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Abstract—It is demonstrated that clustering can be a powerful tool
for selecting reference templates for speaker-independent word recogni-
tion. We describe a set of clustering techniques specifically designed for
this purpose. These interactive procedures identify coarse structure,
fine structure, overlap of, and outliers from clusters.

The techniques have been applied t a large speech data base consist-
ing of four repetitions of a 39 word vocabulary (the letters of the alpha-
bet, the digits, and three auxiliary commands) spoken by 50 male and
50 female speakers. The results of the cluster analysis show that the
data are highly structured containing large prominent clusters. Some
statistics of the analysis and their significance are presented.

I. INTRODUCTION

RECENTLY Rabiner [11] has described a procedure for
constructing composite reference templates for speaker-

independent word recognition from utterances of many differ-
ent speakers. An important conclusion of this study is that
a few carefully constructed templates can represent a large
speaker population adequately for the purpose of speaker-
independent word recognition. This appears to be true be-
cause utterances of the same word by different speakers form
tight clusters (in an appropriate space) representing variations
in pronunciation and voice characteristics. It seems natural,
then, to try to identify these clusters using sophisticated pat-
tern recognition techniques and judiciously select tokens from
them to be used as reference templates for speaker-independent
word recognition.

It was decided at the outset that any clustering method which
we used would have to possess certain properties. The method
would have to be able to detect overlap among clusters, to
identify outliers, to operate on similarity data only, and to be
interactive in nature.

Overlap among clusters is an important structural feature of
data. It is significant because the clusters are to be used sub-
sequently for pattern recognition. We are, therefore, interested
in knowing how many prototypes are required to represent
large clusters which are actually made up of several overlap-
ping ones. Overlap also gives a clue as to the nature of the
boundaries between clusters.

The existence of outliers is also important in recognition
tasks because an outlier is a potential cause of misclassifica-
tion. If a token of one word is very dissimilar from all other
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tokens of that word, it may well be similar to some tokens of
another word, It is necessary to identify such "bad data points"
so that they can be eliminated or otherwise treated.

It is essential that the clustering procedures work on similar-
ity data alone since the structure of the word recognition sys-
tem (for which the clusters are to provide reference templates)
is fixed. In particular, we have used the "canonical" recogni-
tion system described by Flanagan et al. [2] based on the
cumulative, nonlinearly, time-registered distance metric pro-
posed by Itakura [3] as a measure of word similarity. A great
deal of experience has been obtained with this sytem, and it
has proven robust for a variety of word recognition tasks. Un-
fortunately, in this system, the notion of a Cartesian feature
space is lost and many of the classical clustering techniques are
rendered inapplicable. This required that extensive modifica-
tions of classical procedures be made.

Finally, it was felt that it was important that the clustering
procedure be interactive in order that information gleaned
from one phase of clustering could be used in another. We
also wanted the user to be able to bring to bear any a priori
information about the data, We were quite certain that both
situations would arise since we were intending to use indepen-
dent techniques to examine the data for different structural
properties.

To satisfy these diverse criteria, we selected four well-known
clustering techniques and modified them where necessary to
meet our requirements. The four techniques are the chainmap
[9], the shared nearest neighbor (SNN) procedure, [15} the

k-means iteration [8] , and the ISODATA (Iterative Self Orga-
nizing Data Analysis Technique A) method of Ball and Hall [11.
Although we have greatly modified the last three of these pro-
cedures to suit our needs, we shall refer to them by their classi-
cal names since they are, in spirit, the same. In subsequent
sections of this paper, we shall give the mathematical details
of our versions of the procedures. Readers wishing to compare
these to the original versions should consult the references,

The chainmap is a very simple procedure (which requires no
user intervention) for discovering the coarse structure of the
data, such as large prominent clusters. It also provides a con-
cise picture of the data which is useful for supplying informa-
tion to other more complicated procedures. An additional
feature of the chainmap is that it is based on a sorted array of
distances (token similarities) and is thus suitable without modi-
fication for use on our data.
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The shared nearest neighbor technique is used to find any
overlap among clusters. The procedure is based on the intui-
tively appealing notion that, if two tokens have several nearest
neighbors in common, then they belong to the same cluster. A
token may have common nearest neighbors with more than
one token which may mean that the token belongs to distinct
but overlapping clusters. Information obtained from this pro-
cedure will aid in subsequent analysis.

