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Abstract— System identification, that is, the modeling and identifica-
tion of a system from knowledge of its input and output signals, is a
subject that is of considerable importance in many areas of signal and
data processing. Because of the diversity of applications, a number of
different methods for system identification with different advantages
and disadvantages have been described and used in the literature. In
this paper we investigate the performance of three well-known system
identification methods based on an FIR (finite impulse response) model
of the system. The methods will be referred to in this paper as the least
squares analysis (LSA) method, the least mean squares adaptation algo-
nthm (LMS), and the short-time speciral analysis (SSA) procedure.

Our particular interest in this paper concerns the performance of
these algorithms in the presence of high noise levels and in situations
where the input signal may be band-limited. Both white and nonwhite
random noise signals as well as speech signals are used as test signals to
measure the performance of each of the system identification tech-
niques as a function of the signal-to-noise ratio of the systems output.
Quantitative results in terms of an accuracy measure of system identifi-
cation are presented and a simple analytical model is used to explain
the measured results.

I. INTRODUCTION

THE AREA of system identification is one of the most
important areas in engineering because of its applicability

to a wide range of problems [1] —[6]. As such, a great deal of
research has been carried out in studying the properties of a
wide variety of algorithms for performing system identification
[4] —[6]. As a result, system identification techniques are
generally well known and understood for a wide variety of
applications. The purpose of this paper is to compare and con-
trast the performance of three system identification tech-
niques for a class of signals which is characteristic of those
obtained from speech waveform coders [11]. Our intended
application is to be able to characterize a digital waveform
coder in terms of a time-varying, linear system (correlated
signal component), and an additive uncorrelated noise conipo
nent, in order to make meaningful objective evaluations of
such coders. In this paper, however, we will restrict our atten-
tion to aspects of the systein identification problem. Some
results on speech waveform coder characterization are given in
[20].

Fig. 1 shows the conventional system identification model.
The input signal is x(n) and the output signal is y(n). The
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Fig. 1. Block diagram of the linear system model used for system
identification.

output is modeled as having been obtained via linear filtering
of the input, followed by the addition of an uncorrelated
white noise signal e(n), i.e.,

y(n)x(n) * h(n) +e(n)

with

M-1
= h(m)x(n-m)+e(n)
m=O

e(n)x(n)e(n) v(n) 0

e(n)e(n - m) a6(m).

(1)

(2)

(3)

(4)

It is tacitly assumed in (2) that the impulse response of the
linear system h(n), is of finite duration (M samples) or can be
effectively modeled with a finite impulse response system.

The particular class of input signals in which we are inter-
ested has the following properties.

1) The noise level e(n) at the output of the linear system is
fairly large—i.e., we are interested in systems with signal-to-
noise ratios in the range of 0-24 dB.

2) The input signal x (n) is generally band.limited and has a
distinct spectral slope. For speech codingx(n) is usually band-
limited to about 3 kHz, and sampled at rates from about
8 kHz to 16 kHz. Furthermore, the spectrum of speech is
highly nonuniform and fails rapidly for frequencies above
about 2 kHz. Also, for voiced speech the spectrum is a line
spectrum containing significant energy only in a set of har-
monics of the pitch period. Between harmonics the spectrum
often falls as much as 20-40 dB.

3) The system h(n) is generally time-varying arid, in addi-
tion, it may be nonlinear. The time-varying nature of h(n) is
due to the nonstationarity of a speech signal (especially the
signal level) which causes the operating region of speech coders
to vary from slope overload to granularity with different talk-
ers, transmission media, etc. As such the linear system char-
acterization of the coder must adapt with time.
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4) The duration of the impulse response, M, is generally
unknown and could be relatively long in some cases.

Because of the importance of understanding both the limita-
tions and advantages of the available system identification
techniques, a study was performed on an artificially created
signal with a known linear system and in a known noise back-
ground. The purpose of the simulation study was to measure
the linear system estimation error as a function of the
following:

1) Duration of the signal used to make the estimate, N;
2) Assumed duration of the linear system impulse response,

3) Signal-to-noise ratio of the system, S/N, where

S/N 10 log10 [] (5)

where a is the variance of the signal v(n) and a is the vari-
ance of the noise e(n) (see Fig. 1);

4) Type of unknown system to be identified, h(n);
5) Input signal characteristics—i.e., the bandwidth of the

input signal, its spectral shape, etc.
In order to quantify the ideas to be presented here, an ana-

lytical measure of the accuracy of estimation is used which
has the form1

where (n) is the estimated linear system and M is its assumed
length. This measure is the log of the normalized norm of the
"misadjustment" or "misalignment" vectors, referred to, re-
spectively, in [5] and [6], expressed in dB. It is shown that
for white input signals, the measure of (6) provides a good
description of the performance of a system identification
method. For nonwhite input signals, a modified accuracy
measure Q' is developed whose properties are analogous to
those of the Q measure. Both analytical and measured curves
of Q (and Q' when appropriate), as a function of the system
parameters N, M, S/N and h(n), are presented.

The organization of this paper is as follows. In Section II we
review the three system identification methods which were
used in this study and explain why they were chosen for the
intended application. In Section III we present both analytical
and experimentally obtained results of the performance of the
three system identification methods on the artificially created
signals. In Section IV we expand the results to include actual
speech inputs as well as band-limited noise. Finally, in Sec-
tion V we compare and contrast the three methods and high-
light the possible advantages and disadvantages of each
algorithm.

1Throughout this paper we are assuming M M, i.e., a valid estimate
of M is available and M is at least as large as this estimate.

II. SYSTEM IDENTIFICATION METHODS

The three system identification methods used in this study
were the classical least squares analysis (LSA), the least squares
adaptation algorithm (LMS), and a short-time spectral analysis
(SSA) procedure. The reasons these three particular methods
were chosen were because of their applicability to a wide range
of problems (especially in the area of speech proces'sing [4],
[6], [8], [9], [12], [13]) and the fact that each of these
methods had distinct advantages in certain situations. For ex-
ample, the least squares analysis algorithm is a simple time-
domain method for estimating a linear system from a block of
data using efficient recursion methods to solve a matrix equa-
tion. Methods similar to this have found wide use in speech
processing [12] - The least mean squares adaptation algorithm
is a sample-by-sample adaptive method for recursively updating
linear system estimates and is especially useful for efficiently
estimating linear, slowly time-varying systems of large order
[8]. It has been particularly useful for applications such as
adaptive echo cancelers, adaptive line equalizers, etc. Spectral
estimation methods attempt to identify the linear system from
short-time spectral data, rather than from time-domain solu-
tions. Potentially such methods have the capability of estimat-
ing high-order systems (i.e., systems with long impulse re-
sponses) without the need for recursive matrix inversions or
successive update methods when the analysis is implemented
using FFT techniques. Also, with the advent of high-speed
inexpensive FFT chips (implemented in CCD technology), the
potential low cost of such analysis methods makes them
attractive.

