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Abstract—The LPC prediction error provides one measure of the
success of linear prediction analysis in modeling a speech signal. Al-
though a great deal is known about the properties of the prediction
errOr, relatively little has been published about its variation as a func-
tion of the position of the analysis frame. In this paper it is shown that
a fairly substantial variation in the prediction error is obtained Within
a single frame (i.e., 10 ms), independent of the analysis method (i.e.,
the covariance, autocorrelation, or lattice method). The implication
of this result is that standard methods of LPC analysis may be inade-
quate for some applications. This is because the error signal is generally
uniformly sampled at a low rate (on the order of 100 Hz), and this can
lead to aliased results because of the variation of the error signal within
the frame. For applications such as word recognition with frame-to-
frame distance calculations using the prediction error, the errors due to
uniform sampling can accrue. For speech synthesis applications, the
effect of uniform sampling of the error signal is a small, but noticeable
roughness in, the synthetic speech. Various techniques for reducing the
intraframe variation of the prediction error are discussed.

I. INTRODUCTION

LTHOUGH the class of linear prediction analysis methods
[l]—[7] are generally well understood, there still remain

several interesting problems concerning the ways in which
linear prediction analyses are implemented. One of these open
questions concerns the properties of the normalized LPC
prediction-error signal. In particular, there have been few
investigations into the variation of the prediction error as a
function of the position of the analysis frame within a single
stationary speech segment. This paper presents results on a
fairly intensive investigation into this question.

II. LPC ERROR SIGNAL

To set the problem in its proper perspective it is worthwhile
reviewing the LPC analysis model. Fig. 1 shows a block
diagram of an LPC analysis system. The input speech signal is
denoted as s(n). A pth order linear predictor operates on s(n)
to produce the estimate (n) defined as

(n) = aks(n — k)

where the ak are chosen to minimize the mean-squared error
between the actual s(n) and the predicted value (n). We
define this difference as

e(n)=s(n)- (n)=s(n) - aks(n - k). (2)
or
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Fig. 1. Block diagram of LPC analysis system.

The ak are thus chosen to minimize the mean-squared error
E, defined as

E= e2(n) (3)
n=nO

where the limits in (3) are appropriately chosen. We shall
denote the sequence of samples of e(n) from n = n0 to n = n1
as the analysis frame. It can readily be shown that an equiva-
lent expression for the mean-squared error is

a1c1a1 (4)
i=O j=O

where a0 = —1, and c1 is the autocorrelation of the signal,
defined as

flj
s(n — 1) s(n — j). (5)

n=no

Since the predictor coefficients which minimize E satisfy

p
a1c = c0 (6)

f=1

(4) is further simplified to the form

E- ac0. (7)

(l) The normalized LPC error EN is defined by normalizing E
by the signal energy, i.e.,

nl
e(n)

1' — ___________-
nl

s(n)
n=n0

EN=l- (9)
j=1 COO
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Figs. 2—5 illustrate some typical analysis frames for two of
the well-known methods of LPC analysis; i.e., the covariance
method and the autocorrelation method.' Part (a) of each

1Results are not presented for the lattice method [31—[7] since they
are almost identical to those obtained for the covaxiance method.

figure shows the signal samples used in the analysis;2 part
(b) shows the resulting error signal (e(n)); part (c) shows the
signal spectrum (as• obtained using an FF1 analysis) as well as

2These figures show all samples used in the analysis. For the co-
variance method the first p samples axe not used in computing the
prediction residual.

LRR—IY VOWEL
M=14 N2OO
OVARIANCE METHOD

SAW—AH VOWELMl4 N2OO
COVARIANCE METHOD

Fig. 2. Typical signals and spectra for LPC covariance method for a
male speaker.
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Fig. 4. Typical signals and spectra for LPC covariance method for a
female speaker.
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Fig. 3. Typical signals and spectra for LPC autocorrelation method for
a male speaker.

