3] J. D. Markel, "Digital inverse filtering: A new tool for formant
Consequently, the following bound holds: trajectories estimation," IEEE Trans. Audio Electroacoust., vol.

h AU-20, pp. 129—137, Apr. 1972.r. (20) [4] N. Levinson, "The Wiener RMS error criterion in filter design and
prediction,"J. Math. Phys., vol. 25, no.4, p. 261, 1947.

Using the addition assumption r0 < 1, the bound (20) shows [5] E. A. Robinson, Statistical Communication and Detection With
that all the intermediate variables lie between — 1 and + 1. As a Special Reference to Digital Data Processing of Radar and Seismic
consequence, •the implementation may be conducted using Signals. New York: Hafner, 1967, p. 274,
fixed point arithmetics only. The bound can be extended for [6] J. Durbin, "The fitting of time-series models," Rev. Inst. mt.
higher orders h' 'h. Due to the inequality, Stat.,vol. 28, no. 3, pp. 344—348, 1973.

[7] J. D. Markel and A. H. Gray, On autocorrelation equations as
< / applied to speech analysis," IEEE Trans. Audio. Electroacoust.,

e0 —. e0 V h _- v, 2lj vol. AU-21, Apr. 1973.
[8] J. Makhoul, "Linear prediction, A tutorial review," Proc. IEEE,

a range of variations for the further e' is vol. 63, Apr. 1975.
[9] C. Gueguen and M. Mathieu, "Contribution des zeros a Ia model-Ie 2 e Vh' ' h. (22) isation du signal de parole," presented at the 7ème Journées du

Gaif, Nancy, France, 1976.
Since (15c) is homogeneous in those variables, it is then pos- [10] M. Mathieu, "Analyse de l'électro-encéphalogramme par prédic-
sible to shift the stored values to the left in order to improve tion linéaire," these de Docteur-Ingénieur, Paris, France, 1976.
the precision in the following computations.

If between the stages (h-l) and (h) the number of most sig-
nificant bits to be zero is increased by 2b, a shift of b bits to
the left can then be made on the e.

V. EXPERIMENTAL RESULTS /?7 3 39j V
This method requires (p2 - p + 1) multiplications and divi-

sions (i.e., 91 for a 10th-order model) and (2p + 3) memory
cells. It has been implemented using fixed point arithmetics
on a standard 16-digit computer (PACER 100 EAI, multiply
5.6 jis). In that case, the calculation of the PARCOR coeffi-
cients for a 10th-order model requires 3.5 ms. Even if the cor-
relation time is much more for speech signal, this allows the
LPC to be applied several times for a better estimation (ARMA
models, for instance [9]). The left shifts do not improve the
results very much (i.e., no significant change on the pole loca-
tion). The maximum shift reached only two digits. The
inequality (20) was always satisfied, and the stability was guar-
anteed for more than 3000 computations of PARCOR coeffi-
cients on real speech waves.

The method has been extensively compared to the usual
algorithms implemented using a floating point processor. In
more than 100 experiments, the differences between the re-
suits is less than 0.005 on k10. The frequency deviations do
not exceed 1 Hz for the most significant poles at a sampling
rate of 10 kHz. The differences are below the possible devia-
tions occurring in the computations of the autocorrelation co-
efficients on a vocal signal.

VI. CONCLUSIONS

The PARCOR coefficients have proven to be of major inter-
est in speech analysis, synthesis, transmission, and even as in-
termediate parameters. This approach has also been applied
successfully on various types of other signals [10].

This paper has proposed a new computational algorithm for
these coefficients by introducing new intermediate variables.
The computations are then made on estimated impulse re-
sponses with no reference to the AR model coefficients. As a
consequence, the proposed algorithm can be implemented
using fixed point arithmetics only, and it may contribute to
the development of specialized processors achieving the linear
prediction in real time for fast signals.

