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On the Use of Symmetry in FFT Computation

LAWRENCE R. RABINER, FELLOW, IEEE

Abstract—It is well known that if a finite duration, N-point sequence
x(n) possesses certain symmetries, the computation of its discrete
Fourier transform (DFT) can be obtained from an FFT of size N/2 or
smaller. This is accomplished by first preprocessing the sequence, tak-
ing the FFT of the processed sequence, and then postprocessing the re-
sults to give the desired transform. In this paper we show how a similar
approach can be used for sequences which are known to have only odd
harmonics. The approach is shown to be essentially the dual of the
known method for time symmetry. Computer programs are included
for implementing the special procedures discussed in this paper.

I. TiMmg DOMAIN SYMMETRIES AND THE FFT

ONSIDER the N-point, finite duration sequence x (1), de-
fined for 0 <n <N - 1, with discrete Fourier transform
X (k) defined as [1]-[3]

N-1
X(k)=Y x(m)yWF, k=0,1,- - ,N-1 )
n=0
where
Wy =e 17IN) )

In general, an N-point complex FFT is required to give the
DFT X(k) for an arbitrary sequence. However, when x(n) is
real, an N/2-point complex FFT can be used to give X (k) [4].
(Equivalently, one can use an FFT routine which accepts real
inputs and gives the complex DFT as output [5], [6]. We
denote such a routine as a (real) FFT.)

In many cases either x(n) or X (k) possesses certain desirable
properties which can be exploited to reduce the amount of
computation to obtain the desired DFT. The most notable of
these properties are the time symmetries. A symmetric se-
quence is defined as one for which

x(n)=x(N-n), n=1,2,---,N2-1 3)

Manuscript received August 2, 1978; revised December 22, 1978.
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and an antisymmetric sequence is defined as one for which

x(m)=-x(N-n), n=1,2,---,N2-1. “)

Cooley et al. [4] have shown that if the sequence is either
symmetric, or antisymmetric, a simple procedure can be used
to reduce the computation of the DFT to that for an N/4
point (complex input) FFT with preprocessing and postpro-
cessing. The algorithm works as follows (assuming x(n) is a
symmetric, real sequence). We express the N-point DFT as

N-1

o Nl
X(k)y= > x(n)ywy' + > x(n) Wik, )
nne=vgn nn:gd
We then define the DFT’s A(k) and B(k) as
B k
AK)= Y x(m)ywiF, k=0,1,--,N-1 (6)
n even
N-1
Bk)= Y x(mWF, k=0,1,--,N-1 7
nno=gd
$0
X(k)=A(k)+B(k), k=0,1,---,N-1. (8)

We next preprocess x(#) to give the NV/2-point real sequence
y(n), defined as

ym)=x@2n)+[x2n+1)

-x(2n-1)], n=0,1,---,N2-1 (9a)
=a(n) +c(n) (9b)

where
a(n)=x(2n) (10a)
cm)=x(2n+1)-x(2n-1) (10b)

0096-3518/79/0600-0233$00.75 © 1979 IEEE
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and all indices are interpreted modulo N. It is readily seen
that the sequence a(w) is itself a symmetric, real sequence;
hence its DFT is purely real (and, of course, even). The se-
quence c(n) is an antisymmetric, real sequence; hence its DFT
is purely imaginary (and odd). Thus, if we take the N/2-point
(real input) FFT of y (n), we get the result

N/[2-1 "
Y(k)= Z y(”l)W]G/2, k=0:1:“.’N/2_1

n=0

NY Nf2-1
=S xQoWL+ S &@n+1)
n=0

- xQ2n- D) WE,. (11)

The first term in (11) is A(k), the N/2-point DFT of the even
components of x(#n) (defined for 0 <k <<N/2-1). The sec-
ond term in (11) can readily be shown to be of the form

Nj2-1 -
A:) (x@n+1)-x2n- 1)) Wi,
=

N-1 , PP ! , .
= 5 x(@HWREWF - 3 x(@)wrFwrt  (12)
n=0 n'=0
n' odd n'odd
N-1 .
=WF-w 32 x(m)WR" (13)
nr’;gd
o [2m
=7j s1n<7v— k)B(k), k=0,1,---,N/2- 1. (14)
Thus, Y (k) of (11) can be written as
.. f2nm
Y(ky=A(k) - 2j s1n(7v— k) B(k). (15)
Using the properties of A(k) and B(k), we get
A(k)=Re [Y(K)], k=0,1,---,N/2-1 (162)
Im [Y(k
By = 1 LY (®)] k=1,2,---N2- 1. (16b)

2 bl
2 sin (——7-7 k)
N

For k=0 and k = N/2, B(k) is not defined from (16b); instead
these values are obtained directly as

B(0)= 1& x(2n +1) (17a)
nn:gd
B(N/2)=-B(0). (17b)

Thus, from the N/2-point real FFT of y(n), the N-point real
FFT of x(n) can be recovered using (8), (16), and (17). In
addition, x (7) need only be specified for 0 <n <N/2. A sum-
mary of the procedure for obtaining X (k) is as follows.

