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Application of an LPC Distance Measure to the
Voiced-Unvoiced—Silence Detection Problem

LAWRENCE R. RABINER, FELLOW, IEEE, AND MARVIN R. SAMBUR

Abstract—One of the most difficult problems in speech analysis is
reliable discrimination among silence, unvoiced speech, and voiced
speech which has been txansmitted over a telephone line. Although
several methods have been proposed for making this three-level decision,
these schemes have met with only modest success. In this paper, a
novel approach to the voiced—unvoiced—silence detection problem is
proposed in which a spectral characterization of each of the three
classes of signal is obtained during a training session, and an LPC dis-
tance measure and an energy distance are nonlinearly combined to make
the final discrimination. This algorithm has been tested over conven-
tional switched telephone lines, across a variety of speakers, and has
been found to have an error rate of about 5 percent, with the majority
of the errors (about ) occurring at the boundaries between signal
classes. The algorithm is currently being used in a speaker-independent
word recognition system.

I. INTRODUCTION

THE problem of reliably discriminating among voiced
speech, unvoiced speech, and silence is one of the most

difficult problems in speech analysis. There are several rea-
sons why this is so. One problem is the large dynamic range
of the speech signal itself in which a 20—40 dB variation of sig-
nal level is not uncommon within the speech of a single talker.
Compounded with this is a 20—40 dB variation in level among
talkers. Another problem is that sometimes the acoustic wave-
form does not provide accurate information about the signal
classification [1] , e.g., the vocal cords are vibrating (i.e., the
signal is voiced speech) but no periodicity is seen in the acous-
tic waveform. Finally, all these problems are compounded by
the degradations of telephone lines which include band-limiting,
nonlinear phase distortion, center clipping, and noise addition.

Classically, the method for discriminating among these three
signal classes is to use a level test to discriminate silence from
speech, and then discriminate between voiced speech and
unvoiced speech by a logical decision based on the values of
certain measured features of the signal, e.g., energy, zero-
crossings, etc., [2] . When used in conjunction with pitch detec-
tion, features of the pitch detector are often used to supple-
ment the voiced—unvoiced decision [3] —[6] - Recently, Atal
and Rabiner [7] proposed a statistical decision approach to
voiced—unvoiced—silence classification in which a set of mea-
sured features were combined using a non-Euclidean distance
metric to give a reliable decision. This method was optimized
for telephone line inputs by Rabiner et al. [8] . Their results
showed that reliable discrimination between voiced and non-
voiced speech could be obtained over telephone lines using the
statistical approach; however, the overall error rate for the
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three-class decision was fairly high (11 .7 percent) over tele-
phone lines.

Based on the results of [8], it was felt that an alternative
approach was required to lower the error rate for telephone
line inputs. The problem with combining a set of features is
that they can only partially represent the information present
in the signal. To obtain a complete representation of the
signal properties requires a classification procedure based on
the signal waveform, or its spectrum. A novel approach was
recently suggested by McAuley [9] in which a matched digital
Wiener filter was designed for each of the signal classes, and
the signal was processed by each of these filters. Based on the
signal output from each of the filters, a distance was computed
representing how closely the input signal was matched to the
filter, and the minimum distance was used to make the final
classification. Although this approach shows promise, it
requires a large amount of signal processing and has not as yet
been extensively tested.

An alternative procedure is suggested in this paper in which
an average signal spectrum is measured (from a training set of
data) for each of the three signal classes, and an LPC distance
is used to measure similarity between the test signal and each
of the reference patterns. Additionally, an energy distance is
calculated, and the LPC and energy distances are nonlinearly
combined to make the final class decision. The advantages of
this technique are that all the spectral information in the
signal is used in the classification algorithm, and that the LPC
distance computation nonuniformly weights the spectrum in
measuring overall similarity. In this way, a fairly reliable
discrimination is obtained. Another advantage is that, like
some other methods, the voiced—unvoiced—silence decision is
made without the need for pitch detection. The main disad-
vantage of the method is the need for training the algorithm
to obtain the average spectral representation for the three
signal classes.

In the remainder of this paper we describe the algorithm
(Section II), and show the results of a series of tests using
conventional switched telephone lines (Section III).

