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Comparisons of System Identification Methods in the Presence 
of High Noise Levels and Bandlimited Inputs 

ABS TRA CT 
In this paper we investigate the performance of three well of the simulation study was to measure the linear system estimation 

known system identification methods based on an FIR (finite error as a function of N, the signal duration, M, the impulse 
impulse response) model of the system. The methods will be response duration, s/n the signal-to-noise ratio of the system, and 

referred to in this paper as the least squares analysis (LSA) method, the input signal characteristics. 
the least mean squares adaptation algorithm (LMS) and the short- e (n) 
time spectral analysis (SSA) procedure. Our particular interest in 
this paper concerns the performance of these algorithms in the pres _____________ 
ence of high noise levels and in situations where the input signal is I ____________ 
bandlimited. Both white and nonwhite random noise signals as well h (n) — 

+ — Y ( ) 
as speech signals are used as test signals to measure the performance ______________ 
of the system identification techniques. Quantitative results in terms 

Fig. 1. Block diagram of the linear system model used for system of an accuracy measure of system identification are presented and a . 
simple analytical model is used to explain the measured results. 

i enti ca iOfl 

I. Introduction II. System Identification Methods 
The area of system identification is one of the most important The three system identification methods used in this study 

areas in engineering because of its applicability to a wide range of were the classical least squares analysis algorithm (LMS), the least 
problems [1-61. As such, a great deal of research has been carried mean squares adaptation algorithm (LMS), and a short-time spec- 
out studying the properties of a wide variety of algorithms for per- tral analysis (SSA) procedure. The reasons these three particular 
forming system identification. The purpose of this paper is to corn- methods were chosen were because of their applicability to a wide 

pare and contrast the performance of three well known system range of problems (especially in the area of speech processing 
identification techniques for a class of signals which is characteristic [3,6,7,81) and the fact that each of these methods had distinct 
of those obtained from speech waveform coders. advantages in certain situations. 

Figure 1 shows the conventional system identification model. 
The output is modelled as having been obtained via linear filtering 2.1 Least squares analysis (LSA) 
of the input, followed by the addition of an uncorrelated white Based on the model of Figure 1 we assume that the output 
noise signal e(n) i.e., y(n) is related to the input x(n) exactly by equations 1 and 2 

where M is the true duration of the impulse response h(n). For 
y(n) x(n)*h(n) + e(n) (1) the least squares method we assume that, h(n), e(n) and Mare all 

M—i unknown and we wish to make an optimal estimate, h(n), of h(n). 
= h(m)x(n—m) + e(n) (2) The assumed duration of h(n) is Msamples. 

For LSA we form the estimate 

with 
y(n) = h(m)x(n—m) + ê(n) 

E[e(n)x(n)] = E[e(n) v(n)] = 0 (3) 
=0 

2 
The optimization criterion is to minimize the norm of ê(n) over 

.E[e(n)e(n—m)] = r,,8(m) ( the set of coefficients of l(n). The solution to thiS minimization is 
compactly written as [41 

It is tacitly assumed in Eq. (2) that, the impulse response of the 
linear system, h(n) is of finite duration (M samples) or can be '' (m),.(k,m) = ,(k) k 0,1 i1t — 

1 (6) 
effectively modelled with a finite response system. 

The particular class of input signals in which we are interested where 
has the following properties: 
1. The noise level, e(n), at the output of the linear system is (k m) E x(n—k)x(n—m) () 

fairly large - i.e., we are interested in systems with signal-to- 
' 

noise ratios in the range of 0 to 24 dB. - 
2. The input signal x(n) is generally bandlimited and has a dis- 411) y(n)x(n—k) (8) 

tioct spectral slope. 
2.2 Least Mean Squares Adaptation Algorithm (LMS) 

3. The duration of the impulse response, M, is generally unk- 
nown and could be relatively long in some cases. The least mean squares adaptation algorithm [41 is an itera- 

live, minimum seeking method for determining the least squares 
Because of the importance of understanding both the limita- solution (6). Assumin that , is an estimate of Ii at the I" itera- 

tions and advantages of the available system identification tech- tion, the new estimate h +1 is determined as 
niques, a study was performed on an artificially created signal, with 