The k-means iteration is an automatic procedure which will
find the detailed structure of the data, given information from
the other procedures. The basic iteration scheme is designed
to give increasingly accurate estimates of cluster center loca-
tion. It was originally formulated for coordinate data; we have
revised it to work on similarity data at the expense of some
stability properties.

The ISODATA procedure is highly interactive and can be
used to isolate outliers. Its novelty lies in its ability to merge
and split clusters in order to find the "best" configuration. It
uses the k-means algorithm as a subroutine and, like the k-
means algorithm, was originally formulated for coordinate
data. We have, therefore, made some important changes.

The four procedures are designed to be used together in the
following way. First, a chainmap is computed and the number
of large prominent clusters and their separation noted. Then,
the SNN method is used to find which, if any, clusters overlap
significantly. This enables the user to refine his estimate of
the number of clusters. Next, the k-means iteration is per-
formed based on the estimated number of clusters. These op-
erations are all necessary preliminaries to the successful use of
the ISODATA procedure, which is the most sophisticated and
interactive of the four routines. Using the coarse classification
results from the preliminary computations, the parameters for
ISODATA can be set and a final configuration found.

The procedures have been implemented in a clustering pack-
age called VMCLUSTER, which is described in [14]. The re-
mainder of this paper is devoted to the theory and application
of the procedures. In the second section, we present the
mathematical preliminaries which permit us to give the details
of the procedures in the third section. Then, in Section 1V, we
give the results obtained in applying cluster analysis to both
synthetic examples and to a large speech data base.

II. MATHEMATICAL PRELIMINARIES

In what follows, we shall assume we are given a finite set, 2,
of N observations.

Bear in mind that these observations are not vectors but, rather,
tokens representing spoken words. We do have, however, a
distance matrix D whose 1/th entry d1 is a measure of the dis-
similarity of the observations x• and x. In our case, we have

1K
d11 = (x1, x1) = d(k, w(k))

k=1

where K is the number of frames in the reference utterance
x, and d(k, w(k)) is the LPC distance proposed by Itakura
[3] between the kth 15 ms frame of the utterance x1 and the
w(k)th frame of the utterance x1; that is,

—

aW(J%.)VaW() I
d(k, w(k)) = log I -+ T

L akVak J
(3)

where ak is the vector of LPC coefficients associated with the
kth frame of the test or unknown utterance x1; aW(k) is the
vector of LPC coefficients derived from the w(k)th frame of
the reference utterance x1; and V is the matrix of autocorrela-
tion coefficients computed from the kth frame of the test ut-
terance. The function w(k) is the so-called warping function
and is chosen to minimize d1 in (2). For a detailed discussion
of the w(k) function, see [12].

We will stipulate that the set of observations l is composed
of samples of only one word and that f contains M (not nec-
essarily disjoint) clusters {w}. The value of M is to be de-
termined, but formally we have

M

U:4.)i.
1=1

(4)

The cardinality of w1 is denoted by rn and its center or proto-
type designated x1S. Note that E w. A superscript (1)
on an observation will be used to mean that the observation
belongs to the ith cluster, and a subscript in square brackets
denotes a nearest neighbor; thus,x[kI is the kth nearest neigh-
bortox. That is,

(x,x[1]) 6(x,x12j) -. -

(5)

Finally, for a given assignment of the N observations into a
fixed number M of classes, we compute the quality measure a
according to

MM
M(M - 1' x')

) 1=1 1=1

1 M 1 m
m(m — 1' (x1('), x,0)) ji kI

(6)

Thus, a is the ratio of the average-intercluster to average-intra-
cluster distance. For two spherically symmetric clusters, a> 2
implies no overlap.

The most general approach to the clustering problem is to
treat the observations as being produced by a single random
process of density function F(z) which is the finite mixture

M
F(z) = f(zj1, b4)P(1f1).