II. DESCRIPTION OF THE ALGORITHM

Fig. 1 shows a block diagram of the signal processing used
in the algorithm. The input signals(n) is sampled at a 6.67 kHz
rate (to accommodate the 3.2 kHz cutoff of the telephone
line) using a 16 bit AID converter, and high-pass filtered at
approximately 200 Hz to remove any dc, low-frequency hum,
or noise components which might be present in the signal. An
8-pole LPC analysis is performed on each contiguous 15 ms
(lOOsamples) section of signal using the covariance method of
analysis [10 . A total of 67 analyses/s are performed. In
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Fig. 1. Block diagram of signal classification method.
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addition to the LPC parameters, the log energy of the 15 ms
section is computed. For notational purposes, we refer to the
LPC set for the ith frame as

a1 = (a(0), a1(1), a,(2), . . . , a,(8)) (1)

where a (0) = 1, and the log energy for the ith frame as

rn0+149
E1 10 log10 x2(n)

L n=n0

where x(n) is the high-pass filtered signal and n0 is the index
of the initial sample in the ith frame.

The next step in the method is the computation of distances
to the stored patterns for each of three signal classes. Both an
energy and an LPC distance are computed. The energy dis.
tance is simply a normalized Euclidean distance of the form

DE(/) E-E(j) (3)
GE(J)

where / = 1, 2, and 3 represent silence, unvoiced speech, and
voiced speech, respectively, and E(/) is the average log energy
(as obtained from a training set of data) of the fth signal class,
and OE(j) is the standard deviation of the log energy for the
/th signal class.

The LPC distance is based on the measure proposed by
Itakura [11], and is of the form

(a - m1)()(a - rnj)tD(j)=
(aØa)

where rn is a mean vector (with rn0 = 1) of LPC coefficients
(again obtained from a training set of data) for the /th signal
class, and is the matrix of correlations for the current frame.
The denominator term in (4) is simply the residual error of
the LPC analysis. The LPC distance measure of (4) is essen-
tially a covariance weighting of the LPC coefficients, and is of
the form (E1 — Emin)IEmin where E1 is the residual error from
the use of the prediction given by m• with the current frame of
speech, and Emin is the minimum residual error for the current
frame. The resulting distance is therefore a dimensionless,
nonnegative quantity. This distance measure has been shown
to provide a sensitive measure of similarity between frames
with different sets of LPC coefficients [12J—[13]—hence its
suitability for voiced—unvoiced—silence classification.

Based on the two sets of distances, DE(j) and Da(/), .1 =
1, 2, 3 and a small amount oflogic, the final signal classification
is made. Fig. 2 shows a flow diagram of the classification

algorithm. The most variable of the three signal classes is
silence, so the algorithm first makes a decision as to whether
the signal is silence based on the energy distances and one
frame of memory. Thus, the first step is to classify the signal as
silence if DE(l) is smaller than both DE(2) and DE(3) and if
the value of DE(l) is less than 3 (standard deviations from the
mean), or if the previous frame was classified as silence. This
first step is based on the observation that energy is a much
more reliable feature for classifying a signal as silence than the
LPC distance.

If the minimum energy distance is not that of silence, a
check is made to see if DE(j) 3 for allj, in which case either

VOICED-
UNVOICED-
SILENCE

(2)

(4)

Fig. 2. Flow diagram of algorithm for combining energy distance and
LPC distance to make signal classificatiOn.
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m(1) -0427 -0321 -1025
m(2) 0.250 0.115 0,757
m(3) -0422 -0.111 -0,627
m(4) 0.221 0.243 0.620
m(5) -0.198 -0.047 -0.346
m(6) 0.199 0.174 0431
m(7) -0.088 -0.027 -0.124
m(8) 0.140 0.067 0.148

Number of 181 58 203
Frames

the one frame of memory is used to guide the decision, or the
minimum combined distance is chosen. There are at least two
ways of combining the two distances. One simple way is to
sum the distances to give

DsuM(!) =DE(j) +Da(j).

The rationale behind summing distances is that each distance is
a dimensionless quantity,and if the features were independent,
the distances associated with the features would add. The
problem with summing distances is that the features of energy
and LPC coefficients are not independent; hence, some mea-
sure of their correlation should be used. The second way of
combining the distances is multiplicatively to give

DpROD(f) DE(j) D(j).
The rationale here is that the distances are related to proba-
bilities of occurrence of the three classes, and an overall
distance based on the product of distances gives an overall
measure of probability. Although a good theoretical justifica-
tion of using a product distance is lacking, it is easily seen that
in cases when DE(j) is large for allj (as occurs when DpROD(j)
is used by the algorithm), then summing distances is meaning-
less since Da(J) will generally be much less than DE(j). In such

cases, DPROD (j) provides a more reasonable method of combin-
ing distances. Theoretically, the proper way of combining
Da(j) and DE(j) would be to account for the correlation be-
tween E and a. For reasons related to the specific implementa-
tion, such a combined distance was not used.