1) Compute B(0) as

N-1 N/4-1
B@)=3 x@2n+1)=2 > x(2n+1).
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2) Form the sequence y(#n) as
y(m)=x(2n)+(x(2n+1)

-x(2n-1)), n=1,2,---,N/4-1
YNR-m)=x@2n)- xQCn+1)
-x(n-1)), n=1,2,- - Nj4-1
y(0)=x(0)

yWj4)=x(N[2).

3) Take the N/2-point real FFT of y(n); call this result
Y(k),0<k <N/2- L.
4) Form A(k), B(k) as

A(k)=Re [Y(K)],
Im [Y (k)]

2\’
2 sin(i k)
5) Form X (k) as
X(k)=Ak)y+Bk), k=1,2,--
XWNVR-k)y=Ak)- Bk), k=1,2,--
X(0)=B(0) +A(0)
X(N/2)=A(0) - B(0).

k=0,1,2,---,Nf4

B(k)= k=1,2, - N/4.

N4
, N/4

An implementation of this procedure is given in Appendix L.

A similar procedure is used when the sequence x (n) is odd.
The sequence y(n) of (9) is again formed; however, a(n) is
now an odd, real sequence, and ¢(7) is an even, real sequence.
Appropriate modifications are made in the procedure to re-
flect these differences. An implementation of this procedure
is given in Appendix II.

II. REpuCTION IN COMPUTATION FOR ODD
HARMONIC SEQUENCES

In the special case where x(n) is a real sequence that is
known to have a DFT for which only the odd harmonics are
present,i.e.,

X(k)=0, keven,

(18)

we can also take advantage of this special symmetry by using a
frequency domain approach. In this case, we first form the
inverse DFT of X(k), giving

= L “ —nk = N -
x(n) N];)X(k)wl , n=0,1,--N-1 (19)
1 N-1 1 N-1
=— X(YWRr* + — S X (k) Wk (20)
N = N =
k odd k even
=a(n) +b(n) (21)
where
1 N1 ok
a(m)=—= >, X)Wy (22a)
N =
k odd
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1 N1 X
b)== Y. XKW~
N k=0
k even

(22b)

For sequences with only odd harmonics, (18) shows that
b(n) = 0. We now form the (complex) sequence Y (k) as

Y(h)=XQk)+j[X(2k +1)

-XQk-1], k=0,1,---,N/2-1. (23)
The N/2-point inverse DFT of Y (k) is obtained as
1 Ny2-1 N
= —— Y)W, n=0,1,--,=-1
y(n) D) ,;) (k) Wnir3 2
(24)
1 Nj2-1
=—— S X(2K) Wik
™) kg ( N/2
+ LY vk + 1y - Xk - 1] Wik
W) & Nfz:
(25)

The first term in (25) is readily seen to be 2b(n) (which is
identically O for this case since X (2k) =0 for all k). The sec-
ond term in (25) can be written as

T NE 1y ok + 1) - XQk - 1] W
W) & N2
= 2j[W§ - Wa'la(n). (26)
Therefore,

y(r)=4sin (-2-;—”>a(n)

2
= 4 sin (%)x(n), n=0,1,2,--N2-1. (27)

Thus, the procedure for obtaining X (k) is as follows.
1) First form the coefficients Re [X(1)] and Im [X(VV/2) -
1)] directly from the relations

N~-1 {2n
Re [X(1)] = > x(n) cos<—A—,- n) (28a)
n=0
-1 2n
Im [X(N/2-1)] = > x(n) cos (_1\7 n) D" (28h)
n=0

It is readily shown that for a sequence containing only odd
harmonics, the signal x(n) satisfies the relation

x(n+Nf2)=-x(n), n=0,1,"--,Nj2-1, (29)

i.e., the upper half of the sequence is the negative of the lower
half of the sequence. Thus, exploiting (29), only N/2 values of
x(n) need be stored, and Re [X(1)] and Re [X(V/2 - 1)] can
be efficiently computed as

T1= N%-l x(n) cos (jv_ﬂ ) (30a)
7=0

n even
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2= N/Z2_l x(n) cos (jv_ﬂ n) (30b)
n=0
n odd
Re [X(1)] =2[T1+T2] (30¢)
Re [X(%,- )} =2[T1 - T2]. (304d)

2) Weight the sequence x(n) by 4 sin ((2a/N)n) for n =
0,1, N2- 1,ie.,

2
yn)=x(n)4 sin(ﬁ"n), 0<n<N/2-1.