Fig. 5. Typical signals and spectra for LPC autocorrelation method for
a female speaker.
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the LPC model spectrum (the solid curve obtained directly
from LPC analysis); and part (d) shows the spectrum of the
error signal. The analysis-frame size for all four examples is
200 samples (20 ms at a i0-kHz rate) Fig. 2 shows the results
of the covariance method with a p of 14. The first (p-i)
samples of e(n) are not shown on the plot since they are not
defined in the covariance method. The signal e(n) distinctly
shows the property that the error signal gets quite peaked at
the beginning of each pitch period. Furthermore, the peaks
in the error signal and the speech do not occur at the same
instant of time. The spectral envelope of e(n) is reasonably
white, a property that is also evident in the quality of the
spectral match of the LPC model to the signal spectrum.

Fig. 3 shows similar results for the autocorrelation method.
The autocorrelation method used a 20-ms Hamming window
(WH(fl)) to give the signal

s(n) = s(n) . WH(fl) (10)
for all values of n since WH(fl) is 0 for n <n0 and for n > n1.
Thus in Fig. 3 the signal shown is s(n) and the error IS

p
e(n) = s(n) asW(n - k).

k=1

Since s(n) is 0 outside the range n0 <n n1, a fairly sub.
stantial component of e(n) occurs for the first p samples since
the method is trying to predict the windowed signal from
zero-valued samples. Again e(n) is quite peaked at the begin-
ning of each pitch period. However, the position of the
Hamming window relative to the beginning of the pitch has a
marked influence on the amplitudes of the peaks in the error
signal.

Figs. 4 and 5 show similar results for a female speaker for
the covariance method (Fig. 4) and the autocorrelation method
(Fig. 5). The 20-ms frame size, for this speaker, was large
enough to contain more than 4 pitch periods. The substantial
variation is seen in the error signal e(n) [part (b) of each
figure] at the beginning of each pitch period.

The normalized LPC error signal (or the prediction error)
itself is important for a variety of applications of LPC analysis
systems [8] —[10] . Thus it is necessary to understand its
properties. Previous work has been carried out in studying the
variation of the prediction error as a function of the analysis
frame size, and the number of analysis parameters [1] , [4]
[51, [11]; however, little has been published on the variation
of the prediction error as a function of the analysis-frame
position. Kang [8] has studied this problem for an LPC
vocoder implementation and, using techniques similar to those
discussed in this paper, selected points of minimum prediction
error for transmission.

In this paper we show that substantial variation in the pre-
diction error can occur within an analysis frame for all three
LPC methods. Results are presented that illustrate the effects
of windows (for the autocorrelation method) and frame size
on the amount of variability within a frame. An analysis of
the mechanisms that cause this intraframe variation of the
prediction error is given, and techniques for reducing the
magnitude of the variations are discussed.

31n this and subsequent figures the quantity p is called M.

III. VARIATION OF THE PREDICTION ERROR

The results given in the previous section (Figs. 2—5) show
that e(n), the error signal, is generally quite peaked at the
beginning of each pitch period and that these peaks are not
coincident with the speech-signal peaks. Furthermore, for
the autocorrelation method, e(n) is also quite variable for
the first p samples (although the effect of the window is to
attenuate this component of the error signal). These results
suggest that the prediction error EN may also be quite variable,
depending on the position of the analysis frame with respect
to the signal.

To investigate this effect, an LPC analysis system was imple-
mented in which each new frame was displaced by a single
sample from the previous frame. Thus the prediction (EN)
could be computed at the signal sampling rate (i.e., 10 kHz)
and any variation within a frame could be readily seen. Four
voiced utterances were studied in this investigation.4 These
included steady-state regions of the vowels i (beet) and a
(father) spoken by a male (LRR) and a female (SAW) speaker.