1=1
(7)

In (7), the f(zIw1, 1) are the ith cluster-conditional density
functions which are characterized by the parameter vectors
P(b1k1) is the probability of the vector given that it char-
acterizes the ith cluster. This term is simply a weight which
tells how much the ith conditional density function contributes

(2) to the overall density in a small neighborhood of z. In the case
that f(zko1, b) contributes most strongly to F(z), then the
points in a neighborhood about z belong, with high probability,
to w.

For example, assume F(z) to be a weighted sum of Gaussian
density functions of different means and covariance matrices.
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The vectors bj would be these very parameters. Such an F(z)
corresponds to elliptical clusters centered about the means and
with half axes of length equal to the eigenvalues of the respec-
tive covariance matrices.

If, as in the above example, it is known a priori that the con-
ditional density functions are all members of the same family
differing only in the parameter vector bj, then one can solve
for the b in the mixture problem of (7) directly and the solu-
tion is unique up to a renaming of the clusters. In the absence
of such information, however, one must use some technique
for estimating F(z).

The most obvious method for estimating F(z) is to find the
optimal assignment of tokens to classes with respect to some
quality measure. In our notation, we would like to maximize a
in (6) over all assignments of thex1 to an w for 1 jN and
1 <i<M. For even moderate values of M and N, however,
the optimization is computationally intractable since the num-
ber of distinct ways that N objects can be assigned to M non-
empty classes is given by the Stirling numbers of the second
kind [5] , S2(M,N), where

1 M
S21M,N)= (l)'"1(') N (8)

•j=o I

Clearly, S2(M, N) grows exponentially with both M and N.
Branch and bound techniques, such as those of Koontz et a!.
[4] , lessen the computational burden only slightly.

Finally, then, we are left to estimate F(z) by some robust
but necessarily suboptimal technique. Many such procedures
are discussed in the literature. They most often require that
the observations be vectors in some feature space. Since our
data are not in that form, we have selected procedures which
are amenable to similarity data or can be modified to be
such. The next section gives the details of the clustering pro-
cedures we have used.

III. PROCEDURES

In this section, we give the mathematical details of four clus-
tering procedures: the chainmap, the shared nearest neighbor
method, the k-means iteration, and ISODATA.

A. The Chainmap

One of the major difficulties in performing a cluster analysis
on a large data base is just getting started, getting some insight
into the gross structure of the data. The chainmap is a very
simple analysis technique which gives its output in the form of
a two-dimensional plot from which a surprising amount of in-
formation can be obtained.

The first step in creating the chainmap is to reorder the data.
We designate an arbitrary token as the start of the chain; let us
call it x. The next token in the sequence will be the nearest
neighbor to x which is X3111. In general, the k + 1st element
of the ordered list will be Xk 11 where it is understood that the
nearest neighbor of Xk is selected from amongst the, as yet,
unordered tokens. The process is continued until we have or-
dered all observations, at which point we have constructed the
sequence

We then associate with the kth member of this sequence the
distance dk where

dk=(xjkl,xjk) 1kN— 1. (10)

The chainmap is simply a plot of dk against k.
The salient features of the plot are the large spikes, each cor-

responding to a cluster boundary. The prominence of these
peaks is indicative of the distinctiveness of the clusters as is the
relative smoothness of the rest of the plot. Typically, the
chainmap is quite noisy, but well separated clusters usually
show up. The procedure is somewhat sensitive to the choice
of starting point x but is computationally simple so that sev-
eral starting points can be tried for little additional cost.

B. A Method Based on Shared Nearest Neighbors

The SNN procedure is based on the simple notion that two
tokens, which have at least some number k of common nearest
neighbors, belong in the same cluster. We have formalized this
idea in the following way. Let L be the nearest neighbor list

X1 X1111 Xjj X1jj
X2 X2111 X2121 X[çJ

L= x3 (11)

XN XN(1] XN[21 X[J]
in which there are N rows corresponding to the N tokens and
the ith row R• is an ordered list of the tokens which are the k
nearest neighbors to x.