— - - 
a known linear system, in a known noise background. The purpose it-i-i h — uV, (9) 



where V is the gradient of II(n)j2 with respect to h and u is a 
constant. Basically —V determines the direction in which the 
correction is made for the i + 1 iteration and u is a constant which 
controls the size of the step taken in that direction. Since IIê(n)112 
is a quadratic function of h, a single minimum exists in the error 
surface and it can be shown (for the sampled data case) that the 
algorithm converges to this minimum if 

u < 1 (Mo) 
i.e., if the step size is not too large, where r is the variance of 
x(n) [4]. Generally a much smaller value of u is chosen and fre- 

quently u is adapted as the error decreases. 

The LMS adaptation algorithm used the gradient of a single 
error 

V — 2x(n—m)ê(n) 

New eStimates of h are then computed on a soimple-by-sample basis 
as data samples x(n) and y(n) become available. The new esti- 
mate of the m" coefficient of Ii is then computed as 

= h,,(m) + 2ux(n—m)ê(n) 

Since the choice of u depends on the variance of x(n), a 
self-normalizing form of the LMS adaptation algorithm, 

= h,(m) + Kx(n—m)ê(n)/(crM) 
was used, where 

Mi 
x2(n—mi 

u K/(2Mcr) 
and the algorithm converges if K < 2. The effective value of u is 
normalized by o- making the effective step-size independent of the 
input signal level. In practice this self normalized form of the algo- 
rithm is not often used because of the added complexity of comput- 
ing ir. 
2.3 Short-Time Spectral Analysis (SSA) 

Based on the theory of short-time spectral analysis [8-1 1], the 
SSA procedure that was used for this study was to form the esti- 
tate 

S (z) 
X(z)Y,(z) 

11(z) = 
S,,(z) X,(z)X,,(z) 

where X,(z) and Y,(z) are short-time spectros of x(n) an-d y(n) at 
time m, and the summation on m is for overlapping frames of the 
signal. It is readily shown that as in tends to infinity, the estimate 
converges to the true H(z). 

III, Performance Measures and Error Models for System 
Identification Methods 

In the preceding section we outlined three distinct methods 
which can be used to estimate a linear system whose output is cor- 

kt oois, i'e the icput son onitpiit of th.e system. In. this 
section we define two performances measures for evaluating these 
methods. The Q measure is basically the ratio (expressed in dB) of 
the norm of the coefficient error vector or "misadjustment vector" 

[4,51 to the norm of the true coefficient vector. It is useful for 
characterizing how well the estimate h approximates the true h. 

The second measure, Q, is a frequency weighted measure which is 
useful for characterizing the performance of system identification 
methods for nonwhite inputs. It is also useful when estimates of 
v(n) and e(n) in the model of Fig. 1 are primarily desired and are 
obtained by first estimating Ii. 

(10) 

(11) 

and 

3.1 The Qand Q' Measure 

The Q measure has the form 

[h(m)—h(m)] 
Q = 10 log10 

° 
Ai—I (17) 

h2(m) 

It can be shown that for a white input signal x(n) and with 
uncorrelated white noise e(n), the quantity Q is a simple function 
of the system parameters, namely N M, and the signal-to-noise 
ratio, s/n = 10 /og(iy/o), at the output of the system, and is of 
the fmmtt 

QIIW 10 log10 
- — s/n (dB) (18) N 

Equation (18) predicts the performance of the least squares analysis 
system identification method for white uncorrelated inputs. 

(12) It is seen that Q is directly dependent on the signal-to-noise 
ratio at the output of the system. It improves (decreases) by 3 dB 
per doubling of the block size N, and it degrades (increases) with 
log M. 

(13) For the case of nonwhite inputs, it is not possible to express 
Q in a form as simple as (18). In general for nonwhite inputs the 
values of Q will be larger than (18) and in this sense (18) 
represents a lower bound on the expected value of Q. That is, a 

(4) ste nconeiate iit signal is ine 'nest form of input signal to 
use in the system identification problem. 