Some typical results of the analysis are presented in Figs. 6-9.
(11) Fig. 6 shows a series of plots of the signal energy [Fig. 6(a)]

nl
s2(n) (12)

and the prediction error EN for a 14-pole (M = 14) analysis,
with a 20-ms (N = 200) frame size, for the covariance method
[Fig. 6(b)], the autocorrelation method using a Hamming
window [Fig. 6(c)], and the autocorrelation method using a
rectangular window [Fig. 6(d)] . The average pitch period
for this speaker was 84 samples (8.4 ms); thus about 2- pitch
periods were contained within the 20-ms frame. For the
covariance analysis [Fig. 6(b)], the prediction error shows a
substantial variation with the position of the analysis frame.
This effect is essentially due to the large peaks in the error
signal e(n) at the beginning of each pitch period. Thus when-
ever the analysis frame is positioned to encompass three sets
of these peaks, the prediction error is much larger than when
only two sets of these peaks are included in the analysis inter-
val. Thus, as seen in Fig. 6(b), the prediction error shows a
fairly large discrete jump in level as each new error peak is
included in the analysis frame, followed by a gradual tapering
off and flattening of the normalized error. The exact detailed
behavior of the prediction error between discrete jumps de-
pends on details of the signal and the analysis method.

Fig. 6(c) and (d) shows somewhat different behavior of the
prediction error for the autocorrelation analysis method using
a Hamming window [Fig. 6(c)] and a rectangular window
[Fig. 6(d)]. As seen in these figures, the prediction error
shows a substantial amount of high-frequency variation, as
well as a small amount of low-frequency and pitch-synchronous
variation. The high-frequency variation is due primarily to
the error signal for the first p samples in which the signal is

4For unvoiced speech the variations in prediction error with the
position of the analysis frame are primarily statistical in nature and are
therefore not discussed here.

for the lattice method are identical (when plotted) to those
of the covariance method for all results to be presented in this paper.
Thus such plots are not included herein.
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Fig. 6. Prediction-error sequences for 200 samples of speech for three
LPC systems.

not linearly predictable. The magnitude of this variation is
considerably smaller for the analysis using the Hamming
window (30-percent variation) than for the analysis with the
rectangular window (about 500-percent variation) due to the
tapering of the Hamming window at the ends of the analysis
window. Another component of the high-frequency variation
of the prediction error is related to the position of the analysis
frame with respect to pitch pulses, as discussed previously for
the covariance method. However, this component of the error
is much less a factor for the autocorrelation analysis than for
the covariance method; especially in the case when a Hamming
window is used, since new pitch pulses that enter the analysis
frame are tapered by the window.

0

100 150 200
TIME (SAMPLES)

50 100 150 200 250 300 350
TIME (SAMPLES)

Fig. 7. Prediction-error sequences for N = 400 sample frames.

Fig. 7 illustrates the effect of using a longer analysis frame
(40 ms) on the prediction error for both the covariance
method [Fig. 7(b)] and the autocorrelation method using a
Hamming window [Fig. 7(c)] - Similar effects to those ob-
tained in Fig. 6 are obtained. However, the magnitude of
the variation in the prediction error is smaller. For the co-
variance method [Fig. 7(b)] this is true since the frame always
contains at least four complete pitch periods, and most of the
time five pitch periods are contained within the frame. Thus
the prediction error is smaller only when the analysis frame is
positioned so that only four error peaks are included within
the frame. For the autocorrelation method [Fig. 7(c)] the
contribution of the first p (14) error terms to the prediction
error is a smaller total percentage of the overall error for a
40-ms frame than for a 20-ms frame. Thus again the varia-
tion in the high-frequency component of the error is reduced.

Fig. 8 illustrates the results obtained for two cases of a
pitch-synchronous analysis using the covariance method. Fig.
8(a) and (b) shows the signal energy and prediction error using
a single period (8.4 ms); whereas, Fig. 8(c) and (d) shows the
results for an analysis frame which is two periods (16.9-ms)
long. It is seen in these figures that even though the pre-
diction error shows long flat regions (i.e., little or no varia-
tion with the analysis-frame position) for both pitch-synchro-
nous analyses, even slight changes in the pitch period lead to
sharp discontinuities in the prediction error. These results
strongly suggest that the sensitivity of the prediction error to
small errors in choosing the pitch period for pitch-synchronous
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Fig. 8. Pitch-synchronous analysis results for single- and double-period
analysis.

analysis makes this type of analysis unattractive in terms of
reducing or eliminating the variability of the prediction error
with the analysis-frame position.