Now suppose that x1 ER1 and x1 ER. and suppose further
that

R1flR1Ik3 (12)

for some fixed threshold k. Then x and x share at least k5
neighbors, including the tokens themselves and thus are assigned
to the same class.

It is, of course, possible that x shares a set of k- nearest neigh-
bors with x, and k nearest neighbors with x1, with k ÷ Ic1 '(Ic
and k > k and Ic1 > k3. Then x belongs in both the ith and
jth clusters or c has a nonempty intersection with w1. Thus,
this procedure can be used to identify overlapping clusters.
Even if several clusters overlap, this method will discover it.

In practice, we place some upper limit 1max on the number
of clusters to which a token may belong. Of course the overall
results will depend upon the selection of the values of k, k,
and 'max• However, the computation is simple and requires no
interaction other than choosing the parameters so that one can
easily experiment with several choices.

C. The k-Means Iteration

The k-means procedure is an automatic iteration scheme
which will quite reliably find any specified number of clusters.
The iteration consists of three basic steps: classification, com-
putation of cluster centers, and convergence testing.

Assuming that we wish to find M clusters, we choose M arbi-
trary tokens to serve as initial cluster centers. For simplicity,

x'(x1 '(x1'( . •'(x. i0 s. (9) weset
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(x'), x") (x$2), XJ2))

I cz4= x for I i M. (13)

Classification then proceeds on the basis of the nearest neigh-

bor nile, namely,

I M. (14)

After (14) has been applied for I / N, we recompute the
cluster centers using a minimax criterion. That is, we let

such that max (15)

is minimized for 1 i M.
The convergence test consists of checking whether or not the

same tokens are designated as cluster centers as in the previous
iteration. If not, another iteration is performed.

Even when the k-means procedure is used on coordinate data,
convergence is not guaranteed. When the cluster centers are
computed according to (15), oscillation between two configu-
rations may occur. This is particularly true if the value chosen
forM does not agree with the structure of the data. However,
we have not observed this problem often and generally conver-
gence does occur. As we shall see in the next section, how-
ever, the k-means procedure is best used in conjunction with
an interactive scheme.

D. ISODATA

In order to bring the human into the process, to identify
outliers, and to determine the actual number M of clusters, we
have implemented an ISODATA procedure. The novelty of
this technique lies in its ability to split and merge existing clus-
ters in order to change M and increase a. Furthermore, this
permits the isolation of outliers which will occur when a single
point is split from a cluster.

The principal part of ISODATA is the k-means procedure,but
the number of clusters is adjusted at each iteration according
to criteria based on a number of fixed and variable thresholds.

Clusters are merged if one or more of the following condi-
tions occurs: 1) the present number of clusters M exceeds
some threshold value Mmax. 2) The size of the ith cluster w
becomes less than a threshold value mmin. 3)The distance
between the ith and /th cluster centers (x), x') is less than
some threshold 0m

If M> Mmax, then the two closest clusters are merged. If
then w, is merged with the cluster nearest to it.

If one wishes to isolate outliers, mmjn must be set to unity and
a merge will never result from criterion 2). The most general
merging condition results when

Fig. 1. Two splitting procedures for ISODATA.

There are also three conditions under which clusters are split:
1) The present number of clusters M becomes less than some
preassigned value Mmin. 2) The size of the ith cluster wI
exceeds some threshold mmax. 3) The ith cluster becomes too
sparse relative to the other clusters.

The first two criteria are similar to the corresponding ones
for merging. The third is slightly more intricate. To test a
configuration against the third criterion, we first compute an
intracluster distance D, for each cluster from

— 1
'' (x,x)) I <i<M. (18)m

We then form an average-intracluster distance D according to

— 1M
Djj m1D. (19)

1=1

Then, will be split if

D > max {, Oj

= (A.); U (&)1.