The modified Q measure, Q', that we propose applies fre- 
(15) quency weighting which is equal to that of the frequency response 

of the filter g(n) in Fig. 2 which is used to create the nonwhite sig- 

e(n) 

gflJZlfl1V(fl)÷y(fl) 
INPUT INPUT 

SOURCE MODEL SYSTEM MODEL 

Fig. 2. Block diagram of the linear system model for non-white 
input signals. 

nal z(n) from the white signal x(n). This weighting can con- 
veniently be achieved by convolving h(n) and h(n) by g(n). This 

(16) procedure serves to weight the performance measure by the fre- 
quency spectrum of the input signal. More formally, we define the 
measure Q', as 

= 10 log10 
' 

2 
— (19) E Ih(n)*g(n))] 

Using Parsevals theorem Eq. (19) can be transformed to the fre- 
quency domain, giving 

5 IH(e) — 11(e')I2tG(e)l2 din 

= 10 log10 
" 

(20) 

5 J1(e)I2IG(eJ2 din 

which explicitly shows the frequency weighting of the Q' measure. 

The properties of Q' as a function of N, j121, and s/n are some- 
what more complicated than those of the Q measure, since the 
"coloring unwhitening" filter, g(n), affects the result. However it 
can be showo that, in most cases, the properties of Q' and Q are 

quite similar. 
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IV. Experimental Results 
To validate the models of the previous sections, a digital 

simulation of the model of Fig. I was made. Three types of input 
signal, x(n), were used. These included white Gaussian noise, 
bandlimited Gaussian noise, and speech. For the linear system 
h(n), two examples were used. One was a simple 7-point FIR 
filter (M=7) whose impulse and log magnitude responses are given 
in Fig. 3. The other filter used in the simulations was a 25-point, 
linear phase, equiripple FIR !owpass filter. Independent Gaussian 
noise (e(n)) was added to the filtered input to give signal-to-noise 
ratios (s/n) of 0,8,16,24, and infinite dB. 

The three system identification methods of Section II were 
used to estimate the known h(n) for several combinations of the 
above system parameters. For each example the quantity Q (Or Q') 
of Section III was measured. 

TIME IN SAMPLES 

(a) 
p 

I I I I 
-1000 2000 3000 

FREQUENCY IN Hz 

Fig. 3. Impulse response and log magnitude response of a simple 
filter used in the investigations. 

4.1 White noise input 
Figure 4 shows a series of curves of Q (on a log scale) versus 

N (on a log scale) for the filter of Fig. 3, with M = 15, and various 
values of s/n, for the LSA method. The solid curves show the 
measured values of Q and the dashed curves show the predicted 
values of Q. The agreement between the computations and the 
predicted values is well within the expected statistical variations for 
these cases. For the infinite s/n case the measured curve of Q 
versus N is below the —80 dB cutoff level of the plots, and is thus 
not included here. Equivalent computations were made for other 
values of M (notably 7 and 25), and for the lowpass filter (with 
M=25 and 34) and the results were equivalent to those of Fig. 4 - 

i.e., close agrernent between theory and measurement. 

Figures 5 and 6 show a set of comparable curves for the SSA 
method. For this method a Hamming window of size L samples 
was used in the analysis, and the window was moved by L/4 sam- 

ples between adjacent sections [111, i.e., except for endpoint 
effects, each input sample was used in 4 distinct short-time spectral 
estimates. Thus in presenting results for the SSA method, the win- 
dow length L is an additional analysis parameter whose effects must 
be considered. Figure 5 shows a set of curves of Q versus N for 
the simple filter of Fig. 3, with M 15, with L = 64,128,256, and 

512, and with s/n = (i.e, no additive noise). A complete 
analysis of these curves is beyond the scope of this paper. How- 

ever, several key points about this method of analysis can be seen 
from this figure. First it is seen that for smaller values of N it is 
preferable to use shorter windows to reduce the end effects,and to 