Finally, Fig. 9 shows the results obtained on the female
speaker for a 20-ms analysis frame for the covariance method
[Fig. 9(b)], a Hamming window autocorrelation method [Fig.
9(c)], and a rectangular window autocorrelation method [Fig.
9(d)]. Since the pitch period was much shorter for this
speaker than for the previous speaker, and because the error
signal itself was much less peaked at the beginning of each
pitch period, the prediction error for the covariance analysis
[Fig. 9(b)] showed less variation than in the previous exam-
ples. However, the results for the autocorrelation analysis
[Fig. 9(c) and (d)] were similar since the dominant effect was
still the high-frequency error for the first p analysis samples
due to the poor prediction.

a
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In summary, the results presented in this section have shown
the following.

1) For the covariance method, the prediction error varies
with the position of the analysis frame due to the presence, or
absence, of the error peaks associated with the beginning of
each pitch period. The magnitude of this variation depends on
the analysis-frame size (i.e., the number of whole pitch periods
nominally contained within the frame) and the degree of
peaking of the error signal at the beginning of each pitch
period.

2) For the autocorrelation method, the major component
of the variation of the prediction error is due to the error in
predicting the signal at the beginning of the analysis frame;
i.e., the first p samples of the error. Thus a Hamming window
serves to substantially reduce the variation in the error due to
this effect. An additional component of the variation of the
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Fig. 9. Prediction-error sequences for speech from a female speaker.
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prediction error is the number of whole pitch periods con-
tained within the analysis frame.

It is important to be able to place some perspective on the
importance and implications of these results. The prediction
error is a measure of the success with which a frame of speech
can be linearly predicted. Thus variations of from 30 to 500
percent in the prediction error due to slight shifts of the
analysis-frame position means that the prediction error must
be carefully interpreted and carefully used in any application
on which it is based. One such application is the computation
of distance proposed by Itakura [101 based on a ratio of
prediction errors. In this application the quantity D(a, a),
defined as

D(a,d)ln(Jt)rln (k-)
is computed in which V is a correlation matrix and the terms
E2 ãVdt and E1 =aVat are prediction residuals or normal-
ized LPC errors based on using the LPC sets a and a. What
we have shown is that, depending on the analysis method and
the frame position, variations of E2 on the order of 30-500
percent can be obtained. The implications of this variation in
defining LPC distance are discussed in Section V.

A seàond case in which variation of the prediction error
with analysis-frame position may be important is the LPC
vocoder. It can be argued that analysis frames with the
smallest prediction error may lead to the best estimates of pole
center frequencies and bandwidths since the peaks in the error
signal due to the pitch pulses essentially make the analysis
more noisy and subject to numerical errors. To test this con-
jecture LPC synthesis results were obtained using frames with
both the highest and lowest prediction errors and the resultant
synthetic utterances were compared. We discuss these com-
parisons in Section VI.

IV. METHODS OF REDUCING THE VARIABILITY
OF THE PREDICTION ERROR

In order to reduce the variability in the LPC prediction error
with the position of the analysis frame, two distinct prepro-
cessing methods were investigated. These were as follows.

1) Allpass filtering of s(n) to reduce the peakedness of e(n)
at the beginning of each pitch period; i.e., to spread out the
error pulse in e(n).

2) Preemphasizing s(n) by a first-order network to reduce
the effects of the high-frequency error in e(n) at the beginning
of the frame by making the magnitude of e(n) larger through-
out the frame.

Results of using these two techniques are presented in Figs.
10 and 11. Fig. 10 shows the effect on the prediction error of
using a 24th-order ailpass filter6 [12] to spread out (i.e., phase
disperse) the signal for the covariance method [Fig. 10(b)]
and for the autocorrelation method using a Hamming window
[Fig. 10(c)]. By contrasting these results with those previ.
ously shown in Fig. 6, the follOwing effects are noted.