In this section we review the specific algorithms implemented
for this study. For completeness, we begin by describing the
classical least squares analysis, followed by the least mean
squares adaptation algorithm. We then describe the spectral
estimation method.

A. Least Squares Analysis (LSA)
Based on the model of Fig. 1 we assume that the output y(n)

is related to the input x(n) exactly by (1) and (2) where Mis
the true duration of the impulse response h(n). For the least
squares method we assume that h(n), e(n), and M are all
unknown, and we wish to make an optimal estimate, (n), of
h(n). The assumed duration of &(n) isM samples.

For LSA we form the estimate

M-1
J(m)x(n-m)+2(n) (7)

m =0

M—1

h(m)x(n-m). (8)
m =0

The optimization criterion is to minimize the norm of 2(n)
over the set of coefficients of(n), i.e.,

IN-I 1
Mm II2n)II2 =

I 2(n)] 21 (9)
h(n) h(n) Ln= J

M-1
[h(n)-h(n)J2

I
M-i

h2(n)

(6)

or
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where N is the frame of samples of x(n) and y(n) used in the
system estimate. The solution to (9) is a classical one, ob-
tainedby differentiating (9) with respect to i(k), k 0, 1, 2,

M — 1, and setting the result to 0, leading to the set of
equations

ii-i N-i N-i
(m) x(nk)x(nm)r y(n)x(n—k)

m=0 n=0 n=o

or by defining

N-i
x(n-k)x(n-m)

n=0

N-i
y(n)x(n-k)

n=0

the solution is compactly written as

k=0,l,2,",M (10)

M-1
h(m) m) (k) k = 0, 1, ,M- 1.

m =0

The set of equations given above is efficiently solved via a
recursive procedure known as the Cholesky decomposition
[12]. Equation (13) is sometimes referred to as the discrete
Weiner—Hopf equation [141.

If we adopt a matrix notation to solve for the classical least
squares solution to the system identification problem we gain
some new insights into the solution. If we let

yE [y(0)y(1), . ,y(N- 1)]

ht= [)(J)(J)• ,/'(A- 1)1

then IJ(n)I2 can be expressed as

II(n)II2 = (& - ';1)txx( - 'ixy) ytY
_zt -i

'Pxy 'i-'xx vxy

This form clearly shows the quadratic nature of the problem
and it is easily seen that to minimize jj(n)II2 with respect to

must be
- z-1.

Pxx Wxy

giving for the minimum residual,

II2(n)lI =yty -

N-i ci-1 ,. N-i
= y(n) - h(m) y(n)x(n - m).

n=o m=0 n=0

If does not exist, or is ill-conditioned, the pseudoinverse
is used in the solution to (17).

B. Least Mean Square Adaptation Algorithm (LMS)
The least mean squares adaptation algorithm [21 is an itera-

tive, minimum-seeking method for determining the least

ai(m)
-2x(n-m)(n)

squares solution of (13). Assuming that is an estimate of
at the ith iteration, the new estimate 7+ is determined as

1I+i II—uV (20)

where V1 is the gradient of IIê(n)112 with respect to arid u is a
constant. Basically -V determines the direction in which the
correction is made for the i ÷ 1 iteration and u is a constant
which controls the size of the step taken in that direction.
Since ll(n)II2 is a quadratic function of &,is a single minimum
exists in the error surface and it can be shown (for the sampled
data case) that the algorithm converges to this minimum (17)
if

(11) u<l/(AC) (21)

i.e., if the step size is not too large, where a is the variance of

'12' x(n) (assuming zero mean) [41. Generally, a much smaller
value of u is chosen and frequently u is modified as the error
decreases.

By differentiating (16) with respect to h and applying defini-
tions (2), (3), (11), and (12), the gradient V at the ith step can

(13) be shown to be [4], [5]
iiV'f \112u11en,n

V— —-c -
With the aid of (2), (3), (7), and (11) the gradient of a single
coefficient (m) can be determined as [4, [5]

a 112(n)112

a(m) —-2E[x(n-m)e(n)] (23)

where E[ ] denotes the expected value (ensemble average over
(14) random input).
(15) The LMS adaptation algorithm frequently uses as an estimate

of (23) the gradient of a single error

(24)

(16) where (n) is determined from (8). New estimates of & are

then computed on a sample-by-sample basis as data samples
x(n) and y(n) become available. The new estimate of the mth
coefficient of & is then computed as

(17) &+(m)=&(m) + 2ux(n - m)(n). (25)

Since the choice of u depends on the variance of x(n) as

(18)
shown by (21), we used in this work a self-normalizing form
of the LMS adaptation algorithm,

- m)è(n)/(aA) (26)

where

(19)
Ma = x(n - in). (27)

m=0

Comparing (25) with (26) and (27) it is seen that

u_K/(2Mu) (28)

and the algorithm converges if K < 2. It can be seen from (28)
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Hr(Z) X(z) X(z)

hm ul(z) = urn
L

(29) L-' L—=
X.(z) X'(z)

r = 1

L
E.(z)X'(Z)

+ urn LL—°
Xr(Z)Xj'(Z)

r= 1

that the effective value of u is normalized by cr making the
effective step size independent of the input signal level. In
practice, this self-normalized form of the algorithm is not

(z) =X(z) X7(z) (34)
.

and

often used because of the added complexity of computing a.
This form is used here to make our results independent of
signal level,

It should be noted that other variations of the LMS adapta-
tion algorithm also exist which can achieve more accurate esti-
mates of the gradient at a cost of more computation

(z) = Y7(z) X1'(z) (35)

where r corresponds to the rth block or windowed segment of
samples of x(n) and y(n) from which estimates Xr(z) and
Yr(z) are obtained. A reasonable implementation of the spec-
tral estimate, using short-time spectral estimation methods, is

These methods have not been explored in this paper.