3) Take the N/2-point real FFT of y(i). Call this result
Y(k),0<k<N/2-1.

4) Recursively solve (23) for X(2k + 1) (since X(2k)=0)
for k=1, 2, -, N/4 - 2, with appropriate initial conditions,
ie.,

Im {X(1)] =-Re [Y(0)] /2
Re [X(1)] =2 - (T1 + T2)
Re [X(2k +1)] =Im [Y(k)] +Re [X(2k - 1)],
k=1,2, - N4-2
Im [X(2k +1)] =-Re [Y(k)] +Im [X(2k - 1)],
k=1,2, - N/4-2
Im [X(V/2 - 1)] = Re [Y(V/4)] /2
Re [X(V/2 - 1)] = 2(T1 - T2).

A computer program that implements this procedure is given
in Appendix II1.

ITI. SEQUENCES WiTH BOTH TIME SYMMETRY AND
HaviNng ONLY Opp HARMONICS

The sequence x(n) can simultaneously possess special
properties in both the time domain (i.e., time symmetry) and
the frequency domain (i.e., odd harmonics only). For such
sequences, one can essentially apply the algorithms discussed
in Sections 1 and II in sequence. The simplest procedure is to
use one algorithm first, and at the place where the FFT is
called, simply insert the call for the second algorithm with ap-
propriate code to account for the format in which the trans-
form is returned. However, as in most cases, such a simple
approach is not generally as efficient as it can be made, since
the additional properties of the sequence can be exploited to
reduce computation and/or memory,

By way of example, consider a sequence which is symmetric
in time and which is known to contain only odd harmonics.
We again denote this sequence as x(n), defined for 0 < n <
N - 1. It is readily shown that x (») satisfies the relations

x(N2-n)=-x(n), n=0,1,"-,N/4-1
x(N/4)=x(3N/4)=0

(31a)
(31b)

in addition to the usual symmetric sequence (3) and odd
harmonic sequence (18), (29) relations, Thus, one need
specify x(n) for 0<n<N/4 - 1 to uniquely define this se-
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quence. As such, simply imbedding, for example, the odd
harmonic subroutine within the symmetric sequence subrou-
tine yields an inefficient algorithm. For maximum efficiency,
we first preprocess x(7) to form the N/2-point sequence
y(n)as

ym=xCn)+ [x2n+1)

-x(2n-1)], n=1,2,---,N/8-1 (32a)
yNV/4-n)=-xQn)+ [x(2n+ 1)
-x(2n-1)], n=1,2,---N/8-1 (32b)
with initial and final values
¥(0)=x(0) (32¢)
y(V/8)=-2x(N/4 - 1). (32d)

The sequence y(r) represents the first N/4 points of an odd
harmonic N/2-point sequence. Thus, we can use the procedure
of Appendix HI directly on y(n) to give the N/2-point com-
plex odd harmonic sequence Y(k). The desired DFT X (k) is
obtained from Y(k) via the relation

X2k +1)=|{Im[Y(2k + 1)]

+Re[Y(2k + l)]/[2 sin (12777 2k + l)>H ,

k=0,1,--+,N/8 -1 (332)

X(N/2-2k-1)= {Im[Y(Zk +1)]

+Re[Y(2k + l)]/[2 sin (21\777 2k + 1)>” ,

k=0,1,-+-,N/8- 1. (33b)

The reader is reminded that X(k) is O for k even, and X (k) is
purely real because x(n) is symmetric. An implementation of
this procedure is given in Appendix I'V.

Next we consider an N-point sequence which is antisym-
metric in time and which is known to contain only odd har-
monics. Denoting this sequence as x(n), it can be shown that
x (n) satisfies the relations

x(N/2-n)=x(#), n=0,1,--- Nf4-1
x(0)=x(N/2)=0

(34a)
(34b)

in addition to the antisymmetric sequence (4) and odd har-
monic sequence (18), (29) relations. Thus, x(72) need only be
specified for 0 < n < N/4 to uniquely define this sequence.

For maximum efficiency in obtaining the DFT of antisym-
metric, odd harmonic sequences, we combine the procedure
for antisymmetric sequences with the one for odd harmonic
sequences. We first form the sequence y(n) as

y(m)=x2n)+ [x(2n+1)-x(2n- 1)],
n=1,2,-,N8-1
yV/4-n)=x(2n) - [x(2n+ 1) -x(2n - 1)],
n=1,2,---,N/8-1

(35a)

(35b)
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with initial and final values
y(0)=2x(1)
Y(N/8) =x(N/4).