6For this implementation the signal was processed by a cascade of
three of the eight-order ailpass filters of [9]. The detailed nature of
the ailpass filter is not critical. It is important that the effective dura-
tion of the impulse response of the ailpass filter be large enough to
spread out the excitation over the pitch period, but not so large so as to
smear the temporal variations of the predictor coefficients.

1) For the covariance method the ailpass filter effectively
spreads out the sharp changes in the prediction error signal. A
pitch-synchronous variation in the prediction error repre-
senting low-frequency (gradual) changes is now the dominant
effect of varying the position of the analysis frame. In addi-
tion, a small noiselike component rides on this low-frequency
signal. The noise is due primarily to the detailed shape of the
error signal from the linear prediction analysis.

2) For the autocorrelation method the effect of the ailpass
filtering is essentially negligible because the dominant error
terms were shown to be related to the analysis method rather
thati details of the error signal itself. Thus a substantial high-
frequency variation of the prediction error remains after the
ailpass filter is applied.

(13) Fig. 11 shows the results obtained for the autocorrelation
method when a first-order preemphasis network of the form

H(z) 1- az (14)
with = 0.95 is applied to the speech signal prior to the LPC
analysis. Since the major effect of the preemphasis network is
to reduce the spectral variations in the input speech signal,
the prediction error increases in value quite significantly over
the values obtained without the preemphasizer. The effect
of this increased normalized error is to essentially swamp out
the high-frequency variation in the prediction error due to the
first p samples since the error signal is uniformly higher
throughout the analysis interval. Thus, as seen in Fig. 11(b),
the prediction error shows considerably smaller variation with
respect to the position of the analysis frame when the equalizer
is used than when it is not used.
• We did not study the effect of preemphasis for the co-
variance method. The results for the covariance method can-
not be significantly different from those of the autocorrela-
tion method. Therefore the reasons previously stated for the
reduction in variability of the prediction error for the auto-
correlation method apply equally well to the covariance
method; in both cases, the large prediction error resulting
from the preemphasis of the speech signal will effectively
swamp the smaller frame-dependent variations of the pre-
diction error.

The conclusion of this section is that signal conditioning
techniques provide effective methods of reducing the varia-
tion in the LPC prediction error with the position of the
analysis frame. It should be noted that the signal conditioning
techniques discussed in this section were independent of the
signal. Signal-dependent methods for reducing the variability
of the prediction error, such as adjusting the position and size
of the frame based on the pitch period, can also be applied,
but are much more sensitive to accurate determination of
pitch.

V. EFFECTS OF PREDICTION-ERROR VARIATION
ON AN LPC DISTANCE METRIC

Itakura [10] has proposed a measure of similarity between
speech frames with measured LPC sets of a and aas

D(aa)ln() = (k-)
i.e., the distance between frames is related to the ratio of
prediction residuals or normalized LPC errors. (Other LPC
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Fig. 10.. The effects of ailpass filtering on the prediction-error sequence.

distance metrics have been proposed by Gray and Markel
[13].) A fundamental implication of the previously given
distance measure is that if a and a are basically from the
same frame, then D(a, a) should be essentially 0, orE1 E2.
Conversely, if a and a are from dissimilar frames, then D(a, a)
should be large. We have already shown that if a and a repre-
sent LPC sets obtained from positioning the analysis frame in
slightly different positions, then the prediction error can vary
by 30 percent or more by itself. This result, by itself, does
not mean that D(a, a) will vary by 30 percent or more, since
E1 and E2 are not both minimum prediction errors, but
instead E1 is the error obtained when parameter set a is used
with the correlation matrix V obtained from parameter set a.
However, this result suggests that significant variations in
D(a, a) might also exist because of variations in the prediction-
error term E2 due to the position of the analysis frame.