C. Short-Time SpectralAnalysis (SSA)
Spectral procedures have been in use traditionally both for

direct and indirect methods of estimating signal power spectra

L
Yr(e) X7(e')

r= 1
H(k) 11(z) ze!Wk L (36)I'k v'- Xr( ) (e )

1=1
[15] , [16] . Recent advances in the theory of short-time spec-
tral analysis have provided a framework for implementing a
system identification procedure entirely in the frequency
domain [13] , [17] . To illustrate this procedure, consider the
linear system of Fig. 1. If we define the (infinite-time) z-

where the summation on includes L overlapping time seg-
ments of x (n) and y n) [131 , [16]. In the limit, as the nurn-
ber of time segments, L, becomes large, it can be seen, with
the aid of (33) and (36), that

transforms of x(n), y(n) and e(n) as X(z), Y(z) and E(z)
(recalling that E(z) is not well defined for e(n), a noise se-
quence), then it is seen that

Y(z) = X(z)H(z) + E(z)

and thus an obvious procedure for estimating H(z) would be
to form the estimate

Y(z) E(z)
(30)

The justification for the estimate of (30) is that for practical
implementations using a finite section of data, the second
term in (30) will average to 0, leaving the first term which is
the true H(z). Aside from the many practical issues concern-
ing use of windows to implement the analysis, the estimate of
(30) is notoriously slow in converging to the true H(z), and is
subject to extremely large errors (erroneous values of 11(z))
when X(z) is small for some value of z, e.g., when the input
signal is band-limited. Recent unpublished work by M. M.
Sondhi has also shown that (under some conditions) although
the expected value of the estimate of (30) converges to the
desired value (as viewed through the analysis window), the
variance of the estimate is infinite.

A somewhat more robust and sophisticated analysis proce-
dure is to use power spectrum estimation methods to estimate
H(z). Consider the power spectrum of the input, S(z),
defined as

S(z) = X(z)X*(z)

and the cross-power spectrum between x and y, Sy(z), de-
fined as

S(z) = Y(z)X*(z). (32)
It is readily shown that on an infinite-time basis, the cross-
power spectrum satisfies the relationship

Sz) = Y(z)X*z) =H(z) X@) X*z) + Ez) X*z). (33)
Short-time estimates of S(z) and Sz) can now be defined
as

(37)

It can be shown that the first term on the right of (37) con-
verges to 11(z) (assuming h(n) is not time varying) and the sec-
ond term on the right of(37) converges to zero due to the fact
that e(n) and x(n) are uncorrelated. Therefore, in the limit,
as L becomes large the estimate H(z) in (36) converges to H(z).

The formal definition of the short-time spectrum of a signal
x(n) at the time sample n is

Xn(ek) = x(m) w(n - m)em (38)

where the finite duration low-pass window wn) determines
both the temporal and spectral resolution of the estimates.
Unfortunately for the procedure used here, the window also
manifests itself directly in the estimation of 11(k) in a complex
manner. By way of example, if y(n) is a pure delay of x(n),
i.e.,

(31) y(n)=x(n-ko) (39)
for a fixed value of k0, i.e., h(n) = 1 for n k0, and 0 other-
wise, then it can easily be shown that using (36) leads to the
estimate (see Appendix I)

— F[R(k0 - n)R(n)]H() -
F[R(-n)R(n)] (40)

where R(n) and R(n) represent autocorrelation functions of
the input signal and the window, respectively, and F represents
the Fourier transform. Thus (as in the case of white noise), if
we assume that
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A. The QMeasure

The Q measure has the form

(M—i

I m=0
Q10logio ij-i

m =0

R(m) = aS(m) (41) put of the system. Q is seen to be a weak function of the

then (40) says that
system h (n) in that the signal-to-noise ratio is dependent on
h(n).

-' — —jk0 R(k0) For the least squares analysis method, it is relatively simple
H(w) — e

R(o) (42) to derive an analytical expression for Q. From (12), (13), and
(2) we derive the result

whereas for the assumed system
—jwk M—i N-i

H(w) = e °. (43) (m) m) = [ h (m) x (n - m) ÷ e (n)
m=0 n=0 m=0

Thus, in the time domain, estimates of h(n) are weighted by
the normalized autocorrelation function of the window. . x(n - k) (47)

Based on the above discussion, the algorithm chosen to esti-
M—i N-imate h(n) was to estimate H(k) using (36), inverse Founer = x(n - m)x(n - k)

transform the estimate to give )i(n), and then normalize the
result by using (42).2 It should be noted that (42) provides
only a first-order correction to the effects of the window. + e (n) x (n — k) (48)

III. PERFORMANCE MEASURES AND ERROR MODELS
FOR SYSTEM IDENTIFICATION METHODS

In the preceding section we outlined three distinct methods
= h(m) m) ÷ xe(k) (49)

which can be used to estimate a linear system whose output
m -0

is corrupted by noise, given the input and output of the sys- or
tern. In this section we define and discuss two performance
measures for evaluating these methods. They will be denoted [(,) - h(m)] m) = xe(k) (50)
as the Q measure and the modified Q or Q measure. The Q m=0
measure is basically the ratio (expressed in dB) of the norm h
of the coefficient error vector or "misadjustment vector" [5]

W ere

[6] and the norm of the true coefficient vector. It is useful N—i

for characterizing how well the estimate approximates the cbxe(k) = e(n) x (n - k). (51)
true h. The second measure, Q', is a frequency weighted mea-
sure which is useful for characterizing the performance of S5 Equation (50) says that the finite time correlation between
tern identification methods for nonwhite inputs and it is also x(n) and e(n) (due to the finite measurement interval N) leads
useful when estimates of v(n) and e(n) in the model of Fig. 1 to an error h(n) in estimating the true h(n) in such a way
are desired. that the estimated component (n) produces a noise signal

(n) which is finite time uncorrelated with x (n). This funda-
mentally important result is illustrated by the error model in
Fig. 2 which shows a parallel path in which x(n) is convolved
with zh(n) (which is a hypothetical filter that represents the
finite time correlation between e(n) and x(n)), and the noise

(44\ sequence (n) is added to the result. The true noise sequence
'

e(n) satisfies the relation

e(n) = (n) + h(n) *x(n). (52)

______ Equations (46) and (50) can now be used to show that

(53)

and that
(46) f1\ti,— t'xeWxx) Wxx'l'xe

For a stationary, white input signal, the matrix assumes
the form

N-i
1) = x(n - k)x(n -1) (55)

n=0

N 6(k — 1) (56)

i.e., Ø is a constant times an identity matrix. Thus, (54)
becomes

1J.ht1xh

=l0log /jth
where

zh(m)=h(m)-&(m) m0,l,2,,M- 1
and Lh and h are vectors of length M and are defined in the
same manner as h in (15). It will be shown that for a white
input signal x(n) and with uncorrelated white noise e(n), the
quantity Q is a simple function of three system parameters,
namely, the measurement interval N, over which the linear sys-
tem estimate is made, the estimated number of impulse re-
sponse terms M, and the signal-to-noise ratio S/N, at the out-

2The correction used is to scaie h (n) by1w (O)/Rw (n). Cleariy this
correction is valid only for small values of M.
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(n)

y (n

Fig. 2. A block diagram interpretation of the system identification
model in terms of a misalignment filter and a modified error signal.