The sequence y(n) contains the first N/4 points of an N/2-
point odd harmonic. sequence. Hence, we again use the
procedure of Appendix III to give the N/2-point complex
odd harmonic sequence Y(k). The desired DFT X (k) is ob-
tained from Y'(k) via the relation

Im{X(2k+1] = Im[Y(2K + 1)]

[ v
“Re [Y(2k+ D] | | [2sin (= @k + D] |,

(35¢)
359

k=0,1,--,N/8-1 (362)
Im[X(V/2 - 2k - D)] = P—Im[Y(zk +1)]

~Re[Y(2k + 1)]/ [2 sin (12\/1 (2k + 1))”,

k=0,1,---,N/8- 1. (36b)

The reader is reminded that X (k) is O for k even, and X (k) is
purely imaginary because x(#) is antisymmetric. An implemen-
tation of this procedure is given in Appendix V,

IV. CompuTAaTION TIME

The computation time for computing the transform of an
arbitrary real N-point sequence is 7, = a(N/2)log, (N/2)
where a« is a proportionally constant. When one employs any
of the symmetries and special properties discussed in this
paper, the computation time becomes

72 = a(N[4) log, (N/4) + BN

where N represents the time for preprocessing and postpro-
cessing the sequences. For most practical cases, NV << a(N/4)
log, (N/4), and thus the savings in computation using the ef-
ficient algorithms is on the order of 2 to 1.

A test was run to measure the actual time required to run
the subroutines of Appendixes I-V for a fixed size sequence.
Using the real FFT subroutine FAST [6], [7],a 1024 FFT
required 0.31 s. The subroutines FFTSYM and FFTASM re-
quired 0.19 s to run this same size transform, and the subrou-
tine FFTOHM took 0.18 s for this case. The subroutines
FFTSOH and FFTAOH took 0.12 s to run this same size
transform. Thus, for a 1024-point transform, the overhead
due to preprocessing and postprocessing (the SV term) is on
the order of 20-30 percent of the time it takes to do the
N/[2-point FFT.

(37

V. SUMMARY

We have shown in this paper how one can exploit special
properties of some sequences to reduce the computation time
for obtaining its DFT. We have proposed a novel approach in
frequency (the dual of the time algorithm) which can be used
for sequences that are known to consist of only odd har-
monics. The details of the computation have been described
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along with a set of subroutines which perform this basic
computation.

APPENDIX |

The program given in this Appendix takes the real N-point
symmetric sequence x(#) and returns the (V/2 + 1) real points
of its DFT. On input only the first (N/2 + 1) points are sup-
plied to the routine; on output the first (/2 + 1) real values
of X(k), the DFT of x(n), are returned.

The FFT subroutine used in this and subsequent routines

in Appendixes II-V is the routine FAST described originally .

by Bergland [6], and modified by Bergland and Dolan [7].
For the direct transform [i.e., (1)], the input is an N-point
real sequence, and the first (V/2 + 1) complex values of its
transform are stored in the original array with the real part of
each DFT point preceding the imaginary part, i.e., Re [X(0)]
is followed by Im [X(0)], which is followed by Re [X(1)],
which is followed by Im[X(1)], etc. Thelast (V/2 - 1) com-
plex values of the transform are not returned, as they can be
obtained via the DFT symmetry relations for real sequences,
ie.,

XWN-Kk)=X*k), k=1,2,---

For the inverse transform (the subroutine FSST), the input
X (k) is assumed to be in the format returned by FAST. The
reader should note that for an N-point FFT, a total of (V +
2) storage locations are required [7].

The calling sequence for the subroutine is

CALL FFTSYM (X, N, Y)
where

X = array of size (NV/2 + 1) which on input contains the first
half of the real symmetric sequence x(n), n=0, 1, -,
NJ/2, and on output contains the real part of the DFT,
X&), k=0,1,---,NJ2;

N = size of sequence x (n);

Y = scratch array of size (N/2 + 2).

[o]
[o]
C SUBROUTINE: FFTSYM
C COMPUTE DFT FOR REAL., SYMMETRIC. N—POINT SEQUENCE X (M) USING
C N/2-POINT FFT
C SYMMETRIC SEQUENCE MEANS X(M)=X(N-M), M=1,..., N/2-1
C NOTE: INDEX M |8 SEQUENCE INDEX——NOT FORTRAN [INDEX
[o]
[o]
SUBROUTINE FFTSYM{X, N, Y)
DIMENSION X (1), Y(1)
[o]
C X = REAL ARRAY WHICH ON INPUT CONTAINS THE N/2+1 POINTS OF THE
c INPUT SEQUENCE (SYMMETRICAL)
c ON OUTPUT X CONTAINS THE N/2+1 REAL POINTS OF THE TRANSFORM OF
(] THE INPUT-—|_E. THE ZERO VALUED IMAGINARY PARTS ARE NOT RETURNED
C N = TRAUE SIZE OF INPUT
C Y = SCRATCH ARRAY OF SIZE N/2+2
[o]
[o]
C FOR N = 2, COMPUTE OFT DIRECTLY
[o]
IF (N.GT.2) GO TO 10
T = X(1) + x(2)
X(2) = X(1) — x{2)
X{1) =71
RETURN
10 TWOP! = B8.+ATAN{(1.0}
[o]
C FIRST COMPUTE BO TERM, WHERE BO=~SUM OF ODD VALUES OF X (M)
[o]
NO2 = N/2
NO4 = N/4
NIND = NO2 + 1
BO = 0.