Based on the combined distance, the signal class is chosen
based on either memory (if either combined distance is a
minimum) or strictly on the DSUM(j) distance, as shown in
Fig. 2.

At this point in the algorithm, we have completely elimi-
nated silence as the signal classification in that the signal has
either been classified as silence, or it has not in which case
only the unvoiced or voiced speech classes remain. The re-
mainder of the algorithm is a series of steps which use Da(J),
DE (/), and DSUM (j) to decide whether to classify the signal as
unvoiced or voiced speech. For cases in which Da(/) and DE(j)
are both minimum for the same value of 1, the signal class is
chosen as that value. Otherwise, the final decision is based on
the exact values and relationships between Da(2), Da(3),

a
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Fig. 3. Average spectra for three signal classes from the training data.

DE(2), and DE(3), as shown in Fig. 2. The different thresh-
(5) olds, and the sequence of logical decisions shown in Fig. 2, are

based on experimentation with the method.
Before giving examples to show how the algorithm per-

formed on some test data, we first discuss some issues involved
in obtaining the reference data for each of the signal classes.

A. Training the Algorithm
In order to compute the energy and LPC distances for each

signal class, a set of reference frames must be used to train the
(6) algorithm, i.e., to provide values for E(j), UE(j), and m, in

(3) and (4).
The way in which these quantities are computed is as fol-

lows. Consider a set of frames with each frame manually
classified as silence, unvoiced, or voiced speech. Thus, for
each frame we have E1, a, and k where k 1,2, or3, depend-
ing on the manual classification. The quantities E(j), OE(/),
and rn1 are obtained as

1'
(i)= xi E

I i=1
(k=/)

1 1/2

OE(j) = [ E (k(f))2

L (k1=i)

and

1'
mjç1 2.1 a

I j=1
(k=f)

where 1V is the number of frames in the training set for which
= / and I is the total number of frames in the training set.
Table I gives values of E(/), UE(/), and rn for the three

signal classes discussed in this paper, and Fig. 3 shows LPC
spectra derived from the m1's of (9). The spectra were ob-
tained from the relation

TABLE I
Tlo,.\1NIs'c; DATA USED IN TIlE ALC;olU'I'lIrsl

6

S,gual Class

Silence Unvoiced Speech Voiced Speech
(L—1) (L=2) (L3)

E 31.5 (db) 54.9 (dh) 69.5 (db)

o- 3.3 (db) 2.6 (dh) 6.2 (db)

-9
-v
U0
I-z0

0o -6-J 3
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Parameter Set Being A veraged

LPC Log Area PARCOR Autocorrelation
Coefficients Ratios Coefficients Coefficients

m(I) -1.025 -1.067 -0.983 -0.973
m(2) 0.757 0.951 0.840 0.667
m(3) -0.627 -0.770 -0.688 -0.599
m(4) 0.620 0.733 0.664 0.678
rn(S) -0.346 -0.491 -0.43! -0.483
m(6) 0.431 0.536 0.506 0.508
m(7) -0.124 -0.132 -0.122 -0.273
m(8) 0.148 0.151 0.148 0.219

M(e) = 20 log10 r
1

1.
1 - m,(k)ei-"I

L k1 ]
As seen in Table I, the average log energies for silence, un-
voiced, and voiced speech were 31.5, 54.9, and 69.3 dB,
respectively; however, the standard deviations were 3.3, 2.6,
and 6.2 dB, respectively. Thus, considerable overlap between
the individual distributions existed.

Examination of the "average" spectra for the three signal
classes (Fig. 3) shows a strong similarity between the spectra
for silence and unvoiced speech, and some fairly prominent
differences for voiced speech sounds. For voiced sounds, a
large spectral range (34 dB) is obtained, with a noticeable
trend in the spectral shape due to a prominent first formant,
and quite broad second and third formants.

One side issue in the computation of the training data is the
way in which rn is calculated in (9). Theoretically, one can-
not average a set of LPC coefficients (the a's), and ensure that
the resulting average value represents a stable system. Thus,
theoretically, some transformation of the a's should be used
which will give a parameter set that can be averaged, and for
which stability is guaranteed. There are many such parameter
sets which can be used including the autocorrelation coeffi-
cients of the impulse response of the linear predictor, the
PARCOR coefficients, and the log area ratio coefficients. As
a check on the validity of averaging the a's, the training data
were transformed to each of the three alternate parameter sets
(i.e., log area ratios, PARCOR's, and autocorrelation coeffi-
cients); these parameters were averaged, and the resulting
average values were transformed back to LPC coefficients.
Thus, m1 of(9) was computed as

r1 ' 1

m/G'Lc-I I i=1
L (k1=J)

where G and G' represented the transformations from a's to
each of the parameter sets used. The results of this experi-
ment are given in Table II and Fig. 4. Table II shows the
values of m1 for each of the three transformations, and Fig. 4
shows the resulting average spectrum for voiced speech.
Comparisons of the results show only slight differences in
the average spectrum as a function of the transformation used
for averaging the a's. Thus, heuristically it can. be argued -that