ILhtLh øxe4xeN2 a4

N-i N-i
N2c4

e(n)e(k)
k=0

x(n-m)x(k-m).
m=0

Assuming that x (n) is uncorrelated from sample to sample, the
last term in (58) is approximately

M-i
x(n - m)x(k- m)Ma6(n - k).

m=0

Thus, (58) reduces to

M N-i
L\htZXhn e2(n)N

ia
Na

We define the term cr (where v(n) is defined in Fig. 1) as

1 N-i
v(n)

1N-iM-i M-i
h(k)x(n-k) h(m)x(n-m).

n=0 k=o m=0

By the same argument used to derive (61), (63) can be written
as

a2 hth.

Combining (45), (61), and (64) gives for Q

Qwhite
10 log10

input Cv

and by using the definition of (5) we get

Q white 10 log10 [] - S/N(dB).
input N

Equation (65) predicts the performance of the least squares
analysis system identification method for white uncorrelated
inputs.

It is seen that Q in (65) is directly dependent on the signal-
to-noise ratio at the output of the system. It improves

(decreases) by 3 dB per doubling of the block size N of data
used in the estimation of h and it degrades (increases) with
log M where M is the assumed size of the system (and where it
is assumed that M>M).3 Furthermore, it can be seen that Q
in (65) is independent of the actual filter h that is being
estimated.

For the case of nonwhite inputs the matrix çb is no longer
diagonal and it is not possible to express Qin a form as simple
as (65). In general, for nonwhite inputs the values of Q will
be larger than (65) and in this sense (65) represents a lower
bound on the expected value of Q. That is, a white uncorre-

(57) lated input signal is the best form of input signal to use in the
system identification problem.

B. Modified QMeasurefor Nonwhite Inputs

For the case of nonwhite inputs, the overall model can be
expressed in the form in Fig. 3(a). We assume that the input

(58) to the system z(n), can be modeled as the output of a linear
system g(n), with spectrally flat input signal x(n). For sim-
plicity, we assume g(n) is an FIR filter with impulse response
duration G samples, i.e., g(n) is nonzero only for 0 <n
G — 1. Fig. 3(b) shows the system identification model for

(59 this problem." / Whenever the input signal does not have a flat spectrum, the
problems in system identification can become greatly magni-
fied. This can be seen by considering z(n) to be a bandpass
signal. For this case there is almost no information in the

(60) output signal y(n), about the behavior of the system h (n), in
frequency ranges where the input signal is greatly attenuated.
As such, reliable identification, using any system identification

(61) procedure, is quite difficult. Formally, one could express this
problem in terms of ill-conditioned matrices that need to be
inverted, etc.

In some applications, however, it is sufficient to have a good

(62)
estimate of the system h at frequencies only where the input
signal energy Z(e) is large. This applies particularly in cases
where estimates of 0(n) and e(n) are primarily desired. Such

(63)
estimates can be obtained by first solving the system identifi-
cation problem to obtain . The estimate i(n) is then obtained
by convolving the known input z(n) with , and (n) is ob-
tained by subtracting i(n) from the known output y(n). At
frequencies where Z(eIw) is small, it is not as important in

(64) this case to have very good estimates of H(e). In applica-
tions such as this a frequency weighted measure of perfor-
mance is desired which emphasizes the importance of those
frequencies where X(eJW) (or G(e")) is large and de-
emphasizes the importance of those frequencies where X(e)w)
(or G(eJw)) is small. In this section we propose such a mea-
sure, Q'.

The modified Q measure Q', that we propose, applies a fre-

'65 quency weighting which is equal to that of the frequency
response of the filter g(n) in Fig. 3(a) which is used to create
the nonwhite signal z (n) from the white signal x (n). This
weighting can conveniently be achieved by convolving h (n)
and i(n) by the g(n) as shown in Fig. 4. This procedure, illus-

3For M <M, the error in estimating (n) for n > M clearly can get
very large since no value of h (n) is obtained.

x(n
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e(n)

NON-WH TEWHITE

INPUT INPUT

SOURCE MODEL SYSTEM MODEL

(a)

(b)
Fig. 3. Block diagram of the linear system model for nonwhite input

signals.

h(n}*g(n)

h(n ) *g(n)

Fig. 4. Block diagram of the processing to give the signals used in the
Q' measure.

trated in Fig. 4, serves to weight the performance measure by
the frequency spectrum of the input signal. More formally,
we define the measure Q', as

[(h(n)- 11(n)) *g(n)]2
Q

ioiogio[n [h(n)*g(n)]2

Using Parsevals theorem (66) can be transformed to the fre-
quency domain, giving

f
Q'=101og10

f H(e")I2lG(e'2

which explicitly shows the frequency weighting of the Q'
measure.

The properties of Q' as a function of N, M, and S/N are
somewhat more complicated than those of the Q measure,
since the "coloring or unwhitening" filter, g(n), affects the
result. If we denote Q' as Q'(N, M, G, S/N), and similarly
denote Q of (65) as Q(N,M, S/N) then it can be shown [see
Appendix II] that

Q'(N,,G,S/N)<Q(N,+G- 1,5/N)
i.e., the estimate of h(n) is no worse than an equivalent Q
estimate with an impulse response which is M + G-

1 points
long (i.e., duration of the convolution of g(n) and h(n)).
Furthermore, it is anticipated (but not rigorously proved)
[see Appendix II] that

Q'(N, 1, G, S/N) Q(N, Al,S/N) (68b)

i.e., the variation of Q' with S/N and N is essentially identical
to that of Q for white inputs as discussed earlier.

An important consideration in implementing the Q'measure-
ment of (66) is how one obtains the g(n) for a signal whose
frequency response is not flat, such as a speech waveform. For
such signals the techniques of linear prediction have been suc-
cessfully used to give a good approximation to a linear system
which can be excited by a flat spectrum input (either pulses or
noise), and whose spectrum is a least squares estimate of the
signal spectrum. As such, the linear system g(n) is obtained
directly from linear prediction techniques as the impulse re-
sponse of the linear prediction filter.