DO 20 I=2,NIND,2
BO = BO + X(1})
20 CONTINUE
BO = BO+2.

[o]
C FOR N = 4 SKIP RECURSION LOOP
[o]

IF {(N.EQ.4) GO TO 40
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[o]
C FORM NEW SEQUENCE, Y({M)=X{2sM)+(X(2+M+1)=X(2°M=1})
[o]

DO 30 1=2,NO4
IND = 2+1
T1 = X{IND)} -~ X{IND-2)
Y{1) = X(IND-1) + T1
IND1T = NO2 + 2 — |
Y{IND1) = X({IND-1) — T1
30 CONTINUE
40 Y(1) = X(1)
Y{NO4+1) = X(NO2+1)

TAKE N/2 POINT (REAL) FFT OF Y
CALL FAST(Y, NO2}

FORM ORIGINAL DFT BY UNSCRAMBL ING Y (K)
USE RECURSION TO GIVE SI{N(TPN<{) MULTIPLIER

0000 00 O

TPN = TWOP!/FLOAT (N}
COS1=2.+COS(TPN)
SINI=2.+SIN(TPN)
COSD=COS1/2,
SIND=8INI /2.
NIND = NO4 + 1
DO 50 1=2,NIND
IND = 2-1
BK = Y{IND)/SINI
AK = Y{IND-1)
X{(1} = AK + BK
NIND1 = N/2 + 2 — |
X(NIND1) = AK —~ BK
TEMP=COS { »COSD~S{NI ~SIND
SIN!=COS|+SIND+SINI~COSD
COS (=TEMP
50 CONTINUE
X{1) = BO + Y{(1)
X{NO2+1} = Y{(1) - BO
RETURN
END

APPENDIX II

The program given in this Appendix requires as input the
first (V/2) points of the antisymmetric, real N-point sequence
x(n), and returns the (N/2 + 1) imaginary values of X (k), the
antisymmetric, imaginary N-point DFT of x (#).

The calling sequence is

CALL FFTASM (X, N, Y)
where

X = array of size (N/2 + 1) which on input contains the first
half of the real, antisymmetric sequence x(n), N=0,
1,--+, N/2- 1, and on output contains the imaginary
parts of the DFT, X (k), k=0, 1, -+, N/2;

N = size of sequence, x(n);

Y = scratch array of size (NV/2 + 2).

SUBROUTINE: FFTASM

COMPUTE DFT FOR REAL, ANTISYMMETRIC, N—POINT SEQUENCE X(M)} USING
N/2—POINT FFT

ANTISYMMETRIC SEQUENCE MEANS X (M)=-X(N-M), M=1,.. ., N/2-1

NOTE: INDEX M IS SEQUENCE INDEX——NOT FORTRAN |INDEX

[sEsXeNe¥eNeNeNe N e}

SUBROUT INE FFTASM{X, N, Y)
DIMENSION X{t}, Y{(1)

C
C X = REAL ARRAY WHICH ON INPUT CONTAINS THE N/2 POINTS OF THE
[o] (NPUT SEQUENCE (ASSYMMETRICAL)
[ ON OUTPUT X CONTAINS THE N/2+1 IMAGINARY POINTS OF THE TRANSFORM
[ OF THE INPUT——1.E. THE ZERO VALUED REAL PARTS ARE NOT RETURNED
C N = TRUE SIZE OF (NPUT
G Y = SCRATCH ARRAY OF S12E N/2+2
[o]
[o]
C FOR N = 2, ASSUME X{1}=0, X{(2)=0, COMPUTE DFT DIRECTLY
[o]

IF (N.EQ.2) GO TO &0

TWOP! = B.+<ATAN(1.0)
[
C FORM NEW SEQUENGE, Y (M)=X{2+M)+(X{2+M+1)=X(2+M=1})
[o]

NO2 = N/2

NO4 = N/4

DO 10 I1=2,NO4

IND = 2«1
T1 = X{IND) — X{IND-2)

Y{I) = X(IND-1) + T1
IND1 = NO2 + 2 ~
Y(IND1}) = —X{IND~1} + T%
10 CONT INUE
Y1} = 2.+X(2)
Y{(NO4+1) = —2. «X{NO2)