(20)

for some splitting threshold O.
When the ith cluster is to be split, it is divided into two parts

so that

(21)

The actual procedure by which (21) is implemented is some-
what untidy because we have only the distances between to-
kens available to us. We use two different methods which are

(x$IL), xYL))< O. (16) both shown in Fig. 1. In the simpler case, we find the two
points and x such that 5(x, x) is maximum. Then, eachIn which case the L pairwise merges will be performed accord- point in w is assigned to either w or w if its distance to X

ingto -or x , respectively, is smaller. In this case, x and x are not
(17) very good center points for the new clusters.

An alternative which gives better estimates of the new center
points is the following. As before we locate f and x, we
then set

= 8(x,x0) (22)

WkWjkUO)jk 1k<L
so that the actual merging operation is just the common set
theoretic union. If more than one merge takes place in any
iteration, then criterion 3) must be rechecked to see whether
more than two clusters should have been combined.
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and

r = (x,x) (23)

and find x and x such that
= 5(x,x) + (x, — (24)

and

r (25)

are minimized. As before, the members of w1 are assigned to
or w on the basis of their proximity to x and x.

In this case, x and x are much better centers for w and
w. We have used both splitting procedures in practice and
there seems to be little difference in the final configuration.
It is clear, however, that one could construct cases for which
one or the other would be markedly better. We have, there-
fore, included both procedures in our version of ISODATA.

In light of the foregoing discussion, the ISODATA procedure
is easily described. First, cluster centers are found according
to (15) and the remaining points are assigned to clusters ac-
cording to (14). These steps are actually part of the k-means
iteration. Following classification clusters are merged and split
according to (16), (17), and (18)—(25), respectively. After
merging and splitting are complete, the clusters are renamed to
account for new clusters generated by splitting and old ones
lost in merging. Finally, we check for convergence in two
ways. We either use the convergence criterion of the k-means
iteration or we may stop whenever the current configuration
has a a ratio which is greater than some threshold .

It may appear at first glance that ISODATA is very difficult
to use because of the seven parameters, Mmax, Mmin, mmax,
mmjn, °m' and i, which must be set. Actually these param-
eters afford the procedure great power and flexibility. With
the information obtained from preliminary applications of
chainmap and SNN, and from previous iterations of ISODATA,
one gets a good grasp of the data which usually results in a
good cluster configuration. Reference [14] contains a section
on "helpful hints" for actually using ISODATA.

IV. EXPERIMENTAL RESULTS

In this section, we give some results of application of the
clustering techniques described above. We first give some il-
lustrative examples obtained by clustering synthetic data. From
these, the reader can get an intuitive idea of how the proce-
dures perform. We then move on to the major results which
were obtained in clustering a large speech data base.

A. Results on Synthetic Data

Figs. 2 and 3 show the results from the chainmap procedure.
Fig. 2 is a plot of two-dimensional synthetic data consisting of
points drawn from a mixture of four normal distributions.
The chainmap for this data is shown in Fig. 3.

Fig. 4 shows the results of a similar experiment with the
SNN routine. The data, which were analyzed in this case, were
drawn in equal proportions from two bivariate normal distri-
butions whose means and variances were chosen so that there
would be substantial overlap. In Fig. 4, those points that were
judged by the SNN procedure to be in the overlap regions are

-
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Fig. 2. Synthetic test data.

CHAIN ORDER

Fig. 3. Chainmap of synthetic test data.

plotted with a separate symbol. The actual means and con-
tours of equal variance are superimposed on the plot. The
cluster configuration was obtained with k = 15 and k5 = 6.

Table I shows the results of clustering the data of Fig. 2 with
the k-means iteration in which M has been set to 4. The actual
means and variances of the cluster distributions are compared
with those estimated from the final cluster configuration. It is
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Fig. 4. Clusters in synthetic data found by the SNN method.
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CLUSTER MEANS - VARIANCESif ACT.

clear from this example in what sense clustering techniques are
heuristic and suboptimal, unsupervised density estimators.

B. Results for Speech Data

A good feeling for the quality of the speech data can be seen
from the chainmap of Fig. 5. This is a plot of the chainmap
for the word "F." Note that there are three prominent clusters
and relatively good separation. This is typical of the kind of
information about a set of data which is obtained from chain-
map.