We now present examples which demonstrate how the above
measures worked on both synthetic and actual signal for vari-
ous types of linear systems and various levels of noise.

IV. EXPERIMENTAL RESULTS

To validate the models of the previous sections, a digital
simulation of the model of Fig. 1 was made. Three types of
input signal, x(n), were used. These included: 1) white Gaus-
sian noise; 2) band-limited Gaussian noise; and 3) speech sig-
nals. For the linear system h (n), two examples were used.
One was a simple 7-point FIR filter (M = 7) whose impulse
and log magnitude responses are given in Fig. 5 and in Table I.
As seen in this figure, the log magnitude response was smooth,
and varied about 10 dB across the entire frequency band. The
other filter used in the simulations was a 25-point, linear phase,
equiripple FIR low-pass filter. The impulse and log magnitude

(66) responses of this filter are given in Fig. 6 and Table II. Inde-
pendent Gaussian noise (e(n)) was added to the filtered input
to give signal-to-noise ratios (S/N) of0, 8, 16, 24, and infinite
dB.

The three system identification methods of section II were
used to estimate the known h(n) for several combinations of
the above system parameters. For each example the quantity
Q (or Q') of section III was measured. In this section we pre-
sent typical curves of Q as a function of N (the analysis frame
duration), M, 11z (n), and S/N.

A. White Noise Input

(67) Fig. 7 shows a series of curves of Q (on alog scale) versus N
(on a log scale) for the filter of Fig. 5, with M = 15, and vari-
ous values of S/N, for the LSA method. The solid curves show
the measured values of Q and the dashed curves show the
predicted values of Q as given by (65). The agreement between
the computations and the predicted values is well within the
expected statistical variations for these cases. For the infinite
S/N case, the measured curve of Q versus N is below the
-80 dB cutoff level of the plots, and is thus not included here.
Equivalent computations were made for other values of M

(68a) (notably 7 and 25), and for the low-pass filter (with M 25
and 34) and the results were equivalent to those of Fig. 7, i.e.,
close agreement between theory and measurement.

Figs. 8 and 9 show a set of comparable curves for the SSA
method. For this method a Hamming window of size L sam-
ples was used in the analysis, and the window was moved by

h (n )

5(n)
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Fig. 7. Curves of Q versus N for M = 15 and several values of S/N for
the LSA method for a white input signal.

TABLE I
VALUES OF THE IMPULSE RESPONSE FOR THE FILTER OF FIG. 5
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3 0.5
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Fig. 9. Curves of the lower bound of Q versus N forM = 15 and several
values of S/N for the SSA method for a white input signal.
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Fig. 5. Impulse response and log magnitude response of a simple filter

used in the investigations.

TABLE II
VALUES OF TIlE IMPULSE RESPONSE FOR THE FILTER OF FIG. 6

0 -0.0016
1 0.0007
2 0.0070
3 0.0145
4 0.0143
5 -0.0013
6 -0.0287
7 -0.0280
8 -0.0280
9 0.0428

10 0.0149,
II 0.2456
12 0.2847

13 0.2456
14 0.1490
15 0.0428
16 -0.0280
17 -0.0470
18 -0.0287
19 -0.0013
20 0.0143
21 0.0145
22 0.0070
23 0.0007
24 -0.0016
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Fig. 6. Impulse response and log magnitude response of a low-pass

filter used in the investigations.
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Fig. 8. Curves of Q versus N forM = 15, S/N = o, and several values of
window size L for the SSA method for a white input signal.
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Fig. 10. Curves of Q versus N forM 15, S/N oo, and several values
of K for the LMS adaptation algorithm for a white input signal.

L/4 samples between adjacent sections [13], i.e., except for
endpoint effects, each input sample was used in four distinct
short-time spectral estimates. Thus, in presenting results for
the SSA method, the window length L is an additional analysis
parameter whose effects must be considered. Thus, Fig. 8
shows a set of curves of Q versus N for the simple filter of
Fig. 5,withMl5,withL=64,128,256,andSl2,andwith
S/N= 00 (i.e., no additive noise). A complete analysis of these
curves is beyond the scope of this paper. However, several key
points about this method of analysis can be seen from this
figure. First, it is seen that for smaller values ofNit is prefer-
able to use shorter windows to reduce the end effects and to
provide an increased number of short-time spectral estimates
for averaging. However, for longer values of N, the longer the
window duration the lower the value of Q which is achieved.
This effect is related to the aliasing noise of the analysis
(obtained as a result of performing the division in (36)), which
is reduced with increased window length. Finally, it is seen
that for large values of N, the value of Q approaches the
machine accuracy of about -80 dB, thus showing that the
method will eventually converge to the least squares estimate.

Fig. 9 shows a set of curves of Q versus N for several values
of S/N for the SSA method. Based on the discussion above,
the "lower bound" of the curves is drawn as the solid curves
shown in the figure. The dashed curves again show the theo-
retical predictions for these cases. It is seen in this figure that
for S/N in the range 0 to 24 dB, the SSA method can provide
filter estimates that are fairly close to the optimum, except for
small values of N where the end effects still dominate. The
aliasing effects for large N do not occur here because the addi-
tive noise for these cases is significantly greater than the alias-
ing noise.

Curves of the results obtained for the LMS adaptation
method are given in Figs. 10 and 11. Fig. 10 shows a set of
curves of Q versus N, forM= 15, and S/N oo for the filter of
Fig. 5. The parameter for the individual curves is K, the step-
size multiplier of the adaptation algorithm. As seen in these
curves, the values of Q decrease monotonically to the compu-
tation noise floor. The rate at which these curves decrease is
determined by the value of K. Thus, for small values of K the
convergence is slow; for large values of K it is much faster. At
first thought such curves would seem to imply that one should
use large values of K. However, if we recall that K is the cor-
rection term multiplier (26), then we realize that jfK is large,
small errors in calculating the gradient of e can lead to larger
errors in estimating h as will be seen later in Fig. 11. Thus,
with noisy signals a tradeoff in choosing K is required. The
curves in Fig. 10 give an indication of the value of N required
to obtain a desired value of Q for the noise-free case.