TAKE N/2 POINT (REAL) FFT OF Y

000

CALL FAST(Y, NO2)
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o]
C FORM ORIGINAL DFT BY UNSCRAMBLING Y (K}
C USE RECURSION RELATION TO GENERATE SiN(TPN«1) MULTIPLIER
o]
TPN = TWOPI/FLOAT(N)
COS|=2. «COS (TPN)
SIN1=2. «SIN{TPN)
COSD=COS | /2.
SIND=SINi/2.
NIND = NO4 + 1
DO 20 1=2,NIND
IND = 2+
BK = Y{IND-1}/SINI
AK = Y{IND}
X(1}) = AK — BK
IND1 = NO2 + 2 — |
X(IND1} = —AK - BK
TEMP=COS | +COSD-SINI+SIND
SINI=COSI| +SIND+SINI.COSD
COS 1 =TEMP
20 CONTINUE
30 X(1) = 0.
X(NO2+1) = 0.
RETURN
END

ArPENDIX HI

The program given in this Appendix requires as input the
first (V/2) points of the real, odd harmonic N-point sequence
x(n), and returns the (N/4) complex values of the odd har-
monics of X(k), the N-point DFT of x(n). The output format
is the real part of each DFT point, followed by its imaginary
part.

The calling sequence is

CALL FFTOHM (X, N)
where

X = array of size N/2 which on input contains the first half
of the odd harmonic sequence x(n), 0<n<N/2-1,
and on output contains the odd harmonics of the DFT;
X(k), k=1, 3,--- stored as Re[X(1)], Im[X(1)],
Re[X(3)],Im[X(3)], - ~;

N =size of sequence, x (n).

SUBROUT INE: FFTOHM

COMPUTE DFT FOR REAL, N—POINT, ODD HARMONIC SEQUENCES USING AN
N/2 POINT FFT

ODD HARMONIC MEANS X(2+K)}=0, ALL K WHERE X{K) IS THE DFT OF X(M)
NOTE: INDEX M IS SEQUENCE INDEX-—NOT FORTRAN INDEX

000000000

SUBROUTINE FFTOHM(X., N)
DIMENSION X (1)

X = REAL ARRAY WHICH ON INPUT CONTAINS THE FIRST N/2 POINTS OfF THE
INPUT
ON OUTPUT X CONTAINS THE N/4 COMPLEX VALUES OF THE ODD
HARMON(CS OF THE INPUT-—STORED IN THE SEQUENCE RE(X(1}).IM{X (1)),
RE(X(2)), IM(X{2}),...

»++sNOTE: X MUST BE DIMENSIONED TO SIZE N/2+2 FOR FFT ROUTINE

N = TRUE SIZE Of X SEQUENCE

FIRST COMPUTE REAL(X{1)}) AND REAL(X(N/2—1)) SEPARATELY
ALSO SIMULTANEOUSLY MULT1PLY ORIGINAL SEQUENCE BY SIN{TWOPI»(M-1}/N)
SIN AND COS ARE COMPUTED RECURSI(VELY

0D00O00CO000000000

FOR N = 2, ASSUME X{1)=X0, X(2)=—-X0, COMPUTE DFT DIRECTLY
IF {(N.GT.2) GO TO 10
X{1) = 2.-X{1}
x(2) = 0.
RETURN
10 TWOPI = 8.+ATAN(1.0)
TPN = TWOPI/FLOAT (N)

COMPUTE X1=REAL(X (1)) AND X2=IMAGINARY {X(N/2-1))
XIN) = X{N}+4.SIN(TWOPl+{1-1)/N}

T1 = 0.

COSD AND SIND ARE MULTIPLIERS FOR RECURSION FOR SIN AND COS
COS| AND SINI ARE INITIAL CONDRITIONS FOR RECURSION FOR SIN AND COS

0000 0000

cosp
SIND
cos | 1.
SINI 0.
NO2 = N/2
DO 20 (=1,N0D2.2
T = X(1)+CO81
X(1) = X{1)=4.=SINI
TEMP = COSI+COSD — SINI+SIND
SIN) = COS|+SIND + S{N!+.COSD
COS| = TEMP
Tt =T1 + T
20 CONTINUE

COS{TPN+»2.)
SIN(TPN-2.)