The ISODATA procedure was tested on a small subset of the
large speech data base which it was our object to analyze. Be-
fore giving the results of that test and the complete study, we
will briefly describe the data and the procedure used to collect
it.

Our data consists of four replications of a 39 word vocabulary
composed of the alphabet, the digits, and three "command"
words (stop, error and repeat) spoken by 50 male and 50
female native speakers of English. The vocabulary is diffi-
cult yet very useful for word recognition (see Rosenberg and
Schmidt [13]).

Since the data was ultimately to be used as training data for
a recognition system, every effort was made to insure that arti-
facts were not present. Speech from a standard telephone
handset located in a sound booth was recorded on analog tape.
The tape recordings were bandpass filtered (200-3200 Hz) and
digitized at 6.67 kflz. After semiautomatic endpoint detec-
tion in which the operator had audio playback and an energy
envelope display upon which to base his/her judgments, the
set of eighth-order autocorrelation coefficients [3] for each
45 ms frame was stored on disk. In the final stage, a distance
matrix for each vocabulary word was computed according to

CLUSTER SIZE TOKENS M/F

1 4 1,6,10,15 4/0 15 .202

2 3 3,4,13 3/0 4 .173

3 2 5,14 2/0 14 .100

4 2 7,16 0/2 16 .183

5 4 8,9,17,18 0/4 17 .285

6 3 2,11,12 3/0 2 .129

(2) and (3) using the 100 utterances from the first replication.
These 39 matrices were the input to the clustering procedures.
Only one matrix corresponding to a single vocabulary word
was analyzed at a time.

Before analyzing the entire data base, several pilot studies
were done. We shall describe one of the simpler ones in which
we analyzed 18 utterances of the word "A" spoken by twelve
males and six females. The 18 X 18 distance matrix was input
to the ISODATA procedure. The results, which are shown in
Table II, indicate very strong structure in the data in the form
of six clusters. Four of the clusters contain only male utter-
ances and two more, only female. The sigma ratio of 3.2 shows
strong separation.

In order to corroborate these results, we input the same dis-
tance matrix to the multidimensional scaling program KYST-Il
[6]. This program finds a configuration of points in an n-
dimensional Euclidean space such that the pairwise distances
between points match the corresponding entries in the input
distance matrix optimally with respect to a goodness-of-fit
criterion. This procedure finds Structure in the data of a dif-
ferent kind than is identified by clustering. After scaling, each
dimension quantifies the presence of some abstract feature.
Ideally, these abstract features can be correlated to physically
meaningful measurements. The reader interested in the rela-
tionship of multidimensional scaling to clustering should con-
sult Kruskal [7]. Part of the output is shown in Fig. 6 which

TABLE I
OUTPUT OF k-MEANS ITERATION FOR SYNTHETIC GAUSSIAN DATA

I 1,1 I 1.0, .99 .25, .25 .30, .33
2 1.5 .97, 4.9 .25, .25 .26, .21
3 5,5 4.96, 4.98 .25, .25 .22, .27

.98 .25, .25 .23, .28

TABLE II
OUTPUT OF THE ISODATA FOR 18 UTTERANCES OF THE WORD "A"
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Fig. 5. Chainmap of speech data.
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A
B
C
D
E
F
G
H

K
L
M
N
0
P
Q
R
S
T
U
V
w
x
Y
z

STOP
ERROR

REPEAT
0

4

12 4 3.1 35
10 5 3.1 25
11 3 2.6 21
10 6 3.5 20
10 6 3.9 19
6 4 2.5 32

13 3 3.3 22
8 4 2.5 32

12 7 2.9 26
10 6 3.2 36
11 5 3.1 33
9 9 2.6 28

13 7 2.6 28
13 8 2.6 20
12 11 2.9 28
12 7 3.4 19
15 8 3.2 17
13 11 3.6 22
10 7 2.6 29
10 12 3.7 30
17 7 3.3 12
18 3 3.1 24
15 9 2.5 23
10 11 2.5 23
12 12 3.0 20
15 10 3.4 18
12 14 2.6 31
15 15 3.1 31
19 8 3.0 16
19 11 2.4 17
17 5 2.4 17
16 6 3.0 33
12 14 3.5 19
18 7 3.0 28
13 10 2.9 20
11 16 2.9 22
16 15 2.9 17
14 8 3.3 20
14 14 3.1 19