Fig. 4. Curves of Q versus N for M = 15 and several values of 
S/fl for the LSA method for a white input signal. 
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Fig. 5. Curves of Q versus Nfor M 15, s/n = 00, and several values of window size L for the SSA method for a white 
input signal. 
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Fig. 6. Curves of the lower bound of Q versus N for At = is 
and several values of s/n for the SSA method for a white 
input signal. 
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provide an increased number of short-time spectral estimates for 
averaging. This effect is related to the aliasing noise of the analysis 
which is reduced with increased window length. Finally it is seen 
that for large values of N, the value of Q approaches the machine 
accuracy of about —80 dB, thus showing that the method will even- 
tually converge to the least squares estimate. 

Figure 6 shows a set of curves of Q versus N for several 
values of s/n for the SSA method. Based on the discussion above, 
the "lower bound" of the curves is drawn as the solid curves shown 
in the figure. The dashed curves again show the theoretical predic- 
tions for these cases. It is seen in this figure that for s/n in the 
range 0 to 24 dB, the SSA method can provide filter estimates that 
are fairly close to the optimum, except for small values of N where 
the end effects still dominate. The aliasing effects for large N don't 
occur here because the additive noise for these cases is significantly 
greater than the aliasing noise. 

Curves of the results obtained for the LMS adaptation method 
are given in Fis. 7 and 8. Figure 7 shows a set of curves of Q 

versus N, for M = 15, and s/n oo for the filter of Fig. 3. The 
parameter for the individual curves is K, the step size multiplier of 
the adaptation algorithm. As seen in these curves the values of Q 
decrease monotonically to the computation noise floor. The rate at 
which these curves decrease is determined by the value of K. Thus 
for small values of K the convergence is slow; for large values of K 
it is much faster. At first thought such curves would seem to imply 
that one should use large values of K. However if we recall that K 
is the correction term multiplier then we realize that if K is large, 
small errors in calculating the gradient of e can lead to large errors 
in estimating Ii as will be seen later in Fig. 8. Thus with noisy sig- 
nals a tradeoff in choosing K is required. The curves -in Fig. 7 give 
an indication of the value of N required to obtain a desired value of 
Q for the noise-free case. 

Figure 8 shows curves of Q versus N for s/n = 8 dB, and the 
same parameters as Fig. 7. Values of K of 001 and 0.05 are used 
to show the convergence properties of the algorithm. For these 
cases a steady-state noise floor (due to the gradient calculation of 
the noisy signal) limits the value of Q which can be obtained. 

N 

Curves of Q versus N for M = 15, s/n = 00, and several 
values of K for the LMS adaptation algorithm for a white 
input signal. 

4.2 Bandpass Input Signals 
To evaluate the performance of each of the three system 

identification methods on bandlimited input signals, the, system of 
Fig. 9 was simulated. The signal z(n) was a lowpass signal whose 
frequency components were attenuated by at least 54 dB for fre- 
quencies above 0.2 F,, where F, was the sampling rate of the sys- 
tem. Independent additive Gaussian noise e(n) was again used to 
provide the signal y(n) from which the system function h(n) relat- 

Fig. 8. Curves of Q versus N for M = 15, s/n 8 db for 
K 0.01 and 0.05 for the LMS adaptation algorithm for 
a white input signal. 

yIn) 

Fig. 9. Block diagram of actual system used to test the system 
identification algorithms for a lowpass input signal. 

log y(n) to z(n) was estimated. 

Figure 10 shows a set of curves of Q' (the modified Q meas- 
ure) versus N for M = 15, and several values of s/n. The solid 
lines are the measured values of Q', whereas the dotted lines show 
the theoretical curves of Q versus N for the same set of conditions. 
As discussed earlier the measured curves of Q versus N were vastly 
different from those shown in Fig. 10 due to the lack of high fre- 
quency information in the input signal. However when the Q' 
measure was used, the high frequency inaccuracies in h (n) were 
given essentially zero weight by the "coloration" filter g(n). Thus 
the curves of Q' versus N of Fig. 10 for the highly bandlimited 
input are essentially the same as the curves of Q versus N of Fig. 4 
for the white input case. At the bottom of Fig. 10 shown the curve 
of Q' versus N for infinite s/n. In this case the value of Q is 
about —70 dB, reflecting the residual error in estimating the high 
frequency behavior of h(n). 