¢ RESET INITIAL CONDITi{ONS (COSI,SIN!) FOR NEW RECURSION
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c
COS| = COS{TPN}
SINI = SiN{TPN}
T2 =0

DO 30 1=2,ND2,2
T = X{1).COSI
X(F) = X{1)+4.+SIN}
TEMP COS1+COSD — SIN!+SIND
SNt COSI+SIND + SIN!+COSD
COS1 = TEMP
T2 = T2 + T

30 CONTINUE
X1 = 2 «(T1+T2)
X2 = 2. +{T1-T2)

[
C TAKE N/2 POINT (REAL) FFT OF PREPROCESSED SEQUENCE X
[
CALL FAST(X, NO2)
[o]
C FOR N = 4--8KIP RECURSION AND INITIAL CONDITIONS
[
IF {N.EQ.4) GO TO 50
[+
C INITIAL CONDITIONS FOR RECURSION
[+}
X(2) = -X(1)/2.
X(1) = x1
[
C FOR N = 8, SKIP RECURSION
[o]
IF (N.EQ.8) GO TO 50
[o]
C UNSCRAMBLE Y(K) USING RECURSION FORMULA
c

NIND = NO2 -~ 2
DO 40 =3 ,NIND,2

T = x(1)
X{1) = x(¥-2) + X{i+1
X(1+1) = x(b=1) — T

40 CONTINUE
50 X(NOZ) = X(NO2+1)/2.
X(NO2—-1) = X2
RETURN
END

APPENDIX IV

The program given in this Appendix requires as input the
first (V/4) points of the real, symmetric, odd harmonic N-
point sequence x(#), and returns the (V/4) real values of the
odd harmonics of X (k), the N-point DFT of x(#). The routine
calls the subroutine FFTOHM of Appendix III.

The calling sequence is

CALL FFTSOH (X,N,Y)
where

X =array of size (N/4) which on input contains the first
quarter of the real, symmetric, odd harmonic sequence
x(n),n=0,1, -+, N/4 - 1, and on output contains the
real part of the odd harmonics of the DFT, Re [X(k)],
k=1,3,---,N/2-1;

N =size of sequence x (n);

Y = scratch array of size (V/4 + 2).

o]
C
C SUBROUTINE: FFTSOH
C COMPUTE DFT FOR REAL, SYMMETRIC, ODD HARMONIC, N—POINT SEQUENCE
C USING N/4-POINT FFT
C SYMMETRIC SEQUENCE MEANS X(M)=X(N-M}, M=1,..._, N/2-1
C ODD HARMONIC MEANS X{2-K)=0, ALL K, WHERE X{K) IS THE DFT OF X(M)
C X(M) HAS THE PROPERTY X(M)=—X(N/2-M). M=0,1,...,N/4=1, X(N/4)=0
C NOTE: INDEX M 1S SEQUENCE INDEX—NOT FORTRAN |INDEX
[
[
SUBROUT INE FFTSOH(X,N,Y)
DIMENSION X(1),Y(1
o]
C X = REAL ARRAY WHICH ON INPUT CONTAINS THE N/4 POINTS OF THE
c INPUT SEQUENGE (SYMMETRICAL)
c ON OUTPUT X CONTAINS THE N/4 REAL POINTS OF THE ODD HARMONICS
c OF THE TRANSFORM OF THE INPUY——1!.E. THE ZERO VALUED IMAGINARY
c PARTS ARE NOT GIVEN NOR ARE THE ZERO-VALUED EVEN HARMONICS
C N = TRUE SIZE OF [NPUT
C Y = SCRATCH ARRAY OF SIZE N/4+2
o]
o]
C HANDLE N = 2 AND N = 4 CASES SEPARATELY
c
IF(N.GY.4) GO YO &5
IF(N.EQ.4) GO TO 4
o]
C FOR N=2, ASSUME X{1}=X0, X(2)=—X0, COMPUTE DFY DIRECTLY
o]
X(1)=2.+x(1)
RETURN
C N = 4 CASE, COMPUTE DFT DIRECTLY
4 X(1)=2. =x(1}
RETURN
5 TWOP =8 . *ATAN(1.0)
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[o]
C FORM NEW SEQUENCE, Y{M}=X(2:M)+(X(2+M+1}-X(2:M-1})
[o]

NO2=N/2

NOd4=N/4

NO8=N/8

IF{NOB.EQ.1} GO TO 25
DO 20 =2 ,NO8

IND=2+ |

T1=X{ IND)—X{IND-2)
Y(F)=X{IND=1)+T1

IND1=N/4+2—1
Y{IND1}=—X(IND=1)}+T1
20 CONT | NUE
25 Y{1}=xX(1)

Y{(NO8+1)=-2.+X(NO4}

THE SEQUENCE Y (N/4 POINTS) HAS ONLY ODD HARMONICS
CALL SUBROUTINE FFTOHM TO EXPLO!T ODD HARMONICS

CALL FFTOHM(Y, KNO2}

FORM ORIGINAL DFT FROM COMPLEX ODD HARMONICS OF Y(K)}
BY UNSCRAMBLING Y{K}

o000 0000

TPN=TWOP | /FLOAT (N)
COS =2 . +COS(TPN)
SINI=2.+SIN{TPN)
COSD=COS(TPN-2.)
SIND=SIN(TPN+2.)
DO 40 |=1.NO8
IND=2» |
8K=Y ( IND)} /S IN!
TEMP=COS | +COSD-SINJ *SIND
SINI=COS*SIND+SINI -COSD
COS | =TEMP
AK=Y [ tND—1)
X (1) =AK+BK
IND1=N/4+1—1

40 X {1ND1)=AK—BK
RETURN
END

APPENDIX V

The program given in this Appendix requires as input the
first (/4 + 1) points of the real, antisymmetric, odd har-
monic N-point sequence x () and returns the (V/4) imaginary
values of the odd harmonics of X(k), the N-point DFT of
x(n). The routine calls the subroutine FFTOHM of Appendix
1I1.