is a plot of dimension 1 versus dimension 2, with the axes
rotated to principal components. The plot is one plane of a
six-dimensional configuration having a stress of 0.012. This
means that six features account for more than 98 percent of
the variation in the data. This also shows that the data are
highly structured. A further verification of the clustering re-
suits is that dimension 1, which is the strongest contributor to
the variation in the data, is the male/female axis.

The other pilot studies include an 18 speaker set of the word
"B" and 40 speaker sets of the words "W" and "Error." All
were clustered and scaled as described above. The results were
consistent with those for the word "A."

In addition, we clustered a 100 token set consisting of 10
utterances (males and females together) of each of 10 words.
The clusters showed very strong separation of words compared
to the male/female dichotomy of the intraword separation.

Finally, we attempted to learn more about the significance
of the six-dimensional space obtained from KYST-Il. This
was done using the individual differences scaling technique
SINDSCAL [101. This cursory study showed that only a sin-
gle dimension was common amongst words and that was the
male/female axis.

The pilot studies gave us some experience in using our clus-
tering package, and their outcome convinced us that the data
was highly structured. We, therefore, conducted an analysis of
each of the 39 words using the entire 100 speaker set. The re-
suits of these runs are summarized in Table III. In brief, we

found clusters ranging in number from 6 for the word F to 19
for the word "repeat." The largest clusters contained a mini-
mum of 12 and a maximum of 36 utterances. There were as
few as 3 and as many as 16 outliers for a single word. The
value of the quality ratio was lowest at 2.4 for the word "one"
and was highest at 3.9 for the word "E."

V. SUMMARY

We have discussed the theory underlying a set of clustering
procedures for the purpose of selecting reference templates for
speaker-independent word recognition. We have given exam-
ples of the performance of these procedures on synthetic and
speech data and we have given the results of applying the pro-
cedures to a large speech data base. In analyzing the speech
data base, we found that tokens for each word are arranged in
well-defined clusters with a few outliers. Work on the appli-
cation of this structure to a speaker-independent word recogni-
tion system will be described in subsequent papers.

REFERENCES

[1] G. H. Ball and D. J. Hall, "Isodata—An iterative method of multi-
variate analysis and pattern classification," in Proc. IFIPS Congr.,
1965.

[2] J. L. Flanagan, S. E. Levinson, L. R. Rabiner, and A. F. Rosen-
berg, "Techniques for expanding the capabilities of practical
speech recognizers," in Trends in Speech Recognition, W. Lea,
Ed. Englewood Cliffs, NJ: Prentice-Hall, to be published.

[3] F. Itakura, "Minimum prediction residual principle applied to
speech recognition," IEEE Trans. Acoust., Speech, Signal Pro-
cessing, vol. ASSP-23, pp. 67—72, Feb. 1975.

140 IEEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL. ASSP-27, NO. 2, APRIL 1979

TABLE III
CLUSTERING RESULTS ON SPEECH DATA

No. of No. of Size of
Word Clusters Outliers a- Ratio Largest Cluster



IEEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL. ASSP-27, NO. 2, APRIL 1979 141

[4] W. L. G. Koontz, P. M. Narendra, and K. Fukunaga, "A branch
and bound clustering algorithm," IEEE Trans. Comput., vol.
C-24, pp. 908—91 5, Sept. 1975.

[5] D. E. Knuth, The Art of Computer Programming, Vol. I: Funda-
mentalAlgorithms. Reading, MA: Addison-Wesley, 1968.

[6] J. B. Kruskal, F. W. Young, andJ.W. Seery,"HowtouseKYST-II;
A very flexible program to do multidimensional scaling and un-
folding," Computing Information Service, Bell Labs.