TABLE II
COMPARISONS OF VALUES OF m FOR VOICED SPEECH AS A FUNCTION

OF THE PARAMETER SET BEING AVERAGED

AVERAGED VOICED SPEECH SPECTRA

LOG AREA RATIOS

-15z

(10)

'C

VERAED
PARCOR COEFFICIENTS

150 333

AVERAGED AUTOCORRELATION
COEFFICIENTS

—IS
0 3.33

FREQUENCY 1kHz)

Fig. 4. Comparisons of spectra derived from averaging four different
parameter sets.

for these data, averaging a's (untransformed) is valid since it
gives a set of values which have the minimum variance, and at
the same time gives a stable result.

Aside from the computational issues involved in training the
method, another important issue is the selection of a reason-
able set of data which is representative of each of the three
signal classes to be discriminated. For the class of silence, no
major difficulties exist. It is important to obtain a sampling
of telephone lines to get a good distribution of telephone
silence. For unvoiced sounds, the training set excluded
extremely weak fricatives since these were not effectively
transmitted over telephone lines. All other unvoiced sounds
(bursts, fricatives, etc.) were included in the training set. For
voiced sounds, efforts were made to include representative
examples of each of the classes of voiced sounds, e.g., vowels,
voiced fricatives, nasals, etc. In particular, the training set
used in the results to be presented in Section III consisted of
218 frames (15 ms each) of silence, 108 frames of unvoiced
speech, and 279 frames of voiced speech. The training data
were obtained from a single speaker. Alternative training sets
obtained from multiple speakers showed no significant differ-
ences in the training statistics.

III. EVALUATION TESTS
To evaluate the method, a total of six speakers (three male,

three female) each spoke two utterances over dialed-up tele-
phone lines. None of the six speakers was in the training set,
and each individual utterance was made over a different
telephone line. A manual classification was made for each
15 ms frame based on both the acoustic waveform and a
phonetic transcription of the utterance. Two independent
manual classifications were made and each 15 ms frame was
given one of the following classifications.

(11)



342 IEEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL. ASSP-25, NO. 4, AUGUST 1977

Manual Claasification Silence Unioiced Voiced Total

Certain 285 246 787 1318

Uncertain-Single 14 54 43 Ill
Classification

Uncertain-Double - - - 120
Classification

TABLE IV
ANALYSIS OF TIlE StGNAL CLASSIFICATIONS

SS SU SF US UU UV VS VU VV S Ii V Gun-all

TSI 93.0 6.0 1.0 4.5 90.7 4.9 0.3 2.0 97.7 7.0 9.4 2.3 4.6

TS2 92.6 6.4 1.0 6.7 84.6 0.7 (1.2 2.4 97.4 7.4 15,4 2.6 6.3

TS3 6.4

(a) Percentage ClassiScatioi Rates for Fest Utterances

SS SU SV US OF UV VS VU VF S U V On-rail

TSI 265 17 3 It 233 12 2 tO 769 285 246 787 1310

TS2 277 t9 3 20 254 26 2 20 808 299 300 830 1429

(b) Breakdown of Number of Occurrences of Each of
the Signal Classitications

1) Certain—Both manual classifications were in agreement.
2) Uncertain—The manual classifications did not agree with

each other, or the individual classifications were in doubt. The
uncertain intervals were given either a single or a double
classification based on the individual results.

A total of 1549 frames were used in the test set. Table III
gives a breakdown of the test set into both signal classes and
degree of certainty. Table IV gives an analysis of the results
obtained on these data sets. For notational purposes, we refer
to TS1 as the set of data containing only frames for which
the classification was certain, TS2 as the set of data containing
all single class decisions, and TS3 as the total set of data (i.e.,
including the frames for which a double classification was
made). The notation SU, etc., in Table IV refers to the case
when the signal was silence and was classified as unvoiced.
Thus SS, UU, and VV denote correct decisions. For TS1, an
overall error rate of 4.6 percent was obtained, for which about
75 percent of the errors occurred at a boundary frame, i.e.,
one in which a transition occurred between signal classes.
Such frames are prone to error since they invariably contain a
mix of the signals which occur on both sides of the boundary.