The calling sequence is

CALL FFTAOH (X, N, Y)
where

X = array of size (N/4 + 1) which on input contains the first
quarter of the real, antisymmetric, odd harmonic se-
quence x(n),n=0, 1, -, N/4 - 1, and on output con-
tains the imaginary parts of the odd harmonic of the
DFT,Im[X ()], x=1,3,---,N/2-1;

N =size of sequence x (#);

Y = scratch array of size (N/4 + 2).

[o]
[o]
C SUBROUTINE: FFTAOH
C COMPUTE DFT FOR REAL, ANTISYMMETRIC, ODD HARMONIC, N—-POINT SEQUENCE
C USING N/4—-POINT FFT
C ANTISYMMETRIC SEQUENCE MEANS X(M)}=—X(N-M), M=1,..., N/2-1
C ODD HARMONIC MEANS X{2+K}=0, ALL K, WHERE X(K) IS THE OFT OF X(M}
C X{M} HAS THE PROPERYTY X(M)=X[N/2-M), M=0,t,. . ., N/4—1, X(0}=0
C NOTE: INDEX M 1S SEQUENCE iINDEX——NOT FORTRAN INDEX
[
[o]
SUBROUT INE FFTAOH(X,N,Y)
DIMENSION X {1} .Y(1)
[o]
€ X = REAL ARRAY WHICH ON {NPUT CONTAINS THE (N/4+1) POINTS OF THE
[o] INPUT SEQUENCE (ANTISYMMETRICAL)
[ ON OUTPUT X CONTAINS THE N/4 IMAGINARY POINTS OF THE ODD
[o] HARMON ICS OF THE TRANSFORM OF THE INPUT--—I.E. THE ZERO
[o] VALUED REAL PARTS ARE NOT GIVEN NOR ARE THE ZERO-VALUED
[o] EVEN HARMONICS
C N = TRUE SIZE OF INPUT
C Y = SCRATCH ARRAY OF SIZE N/4+2
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[o]
[o]
C HANDLE N = 2 AND N = 4 CASES SEPARATELY
[o]
IF(N.GT.4}) GO TO &
IF(N.EQ.4) GO TO 4
[o]
C FOR N=2, ASSUME X{1}=0, X(2}=0, COMPUTE DFT DIRECTLY
[o]
X(1)=0.
RETURN
C N = 4 CASE, ASSUME X(1}=X(3)=0, X{2}=-X(4)=X0, COMPUTE DFT DIRECTLY
4 X(1)==2.eX(2)
RETURN
5 TWOP | =8 . «ATAN(1.0)
[o]
C FORM NEW SEQUENCE, Y(M)=X(2+M}+(X(2+M+1)~-X{2+M-1})
[o]
NO2=N/2
NO4=N/4
NO8=N/8

IF(NOB.EQ.1) GO TO 25
DO 20 [=2,NO8
IND=2. |
T1=X{IND}-X( IND-2}
Y(1}=X(IND~1)+T1
IND1=N/4+2—]
YCIND1) =X IND—1}~T1
20 CONT INUE
25 Y(1)=2..X(2)
Y (NOB+1} =X (NO4+1)

THE SEQUENCE Y (N/4 POINTS) HAS ONLY ODD HARMONICS
CALL SUBROUTINE FFTOHM TO EXPLOIT ODD HARMONICS

CALL FFTOHM(Y, NO2}

FORM ORIGINAL DFT FROM COMPLEX ODD HARMONICS OF Y (K}
BY UNSCRAMBLING Y(K)

0000 O00O0

TPN=TWOP | /FLOAT (N)
COSi=2.+GOS (TPN)
SINI=2.+SIN{TPN}
COSD=COS (TPN+2.)
SIND=SIN{TPN»2.)
DO 40 1=1,NOB
IND=2+ |
BK=Y { IND~1) /SINI
TEMP=COS [ -+ COSD~SIN1 +S IND
SINI=COS|+SIND+SINI «COSD
COS } =TEMP
AK=Y (IND)
X {1 )=AK-BK
IND1=N/4+1—1

40 X {IND1 )} =—AK-BK
RETURN
END
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