Fig. 11 shows curves of Q versus N for S/N00 8 dB, and the
same parameters as Fig. 10. Values ofKof 0.01 and 0.05 are
used to show the convergence properties of the algorithm. For
these cases a steady-state noise floor (due to the gradient cal-
culation of the noisy signal) limits the value of Q which can be
obtained. An expression for this steady-state noise floor can
be obtained based on the work of Widrow (see [4, equation
D.20]). Based on results by Widrow it can be shown that

N

Fig. 11. Curves of Q versus N forM= 15, S/N= 8dB forK = 0.01 and
0.05 for the LMS adaptation algorithm for a white input signal.
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and since

(69)

(70)

(71)

then

QLvIs = 10 log (f)- S/N(dB). (72)

Plots ofQjss forK 0.01 and 0.05 are shown in Figure 11, as

well as the curve of Q white versus N for optimal estimation.
input

The point at which these two curves intersect provides a lower
limit on the value of N required for convergence of the LMS
adaptation algorithm. Combining (72) and (65) provides an
expression for this lower limit of the form

N!min � 2A'f/K. (73)

It should be emphasized that one would expect a value of N
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Fig. 13. Curves of Q' versus N for M = 15 and several values of S/N for
the LSA method with a band-limited noise input signal.

on the order of two or more times greater than the value of
(73) in most practical cases. As seen in Fig. 11, once the con-
vergence to the noise floor of (72) is obtained, larger values of
N provide no improvement in the estimation.

B, Bandpass Input Signals
To evaluate the performance of each of the three system

identification methods on band-limited input signals, the sys-
tem of Fig. 12 was simulated. The filtersg(n) and h(n) corre-
sponded to the filters of Figs. 6 and 5, respectively. Thus, the
signal z(n) was a low-pass signal whose frequency components
were attenuated by at least 54 dB for frequencies above O.2F5,
where F3 was the sampling rate of the system. Independent
additive Gaussian noise e(n) was again used to provide the
signal y(n) from which the system function (n) relatingy(n)
to z(n) was estimated.

Fig. 13 shows a set of curves of Q' (the modified Q measure)
versus N for M" 15, and several values of S/N for the LSA
method. The solid lines are the measured values of Q',whereas
the dotted lines show the theoretical curves of Q versusN for
the same set of conditions. As discussed earlier, the measured
curves of Q versusN were vastly different from those shown in
Fig. 13 due to the lack of high-frequency information in the
input signal. However, when the Q' measure was used, the
high-frequency inaccuracies in '(n) were given essentially zero
weight by the "coloration" filter g(n). Thus, the curves of Q'
versus N of Fig. 13 for the highly band-limited input are essen-
tially the same as the curves of Q versus N of Fig. 7 for the
white-input case. At the bottom of Fig. 13 is shown the curve
of Q' versus N for infinite S/N. In this case the value of Q' is
about —70 dB, reflecting the residual error in estimating the
high frequency behavior of h(n).

Fig. 14. Curves of Q' versus N for M 15 and several values of S/N for
the SSA method with a band-limited noise input signal.

N

Fig. 15. Curves of Q and Q' versus N for M= 15, S/N— 8 dB for
K = 0.01 and 0.05 for the LMS adaptation algorithm with a band-
limited noise input signal.

Results on the band-limited input signal for the SSA method
are given in Fig. 14. The curves plotted in this figure again
represent the lower bound of the individual curves for different
window lengths, L. The shapes of the curves are essentially
identical to those of Fig. 9 in that for small values of N, the
curves are significantly above the theoretical estimates of the
Q measure (shown as the dotted curves) due to the end effects
in the SSA method. For larger values of N the values of Q' are
essentially equal to the theoretical values. One very important
point must be made concerning the way in which Q' was com-
puted for these curves. For the SSA method, when the input
signal has essentially no energy in a band, the estimate in fre-
quency is essentially unconstrained at these frequencies. As
such, taking the inverse DFT of the spectral estimates leads
to an impulse response with a large amount of time aliasing—
i.e., an unconstrained set of frequency samples cannot possibly
guarantee a finite duration time response. Therefore, straight-
forward linear filtering of (n), the time response from the
SSA estimate by g(n), the unwhitening filter, is not adequate
to eliminate the aliasing noise. However, it can readily be
shown that circular convolution of )(n) with g(n) will indeed
eliminate the aliasing noise. The proof of this statement is
straightforward and is based on the fact that circular convolu-
tion commutes with time-aliasing. Since the convolved signal
is time-limited, no aliasing is present when this procedure is
used.

n ), 0 an a 4- i

Fig. 12. Block diagram of actual system used to test the system identi-
fication algorithms for a low-pass input signal.
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Fig. 15 shows a set of results obtained on the band-limited
input using the LMS adaptation algorithm for ]i= 15, S/N
8 dB, and for K 0.01 and 0.05. Included in this figure as
curves of Q versus N, Q' versus N, and the theoretical white
noise curve of Q versus N. As discussed above, the measure-
ments of Q versus N are highly in error for these cases, whereas
the measurements of Q' versus N approach the theoretical least
square curves. As seen in this figure, the shape of the Q'versus
N curve differs somewhat from that of Fig. 11; however, the
differences are of little consequence. The general behavior of
the curves is essentially the same with a region of convergence,
followed by a statistical fluctuation about the steady-state
noise floor. Fig. 16 shows a comparison between the estimated
H(e") and the actual H(e") for one case using the LMS
adaptation algorithm. The simulation was done as in Fig. 12
with M 15, K0.02, g(n) in Fig. 6 and h(n) in Fig. 5.
Fig. 16(a) shows a comparison of the log magnitude responses;
Fig. 16(b) shows the group delay responses; and Fig. 16(c)
shows the impulse responses (for N = 2000). It is clearly
seen from this figure that most of the error in estimation
occurs for frequencies above the passband cutoff of the g(n)
filter, as anticipated (Q = -2.9 dB and Q' = -37 dB).

C. Speech Input Signals
The last test signal used to evaluate the three system identifi-

cation techniques was an actual speech signal. Fig. 17(a)
shows a 400 sample section of voiced speech (quasi-periodic
waveform) weighted by a Hamming window, with a log magni-
tude spectrum as shown in Fig. 17(b), and with LPC fit to the
spectrum shown in Fig. 17(c). As seen in this figure the speech
signal spectrum is essentially a harmonic spectrum showing
valleys which are 20-40 dB lower in magnitude than adjacent
harmonic peaks. The overall shape of the spectral envelope (as
seen from the LPC fit) is that of a cascade of resonators. As
such a 60 dB variation in the spectral envelope occurs between
the first prominent peak, and the valley at 5 kHz. Thus this
input signal would be expected to provide a good test of the
overall capabilities of the different system identification
methods.