A Simplified Computational Algorithm for Implementing
FIR Digital Filters

LAWRENCE R. RABINER

Abstract—An N.point finite impulse response (FIR) digital filter,
when implemented in software, generally requires N multiplications, N
additions, and (N — 1) shifts per output sample. An obvious simplifica-
tion is to implement the shift register required to store x(n) to
x(n —Ni- 1) using a moving pointer, thereby eliminating the (N— 1)
shifts per sample required in the most straightforward implementation.
However, this simplification requires a check on the index of every
sample to see if the end of the linear storage array has been passed,
thereby voiding most of the gain in speed which was obtained. A
simple technique is discussed for trading N storage locations for the
(N — 1) shifts (or the (N — 1) index checks), thereby leading to an
implementation in which only N multiplications, N additions, and one
indexing operation are required per output sample. For implementing
symmetric (i.e., linear phase) FIR filters, the resulting savings is even
somewhat greater because two index pointers are required, and each
must normally be checked to see that it remains within the bounds of
the array.

FIR IMPLEMENTATION

If x(n) is the input to an N-point finite impulse response
(FIR) digital filter with impulse response h(n), 0 n N — I,
and the output is called y(n), then

(1)

which is realized as shown in Fig. 1(a). For each output

Manuscript received September 13, 1976; revised January 12, 1977.
The author is with Bell Laboratories, Murray Hill, NJ 07974.



em) sin) ________
sin—I) x)n)
S)n—2) sin—I)

x(n-N+2) 5)n-N+3)
x(n—N+U X(n—N+2)

Sample n Somple )n+I)

x(n)1 Pointer
x(n—N+l) i
x)n-N+2) direction of

movement

x(n—)
xin—I I

Sample n

sample, a total of N multiplications, N additions, and one shift
of the entire shift register is required. When implemented in
software, however, the shifting of a new input into the shift
register and the moving down in memory of the other N -
past input samples requires a total of N — 1 memory shifts
(each involving a load, index, and store). This procedure, as
illustrated in Fig. 1(b), is clearly an inefficient one. It can be
simplified by effectively converting the linear storage array
into a dynamic storage array through the use of a moving
pointer, as illustrated in Fig. 1(c). The purpose of the pointer
is to indicate the place into which x(n) is to be stored. The
locations of all previous inputs (x(n — 1) to x(n — N± 1)) can
be readily obtained from the current pointer, and knowledge
as to the direction of movement of the pointer.

The major difficulty with the technique of Fig. 1(c) is that
as the index (location) of previous samples [x(n — m) in (1)] is
computed, it must be checked to ensure that it does not fall
outside the range of the array. As such, the N — 1 memory

lin)
Ix(n+I) .— Pointer
xis-N +2

X(n—2)
Ix(n—I)

Sample(n+I)

shifts have been traded for N — 1 index checks, thereby can-
celing most of the computational gain.

To alleviate this problem, the implementation of Fig. 1(d) is
proposed in which N extra storage locations are traded for the
N- 1 index checks, thereby speeding up the computation, but
at the same time doubling the storage requirements. (For
most computer implementations the additional N memory lo-
cations are generally a trivial cost.) Each new input sample
x(n) is stored in two locations—displaced by N samples in the
array. An index pointer is maintained which shows where in
the array to store x(n). Since the array is 2N locations long,
and since each half of the array is identical, to ensure that the
indexed variable for x(n — m) does not fall outside the range
of the array merely requires that the index for x(n) fall in the
upper half of the array—a trivial requirement which is easily
met. Thus, with the implementation of Fig. 1(d), no checking
on indices is done inside of the output sample computation ioop
[i.e., in the computation of (1)]. Of course, for each new in-

260 IEEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, JUNE 1977

xin1) 5)0—2) x(n-3)

(a)

(b)

(c)

(d)

Pointer— N

Samples
Used TO

Compute
yin)

Pointer

direction of
movement

x in)
JIlfl-N+I)
Slfl-N+2

x(n—2)
x(n-l I
sin)

XC fl—N+I

sin -N +Z

X)n—2)
Sin—I)

Sample n

Samples
Used To

Compute
y(n+I I

- Pointer

C—

a—

Sample I n+I)

Fig. 1. Various methods of implementing (in software) the compu-
tation of (1).