To test this hypothesis an LPC analysis was carried out on a
sample-by-sample basis for a 1.75-s utterance. The autocorre-
lation method was used with a 20-ms frame size using a Ham-
ming window. The analysis rate was nominally set at 100
frames/s. Thus, within each 10-ms frame, 100 LPC analyses
were performed, thereby giving the prediction error at a
10 000-Hz rate. The positions at which the peak prediction
error and the minimum prediction error occurred were ob-
tained. From the LPC sets corresponding to these two posi-
tions (amax and amin) the following quantities were computed:

— a1Vmaxain
D1amin,amax)— 17 t

amax Vmaxamax

— amax Vmin anax
D2(amax,amjfl)— t

aminVminamin

Since both sets of a's were from ostensibly the same analysis
frame, one would theoretically expect D1 and D2 to be close
to 1.0 for all frames. A total of 175 calculations of D1 and
D2 were made. Fig. 12(a) shows the distribution of the
occurrences of values of D1, D2 and the combined set of
D1 and D2. Of these 175 calculations, D1 exceeded a thresh-
old of 1.2 a total of 97 times, and D2 exceeded this threshold
a total of 85 times; i.e., more than 50 percent of the frames
were classified as dissimilar to shifted versions of the frames
using a 20-percent variation threshold. Additionally, in many
cases, the distances exceeded the 20-percent threshold by a
considerable margin.

The previous experiment was repeated on the same sentence
after it had been preemphasized using the network discussed
in the previous section. The results for this case are shown in
Fig. 12(b). For the 175 frames tested, D1 exceeded the
threshold of 1.2 a total of 34 times, and D2 exceeded this
threshold a total of 31 times. Of these 67 cases, the majority
occurred in regions where large signal changes were occurring;
i.e., in speech transitions, etc., where such behavior is entirely
anticipated. These results indicate that signal preconditioning
is a useful technique when a distance measure of the type
previously described is to be used to compare LPC parameter
sets .'

The implication of the results presented in this section is
that in the worst case when one compares LPC sets obtained
from positioning the analysis frame so as to give the maximum
and minimum prediction errors, then fairly large distances
between such frames can be obtained. Since such frames are
physically the same this result suggests that spuriously large

(15) 7Results are not given for the covariance method, since the LPC
distance of (13) is almost always used with the autocorrelation method.
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Fig. 11. The effects of preemphasis on the prediction-error sequence.
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Fig. 12. The distributions of occurrences of D1, D2, and D1 ÷ D2 for

original speech, and preemphasized speech.

distances between similar frames can occur by random sam-
pling due to the effects previously described. However, when
averaging the distance measure over a large number of contin-
guous frames, as would be the case for word recognition, etc.,
one would expect such statistical variations in distances to
average out leaving a fairly reliable result. In addition, the use
of a first-order preemphasis network can help to alleviate some
of the statistical variations in distance.

VI. LPC SYNTHESIS EFFECTS OF PREDICTION-ERROR
VARIATIONS

Another application where the effects of frame position
could be of importance is in the LPC vocoder. By examining
the spectra of the individual frames, it was found that the
differences in spectra between frame positions corresponding
to maximum and minimum prediction errors primarily were
in the bandwidths of the formants. The formant bandwidths
corresponding to maximum prediction error were generally

from 10 to 50 percent larger than the bandwidths correspond-
ing to minimum prediction error. This effect was more pro-
nounced for shorter analysis frames. The question now
remained as to whether such changes in formant bandwidths
could be perceived by a listener, and if so, what type of
degradation would be heard.

To answer this question a standard LPC vocoder was im-
plemented. The excitation parameters (i.e., pitch and voiced—
unvoiced) were obtained from the semiautomatic procedure
described in [14]. This effectively circumvents the interac-
tions between problems in pitch detection and those that we
wish to investigate here. Two sets of LPC coefficients were
obtained for each frame, one set corresponding to the frame
position with the maximum prediction error, the second set
with the minimum prediction error. LPC synthesis was then
performed using both sets of LPC parameters, and the two
synthetic versions of each utterance were compared. A small
but consistent difference in quality was obtained in informal
listening tests. The major difference in quality was that the
synthesis from the LPC coefficients with the maximum pre-
diction error was somewhat more nasal-like than the synthesis
from the coefficients with the minimum prediction error.
This result is consistent with the observation that the LPC
coefficients associated with the maximum prediction error
tended to produce formants with broader bandwidths than
those associated with the minimum prediction error.8