The model for testing the systems using the speech signal
was essentially that of Fig. 12 with one major exception. If
we denote the speech signal as z (n), then the "coloration"
linear system g(n) is not known exactly. Thus to provide ana-
lytical estimates of Q' for the speech input, the system g(n)
also had to be estimated from z(n). For this problem standard
LPC techniques were used. As such the range of values of N
which was considered was from 50 to 1000. Outside this
range the LPC estimates were sufficiently inaccurate to greatly
degrade the Q' measure. It should be noted that even within
this range the LPC estimates of g(n) are not exact; as such, the
Q' computations were somewhat affected.

The curves of Q' versus N for various S/N values for the three
systems are given in Figs. 18—20. Fig. 18 shows the results for
the LSA method for M= 15. It is seen that the measured val-
ues of Q' are generally greater than the predictions of (65) for
the white input; however the differences, except for small N,
are about 5 dB or less. Thus the LSA method is seen to work
quite well on this section of speech.

t--

: 1i\
(c)

50000 1000 2000 3000 4000
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Fig. 17. Curves of a speech section of 400 samples (windowed by a
Hamming window), its log magnitude spectral, and the LPC log mag-
nitude fit.

Fig. 19 shows the results for the SSA method for M = 15.
The effects of having extremely low signal level in parts of the
frequency band are seen in that the measured curves are about
4-12 dB above the theoretical curves for the white noise case.
As discussed in the previous section, Q' estimates for the SSA
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TIME IN SAMPLES

0

0

(a)

(b)3IIII
0 1000 2000 3000 4000 501

FREQUENCY IN Hz
0



330 IEEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL. ASSP-26, NO. 4, AUGUST 1978

Fig. 20. Curves of Q and Q' versus N for M' 15, S/N' 8 dB, for
K = 0.01, and 0.05, for the LMS adaptation system for a speech input
signal.

method are more sensitive to exact values of g(n) than the LSA
method since g(n) must also remove the aliasing noise from
the estimate. Since g(n) was estimated from LPC methods,
the Q' estimates for the SSA method were somewhat poorer
than the LSA method.

Finally, Fig. 20 shows the results for the LMS adaptation
method for M 15, and for S/N 8 dB. The measured values
of Q' converge to the steady.state noise floor as in the previous
examples. For this case the performance of the LMS adapta-
tion algorithm is comparable to the SSA method but not as
good as the LSA, as seen by the difference between the theo-
retical curve for the white input (the dotted line in Fig. 20)
and the actual Q' measurements.

V. DISCUSSION OF THE RESULTS

The purpose of this work was to investigate the advantages
and disadvantages of three system identification methods using
a given class of input signals. Based on the theoretical discus-
sions of Sections II and III, the results presented in Section IV,
and informal observations from the simulations, the following
conclusions are drawn.

1) As expected, the LSA method was the most robust
method of the three, providing excellent estimates of h(n) for
both white and band-limited signals, and across a wide range
of signal-to-noise ratios.

2) The only possible disadvantage of the LSA method is
that the implementation effectively solves an Mth order matrix
equation (via an efficient recursion procedure). Using double
precision arithmetic, inaccuracies in both the computation of
(i,!) and 1(n) started to become measureable for Mon the
order of SO. As such, estimation of systems with large values
of M (e.g. the speech echo canceler, etc.) would generally not
be practical using LSA. The recognition of this fact has led to
the widespread use of the LMS adaptation method. In addi-
tion, the storage for j) grows asM2, again making the
method impractical for large values of M.

3) The SSA method was shown to perform almost as well as
the LSA method for both white and nonwhite noise signals in
the presence of noise. The major disadvantage of the SSA
method is the possibility of having severe aliasing distortion in
the estimation of i(n) which would have to be removed in any
practical system. Thus, for speech signals, removal of the
aliasing by filtering (n) with (n), the LPC estimate of the
"speech filter" is not completely adequate because of errors in
obtaining '(n). As such the SSA estimates were somewhat
poorer than the LSA estimates for speech signals.

4) The big advantage of the SSA method is that the imple-
mentation is simple, can be used for large M values, readily
amenable to either digital hardward (e.g., CCD implementa-
tions of the DFT's) or to array processors which are currently
becoming more widespread in use. The storage for this method
grows linearly with M and thus estimation for values of h(n)
forM on the order of 512 or more is entirely practical.

5) The LMS adaptation algorithm provides a robust alterna-
tive to the LSA method, and is useful for both white inputs,
as well as band-limited inputs. Although the performance was
not as good as the LSA method, the differences were not so as
to make the method undesirable for virtually any application.

6) Generally the convergence rate of the LMS adaptation
algorithm is affected by band-limited inputs and by high
signal-to-noise ratios. It requires a much larger number of sam-
ples, N, compared to the LSA method and, therefore, is
limited to applications where h (n) varies very slowly.5

7) An important advantage of the LMS adaptation algorithm
is that the implementation is simple and can be used for large
values of M. In addition, the storage for the LMS adaptation
algorithm grows linearly withM, as with the SSA method.

4Alternative slower matrix solution methods can make the LSA
method more accurate for larger values of M. However, the computa-
tion time can become a problem.

5Multiple passes of the LMS adaptation algorithm on the same data
with adaptive step sizes can increase the speed of convergence of this
method.

Fig. 18. Curves of Q versus N for M 15, and several values of S/N
for the LSA method for a speech input signal.

Fig. 19. Curves of Q versus N for M' 15, and several values of S/N
for the SSA method for a speech input signal.
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VI. SUMMARY N(n)>2x(1)x(ko +1-n)R(n) (A.9)
In this paper we have studied three distinct methods for

identifying a linear system in the presence of noise. We have = R(k0 - n)R(n), (A.1O)shown the advantages and disadvantages of each of the meth- A
ods for the class of signals which we studied. The results of Thus the original numerator N(wq) can be written as
this investigation will hopefully help a user of such methods
to make efficient use of each of these three tecimiques as war-

= F[R(k0 - n)R(n)] (Au)
ranted by the individual problems. where F represents a Fourier transform of the sequence. Simi-

larly, the denominator of (36) can trivially be shown to be of
the form

APPENDIX I

SSA ANALYSIS OF A PURE DELAY D(wq) F[R(-n)R(n)1. (AJ2)
Consider an arbitrary signal x(n) as input to a linear system Thus, the short-time spectral estimate of a pure delayed signal

with output y(n) =x(n - k0), i.e., a pure delay. Applying the with delay k0 gives
Adefmition of the short-time spectrum (38) toy(n) we see that