Results for both the SSA and LMS methods for the bandlim- 
ited input case using the Q' measure were essentially identical to 
those of the white input case with the Q measure, and are thus not 
shown here. 

4.3 Speech Input Signal 
The last test signal used to evaluate the three System 

identification techniques was an actual speech signal. The model 
for testing the systems using the speech signal was essentially that 
of Fig. 9 with one major exception. If we denote the speech signal 
as z(n), then the "coloration" linear system g(n) is not known 
exactly. Thus to provide analytical estimates of Q' for the speech 
input, the system g(n) also had to be estimated from z(n). For 
this problem standard LPC techniques were used. As such the 
range of values of N which was considered was from 50 to 1000. 
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Outside this range the LPC estimates were sufficiently inaccurate to 
greatly degrade the Q' measure. It should be noted that even 
within this range the LPC estimates of g(n) are not exact; as such 
the Q' computations were somewhat affected. 

The curves of Q' versus N for various s/n values for the LSA 

analysis are given in Figure 11 for M = 15. It is seen that the 
measured values of Q' are generally greater than the predictions for 
the white input; however the differences, except for small N, are 
about 5 dIl or less. Thus the LSA method is seen to work quite 
well on this section of speech. Results for the SSA and LMS 
methods were somewhat poorer for speech than those of the LSA 
method. However, they were still good enough to indicate that 
these methods could be used on such signals. 

m 

a 

0 

signal. 

Fig. 11. Curves of Q' versus N for A1 = 15, anti several values of 
s/n for the LSA method for a speech input signal. 

V. Discussion of the Results 
Based on the theoretical discussions of Sections Il and Ill, the 

results presented in Section IV, and information observations from 
the simulations, the following conclusions are drawn. 

I. As expected, the LSA method was the most robust method of 
the three, providing excellent estimates of h(n) for both 
white and bandlimited signals, and across a wide range of 
signal-to-noise ratios. 

2. The only possible disadvantage of the L.SA method is that the 
implementation effectively solves an M" order matrix equa- 

don (via an efficient recursion procedure). As such estima- 
tion of systems with large values of M (e.g. the speech echo 
canceller etc.) would generally not be practical using LSA. 
The recognition of this fact has led to the widespread use of 
the LMS adaptation method. 

3. The SSA method was shown to perform almost as well as the 
LSA method for both white and non-white noise signals. The 
major disadvantage of the SSA method is the possibility of 
having severe aliasing distortion in the estimation of h(n) for 
nonwhite inputs due to dividing S,(z) by S,jz). 

4. The big advantage of the SSA method is that the implementa- 
tion is simple, can be used for large M values, and is readily 
amenable to either digital hardware or to array processors. The storage for this method grows linearly with U and thus 
timation for values of h(n) for M on the order of 512 or 
more is entirely practical. 

5. The LMS adaptation algorithm provides a robust alternative to 
the LSA method, and is useful for both white inputs, as well 
as bandlimited inputs. Although the performance was not as 
good as the LSA method, the differences were not so large so 
as to make the method undesirable for virtually any applica- 
tion. 

6. Generally the convergence rate of the LMS adaptation a1go 
rithm is affected by bandlimited inputs and by high signal-to- 
noise ratios. It requires a much larger number of samples, N, 
compared to the LSA method and is therefore limited to 
applications where Ii (a) varies very slowly. 

Summary 
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In this paper we have studied three distinct methods for iden- 
tifying a linear system in the presence of noise. We have shown 
the advantages of each of the methods for the class of signals which 
we studied. The results of this investigation will hopefully help a 
user of such methods to make efficient use of each of these three 
techniques as warranted by the individual problems. 
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