The informal listening experiments were done with LPC
implementations of both the covariance and autocorrelation
methods of analysis. The quality differences that were ob-
tained were more pronounced for shorter analysis intervals
than for longer analysis intervals. Additionally, the prepro-
cessing functions discussed in Section IV were used on the
utterances and the informal listening tests were repeated.
For the covariance method, the use of the ailpass filter reduced
the differences in quality so that they were almost inaudible.
For the autocorrelation method, the use of the preemphasis
network had a similar effect. Thus in terms of synthesis it
would seem reasonable to preprocess the signal prior to LPC
analysis to eliminate the variations due to placement of the
analysis interval within the frame.

VII. SUMMARY

In this paper we have shown that, for LPC analysis, by
suitable placement of the analysis frame, the LPC prediction
error can vary significantly. An explanation for the effect in
terms of the peakedness of the error signal at the beginning of
each pitch period, and the error at the beginning of the analy-
sis frame (for the autocorrelation method) was discussed. In
addition two preprocessing methods for reducing the variation
of the prediction error were introduced including ailpass filter-
ing and preemphasis of the speech. Finally, the physical
implications of this prediction-error variation for distance
calculations using the Itakura distance measure, and for speech
synthesis based on LPC parameters were discussed.

8Kang [8] observed a noticeable flutter in the speech obtained from
LPC analyses at a uniform rate.
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A Necessary and Sufficient Condition for
Quantization Errors to be Uniform

and White

ANEKAL B. SRIPAD, STUDENT MEMBER, IEEE, AND DONALD L. SNYDER, MEMBER, IEEE

Abstract—In this paper, a necessary and sufficient condition is given
to model the output of a quantizer as an infinite-precision input and an
additive, uniform, white noise. The statistical properties of the quan-
tization error are studied, and a detailed analysis for Gaussian distributed
inputs is given.

I. INTRODUCTION

THE IMPLEMENTATION of filters with digital devices
having finite word-length introduces unavoidable quan-

tization errors. These effects have been widely studied
[6}—[8]. There are three main sources of quantization error
that can arise: input quantization, coefficient quantization,
and quantization in arithmetic operations. Once a model to
represent input quantization error has been developed, models
to represent the other two types of error can easily be ob-
tained [6]—[8]. Hence, our attention in this paper will be on
input quantization, which occurs in the analog-to-digital con-
version process.

A quantizer can be viewed as a nonlinear mapping from the
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domain of continuous-amplitude inputs onto one of a count-
able number of possible output levels. The analysis of errors
introduced with this mapping can be approached either using
nonlinear deterministic methods [9] or using stochastic
methods [1]—[8]. The later approach is the one we adopt in
this paper.

With the stochastic method, the output of the quantizer is
modeled as an infmite-precision input and an additive noise.
The additive noise is a random variable whose distribution is
nonzero only over an interval equal to the quantization step
size. Widrow [1] showed that under the condition that the
input random variable has a certain band-limited characteristic
function, the quantization noise is uniformly distributed; this
is frequently referred to as the "Quantization Theorem"
[l]_[51.1 The band-limitedness assumption on the input
random variable is a sufficient condition that is not satisfied
universally. In this paper, a weaker sufficient condition which
is also necessary for the Quantization Theorem is given. This
expands the class of input distributions for which the uniform
noise model to represent quantization errors can be used with
confidence and is discussed in Section III.

1More precisely, Widrow established that if the input random variable
has a band-limited characteristic function, then the input distribution
can be recovered from the quantized-output distribution, and the
quantization noise density is uniform [1], [2]. Because of its dominant
importance in applications, we are interested in the latter past of this
result, and refer to it as the "Quantization Theorem" for brevity.