[7] J. B. Kruskal, "The relationship between multidimensional scaling
and clustering," in aassification and Clustering, J. Van Ryzin,
Ed. New York: Academic, 1977.

[8] J. MacQueen, "Some methods for classification and analysis of
multivariate data," in Proc. 5th Berkeley Symp. Probability and
Statistics, Berkeley, CA, 1967.

[9] E. A. Patrick, Fundamentals of Pattern Recognition. Englewood
Cliffs, NJ: Prentice-Hall, 1972.

[10] S. Pruzansky, "How to use SINDSCAL—A computer program for

individual differences in multidimensional scaling," Computing
Information Service, Bell Labs.

[11] L. R. Rabiner, "On creating reference templates for speaker inde-
pendent recognition of isolated words," IEEE Trans. Acoust.
Speech, Signal Processing, vol. ASSP-26, pp. 34—4 2, Feb. 1978.

[12] L. R. Rabiner, A. E. Rosenberg, and S. E. Levinson, "Considera-
tions in dynamic time warping algorithms for discrete word rec-
cognition," IEEE Trans. A court., Speech, Signal Processing, vol.
ASSP-26, pp. 575—583, Dec. 1978.

[13] A. E. Rosenberg and C. E. Schmidt, "Directory assistance by
means of automatic recognition of spoken spelled names," in
Proc. IEEE ICASSP-78, Tulsa, OK, Apr. 1978.

[14] J. G. Wilpon, and S. E. Levinson, "How to use the clustering
package VMCLUSTER," Bell Labs. Tech. Memo, Aug. 1978.

[15] R. A. Jarvis and E. A. Patrick, "Clustering using a similarity mea-
sure based on shared near neighbors," IEEE Trans. Corn put., vol.
C-22, pp. 1025—1034, Nov. 1973.

A Two-Sided Rational Approximation Method for
Recursive Digital Filtering

CHARLES K. CHUI AND ANDREW K. CHAN, MEMBER, IEEE

Abstract—A two-sided rational approximation procedure for recursive
digital filter design is presented in this paper. More specifically, an ex-
plicit expression for the designed filter transfer function can be ob-
tained once a rational approximation for the analytic part of the Fourier
series expansion of the desired filter characteristic is determined. To
demonstrate the efficiency of this technique, we derive a two-sided
Padé approximation method. Several examples are given to illustrate
this design procedure.

INTRODUCTION

IN the area of recursive digital filter design, there are many
techniques available in the literature. See, for example,

[10] and [11]. However, only a few of these methods give
explicit expressions of the realizable transfer functions H(z1).
In particular, the Padé approximant method [1], [2], [8] was
introduced to approximate the truncated delayed Fourier ex-
pansions of the ideal filter characteristics H(c). The advan-
tages and disadvantages of the Padé approximant method and
the extension of it were discussed in [2] and [8]. All these
techniques are for approximation of a (formal) power series.
We call this a one-sided rational approximation. To obtain a
power series, one usually truncates a Fourier expansion and
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then introduces a constant delay. The main disadvantage of
this transformation is that the lower order terms (which are
the most important ones) of the new power series no longer
represent the low-frequency terms of the original Fourier ex-
pansion. This might create a serious problem, especially in
designing maximally flat characteristic filters. This phenome-
non will be discussed further in the next section. The main
contribution of this paper is to introduce a two-sided rational
approximation of H(w), that is, we will derive a method to
approximate (the Fourier expansion of) H(w) directly by a
rational function Ha(z) in Z = e1".

A TWO-SIDED RATIONAL APPROXIMATION METHOD

In the Fourier expansion of a given ideal filter characteristic

H(w) = c,,
n =

the most representative terms in the series are the terms
c e1 for small ni. Hence, in any approximation method,
it is intuitively clear that the weight of approximation should
be given to c0, c±1, c±2, , in this order. This is particularly
so in Padé approximation.

A rational function r(z1) = m (z1 )/Q(z1), where m
and Q are polynomials of degrees m and n, respectively, is
called a Fade approximant of a (formal) power series f(z1) =
a0 + a1z1 + if its Maclaurin expansion agrees with as
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