CORRESPONDENCE 261

so

TO SE FILTERED

Fig. 2. A simple program which implements the structure of Fig. 1(d).

put sample the pointer location is indexed by one location and
must be checked to ensure that it remains within the bounds
of the array. However, the computation required here is trivial
compared to the computation involved in (1').

For linear phase filters, somewhat larger savings accrue since
two index pointers are generally required to access x(n — m)
and x(n -N+ 1 + m) as m varies from 0 to (N— 1)12. Using
the structure of Fig. 1(d) (with appropriate modifications)
neither index pointer need be checked within the output com-
putation to ensure that it stays within the range of the array.

Fig. 2 shows a Fortran realization of the structure of
Fig. 1(d) with a main calling program which filters 1000
samples of a signal.

A Note on Beam Pattern AnalysisUsing the Replica Pulse

Approximation

D. E. ROBINSON

Abstract—It has previously been reported that for field points near
the axis, accurate location of field extrema using the replica pulse rep-
resentation requires that the replicas be shifted by a constant amount
from the positions derived geometrically. This note demonstrates that
the same shift is required for field points distant from the axis.

The use of a small number of replica pulses to represent the
complete response at a field point due to a piston radiator has
been reported by Deyne [1] for the case of a circular piston,
and by Freedman [2] for plane and gently curved radiators of

Manuscript received August 3, 1976;revised January 31, 1977.
The author is with the Ultrasonics InsUtute, Australian Depart-

ment of Health, Sydney, N.S.W., Australia.

y<Q

y

Q

y>Q
Fig. 1. Geometry to derive the travel times t0, tj, and t2 from the radi-

ator to the field point Q corresponding to distance r0, r1, and r2, re-
spectively, shown for the two field regions.

arbitrary shape. In each case, the epoch or arrival time of the
various replicas was related to the travel times from particular
points on the radiator surface. For the plane circular piston,
illustrated in Fig. 1, the travel times of interest are from the
point on the surface closest to the field point (t0) and the
nearest and furthest edges (t1 and t2). This approach is
equivalent to approximating the impulse response at the field

C EXAMPLE ILLUSTRATING USE OF FIR FILTER IMPLEMENTaTION
C N IS THE IMPULSE RESPONSE DURATION IN SAMPLES

DIMENSION H (N)c LOAD H ARRAY FROM R(1) TO H(N)
READ(1,1) (H(I).I1,N)

1 FORMAT(7F1L7)
C INITIALIZE FILTER
c X IS THE FILTER INPUT
c Y IS THE FILTER OUTPUT
c N2 IS THE LENGTH OF THE STORAGE ARRAY

N22*N
CALL FILT(1,XY,H,N,N2)

C NSAMP iS THE HUNGER OF SAMPLES
DO 10 I=1RSAMP

C READ IN INPUT SAMPLE X
EEAD(1,2) X

2 FORMAT (P10.5)
CALL FILT(0X,Y,H,N,N2)

C STORE TRE OUTPUT SAMPLE Y
WRITE (2,3) 1

3 FORMAI(4H Y=,slO.5)
10 CONTINUE

STOP

SUBROUTINE FILT (INIT,X,Y,H,N,N2)
DIMENSION H(1) ,XSAV(N2)
IF(INIT.EQ.0) GO 10 50
00 10 I=1,N2

10 XSAV(I)=0.
IPTN+ 1
RETURN

50 XSAV(IPT)X
XSAV (IPT—N) X
1=0.
DO 60 I1,N

60 Y=Y+H(I)*x(IPT—141)
IPTIPT+ 1
IF (IPT.GT. N2) IPTN+1
RETURN
END

r- r