N(wq) — FER(k0 - n)R(n)]
Yn(e) y(m)w(n -m)em (A.l) fiq)()_ F[Rx(-n)R(n)]

- (A.13)
m

APPENDIX II
x(m - ko)w(n - m)e_wrn (A,2) PROPERTIES OF THE Q' MEASUREm

As shown in Section III, the Q' measure is defined as
= eJC0 x(1) w(n - k0 -

1) e''1. (A.3)

rrtr} (BA)QlOlog
Now we consider the definition of the SSA estimate (36). In L r r
particular, if we examine the numerator of (36) [call this where
N(Wq)j we get Lr(n) Lh(n) * g(n) (B.2)

x(l)w(r- k0 - l)e1W andr 1

- x(m)w(r- m)e<1m (A.4)
r(n)=h(n) *g(n) (8.3)

m and where it is assumed that the length of g(n)is G, the length

where we have assumed both x and w are real signals. Equa- of h(a) iM (and it can be extended to length Mby appending

tion (A.4) can be put in the form zeros) and the length of &(n)is M. The lengths of both r(n)
and r(n) are then R G +M- 1. In vector form (8.2) and

iCOq(l_m) (B3) can be expressed in the form1(wq)=e0 x(l)x(m)e1p
(J34)

-R(ko+l-m) (A5) and
where rFh (B.5)

R(k0 +l-m)= w(r— k0 - 1)w(r- m) (A.6) A
where Fis the R by M convolution matrixr

is the autocorrelation function of the window. If we taken the [ g(O) 0 0 0 1/'
DFT of (A.5) [calling the result N(n)} we get g(1) g(0) 0 0 1

1(n) = 1ci() iWqfl
g(2) g(l) g(0)

g(0) (B.6)

x(l)x(m)R(k0+l-m) g(G-1) Ilm I 0 : I

(A.7)
L o 0 -• g(G- 1)]q

where
Recognizing that the last summation gives the result AR=G+M-l (B.7)

— b(ko+1_m_n) (A8) and
1

>_fwq(ko+1_m_n)

Lr = [zr(0), ir(l), - . . , Lr(R — 1)] (B.8)(where P is the size DFT used throughout the analysis), (A.7)
becomes r— [r(0),r(1),- . - ,r(R— 1)J. (B.9)
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G-i
z(n)= g(m)x(n-m)

m =0

r i= 10 log [N2O e4øxe

Furthermore, in a manner similar to the derivation of(17) and A =AtA. (B.23)
(53) and with aid of (B.4) and (B.5) it can be shown that

From this property if follows that if A is of rank M, then it has
=FZZ' ze (B.l0) A eigenvalues that are equal to 1, and G - 1 eigenvalues that

r = (B. 11) are equal to 0. The eigenvalues of A satisfy the relation

where the model of Fig. 3 and Fig. 4 is assumed. Also, by
Açb—Xq (B.24)recognizing that

where is an eigenvector of A and Xis an eigenvalue. Premul-N-i
e(n)z(n- k) (B.12) tiplyingbyAtandnotingthatA Atgives

A tAØ = XA = XAØ.
N-i

z(n- k)z(n— 1) (B.13) Applying(B.23)and(B.24)leadsto

Açb=XAçb
and

or
(B.14)

x=x2=oi (B.25)
and with definition (B.6) it can be shown that i.e., must be either 0 or 1. Since Fis anR X 1I matrix where

ze = FtC7iXe. (B.15) R Al it is assumed that the rank ofF, and therefore A,
Therefore M eigenvalues of A are equal to one and the remain-

It should be noted that ze is M X 1 in size and xe is defined ing R - M= G - I eigenvalues are equal to zero. A can now be
to be R X 1 in size, written, by means of a singular value decomposition [19], in

From the definition of in (B.13), and with the aid of the form
(B.14) and the diagonal approximation as in (56), can be
shown to have the form A = VA Ut (B.26)

where A is a diagonal matrix of eigenvalues of the formNaFz'F (B.16)
o1where Ø is an M X matrix. From (B.lO) we now see that

Lrt/.lr has the form

zrtzr= {Fze]t[F'ze]. (B.17) A=

Noting that = we then get

(B.18)

Applying (B.15) and (B.16) then gives

LrtLr eF(FtF)FtF(FtFYiFtxe

=
N2L4

eF(FtF)Ftxe

xe-4xe

where F* = (FtF)Ft
A = F(FtF)Ft. (B.20) and

In a manner similar to the derivation of(64) we get sF øxe
cr2_a2.rtr (B,21)

and therefore the Q' measure can be written in the form
U = xe - Fs

]
where e is an R X 1 column vector and A is an R X R ma-
trix. The matrix A has several interesting properties. First, it
can be shown that

rl

Lo oJ

(B.27)

and V and U are R X R unitary matrices. Applying this prop-
erty to (B.22) gives

eA'xe = (eV)A (eU)t. (B.28)

In this form it can be seen that the presence of the zero eigen-
values in A tend to "dilute" the value ØXteAcXe by a factor of
approximately (G - 1)/R.

Another way of looking at this property is to recognize that
(B. 19) (FtF)F is the generalized inverse of the matrix F [191 . That

is if we define

(B.29)

then s is the solution to the equation

(B.30)

(B.22) such that uu is a minimum. Using (B.31), uu can be ex-
pressed as

(B.31)

U'U = (axe - FS)t(ixe — Fs).

Applying (B.30) and expanding terms gives

(B .32)
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UU = Cieøxe 2eFF*Øxe + (FF*Øxe)t(FF*Øxe). (B.33)

Using the definition of F* in (B.29), the definition of A in
(B.20) and canceling terms gives

or

t _,t , _t ,— Wxe v'xe 'Pxe "xe

= exe - UU.

Thus, it is again seen that the matrix A effectively "dilutes"
the inner product ecixe by some positive value uu. Based
on the derivation of the Q measure in (57) through (61) we
see that

'Pxe Pxe RNuu
]Nou + (G 1) Nu

Thus the Q' measure can be written in the form

Q'1Olog[-+(
1)cs uu \1

N
As G goes to 1 the matrix A becomes the identity matrix and
uu goes to zero because F has been assumed to have rank M.
In this case the Q' measure degenerates to the Q measure and
the second two terms in (B.37) go to zero. Based on the ex-
perimental evidence for the LSA method in Section IV and
from (B.28), it is anticipated that the second two terms in
(B.37) always cancel, approximately giving
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Thus, we expect that the Q' measure has the same theoretical
expected value as the Q measure for white noise in (65).
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