When the single classification uncertain frames were included
in the test set (TS2), the error rate was 6.3 percent, of which
about 64 percent of the errors occurred at signal boundaries.
Finally, the overall error rate for TS3 was 6.4 percent.

A detailed breakdown of the errors is included in Table IV.
For all test sets, the errors distributed themselves almost
uniformly across the possible error categories, with the excep-
tion of silence-voiced, voiced-silence, and voiced-unvoiced
errors for which low error rates were attained.

If the categories of silence and unvoiced speech are merged

TABLE III
BREAKDOWN OF TESTING DATA INTO SIGNAL CLASS AND

DEGREE OF CERTAINTY V

CAM - EVERY SALT BREEZE COMES FROM THE SEA

RAW DATA

SMOOTHED

U lot
S

V

U lblclIdle1
FRAME NUMBER —0 155

Fig. 5. Analysis results for utterance, "Every salt breeze comes from
the sea" by a female talker.

to give the category nonvoiced speech (NV), then an overall
error of 2.5 percent is obtained for TS1 and an error rate of
3.6 percent is obtained for TS2. Table V shows a breakdown
of the errors for this two-class decision.

Finally, Figs. 5 and 6 show typical examples illustrating the
operation of the method. Part (a) of each figure shows the
raw analysis contour as obtained using the algorithm of Fig. 2;
part (b) shows the results of nonlinearly smoothing the analy-
sis contour using a median smoother [14] ; parts (c), (d), and
(e) show plots of a probability measure based on the particular
distance used for each signal class, i.e., for silence, the energy
distance is generally used, whereas for unvoiced or voiced
speech, the LPC distance is generally used. The probability
measure is obtained as

DuDv
(12a)

DsDu + DsDv + DuDv

DsDv
(12b)

DsDu + DsDv + DuDv

DsDu
(12c)

DsDu + DsDv + DDv

where Ds, Du, and Dv denote the distances for silence, un-
voiced, and voiced speech, respectively, This probability
measure provides an indication of the probability of correct
classification to the extent that if the distance for a particular
classification is small relative to the other classification dis-
tances, then the probability of the signal being properly
classified is high. Fig. 5 shows the results for a female speaker
for the utterance, "Every salt breeze comes from the sea."
For this utterance, a total of 11 errors were recorded. All
these errors occurred at boundaries between signal classes.
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TABLE V
ANALYSIS OF THE SIGNAL CLASSIFICATIONS FOR A TWO-CLASS DECISION

NV-NV NV-V V-NV V-V NV V Overall

TSI 97.0 3.0 2.0 98.0 3.0 2.0 2.5

TS2 95.2 4,8 2.7 97.3 4.8 2.7 3.6

(b) Number of Occurrences of Each of the Signal Classifications

phone line utterances [8]. Currently, the algorithm is being
used as an analysis tool in research on speaker-independent
recognition of words [15].
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(a)

(bI
(a) Percentage Classification Rates for 2-Class Decision

NV-NV NV-V V-NV V-V NV V Overall

TS1 516 15 18 769 531 787 1318

TS2 570 29 22 808 599 830 1429

0

P (U)

(dl

FRAME NUMBER —

Fig. 6. Analysis results for utterance, "I know when my lawyer is due"
by a male talker.

The results of nonlinear smoothing corrected a couple of
the boundary errors, and converted a short unvoiced interval
between two silence intervals into silence. Otherwise, the
contour was unchanged.

Fig. 6 shows a second set of results for the utterance,
"I know when my lawyer is due," spoken by a male speaker.
For this utterance, a total of three errors were made, two of
which occurred at boundaries. The voiced-to-silence error
occurring at the beginning of the utterance is readily seen in
Fig. 6(a). The nonlinear smoother corrected all three errors
for this utterance, giving the contour shown in Fig. 6(b).

IV. SUMMARY

We have presented a new approach to the problem of reli-
ably discriminating among the signal classes of silence, un-
voiced, and voiced speech over telephone lines. We have
tried .to combine some analytical measures of similarity (the
LPC distance and the energy distance) with some logic for
combining these measures in a meaningful way to give a
reliable signal classification. A novel aspect of the analysis
is that all the information in the signal is used in computing
similarity—not just a small set of features.

The algorithm was tested using a number of different
speakers, telephone lines, and utterances. Overall error rates
of about 5 percent were obtained, based on manual classifi-
cation of the frames. This result compares favorably to error
scores obtained using statistical decision techniques on tele-


