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On the Use of Symmetry in FFT Computation
LAWRENCE R. RABINER, FELLOW, IEEE

Abstract—It is well known that if a finite duration, N-point sequence
x(n) possesses certain symmetries, the computation of its discrete
Fourier transform (DFT) can be obtained from an FFT of size N/2 or

smaller. This is accomplished by first preprocessing the sequence, tak-
ing the FFT of the processed sequence, and then postprocessing the re-
sults to give the desired transform. In this paper we show how a similar
approach can be used for sequences which are known to have only odd
harmonics. The approach is shown to be essentially the dual of the
known method for time symmetry. Computer programs are included
for implementing the special procedures discussed in this paper.

N-i
X(k)=>x(n)W/, k=O,1,---,N-1

where

WN =e12"T.

In general, an N-point complex FF1 is required to give the
DFT X(k) for an arbitrary sequence. However, when x(n) is
real, an N/2-point complex FFT can be used to give X(k) [4].

(Equivalently, one can use an FFT routine which accepts real
inputs and gives the complex DFT as output [5], [6] - We

denote such a routine as a (real) FFT.)
In many cases either x (n) or X(k) possesses certain desirable

properties which can be exploited to reduce the amount of
computation to obtain the desired DFT. The most notable of
these properties are the time symmetries. A symmetric se-
quence is defined as one for which

x(n)=x(N-n), n=l,2,",N/2- 1
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and an antisymmetric sequence is defined as one for which

x(n)-x(N-n), n=l,2,"-,N/2-l. (4)

Cooley et al. [4] have shown that if the sequence is either
symmetric, or antisymmetric, a simple procedure can be used
to reduce the computation of the DFT to that for an N/4
point (complex input) FFT with preprocessing and postpro-
cessing. The algorithm works as follows (assuming x(n) is a
symmetric, real sequence). We express the N-point DFT as

a(n) =x(2n)

c(n)=x(2n+1)-x(2n- 1)
(lOa)

(lOb)

0096-3518/79/0600-0233$0O.75 © 1979 IEEE

I. TIME DOMAIN SYMMETRIES AND THE FFT

CONSIDER the N-point, finite duration sequence x(n), de-
fined for 0 n N - 1, with discrete Fourier transform

X(k) defined as [11 —[3]

N-i N-i

x(n)Wj/+ x(n)Wj,/'. (5)

n even n odd

We then define the DFT'sA(k) and B(k) as

N-i
(1) A(k)= x(n)Wj/, k=0,1,---,N-1 (6)

n=o
n even

N-i
(2) B(k)= x(n)wiic,

n odd

so

X(k)=A(k)+B(k), k=0,l,---,N- 1. (8)

We next preprocess x(n) to give the N/2-point real sequence
y(n), defined as

y(n) =x(2n) ÷ [x(2n + 1)
— x(2n - 1)], n = 0, 1, - - ,N/2 —

1 (9a)

'a(n)+c(n) (9b)

(3) where
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and all indices are interpreted modulo N. It is readily seen
that the sequence a(n) is itself a symmetric, real sequence;
hence its DFT is purely real (and, of course, even). The se.
quence c(n) is an antisymmetric, real sequence; hence its DFT
is purely imaginary (and odd). Thus, if we take the N/2-point
(real input) FFT ofy(n), we get the result

N/2—l
Y(k) = y(n) W2, k =0, 1, ., N/2 -

N/2—i N/2—i
= x(2n) W2 + (x(2n + 1)

-x(2n- i))Wf2.
The first term in (11) is A(k), the N/2-point DFT of the even
components of x(n) (defined for 0kN/2 - 1). The sec-
ond term in (11) can readily be shown to be of the form

N/2—1

(x(2n+1)-x(2n-1))Wr2

= x(n')WjW"- x(n')WjW"
n'odd n odd

= (W-k - Wk) x(n') Wy/c

n odd

=2Jsin(k)B(k), k=0,1," .,N/2 1.

Thus, Y(k) of(1 1) can be written as

Y(k) =A(k) - 2/sin( k)
B(k).

Using the properties of A(k) and B(k), we get

A(k) = Re [Y(k)], k = 0, 1," , N/2 -

Im [Y(k)]
, k= 1,2," ,N/2- 1.

2 sin (
k)

For k = 0 and k =N/2,B(k) is not defined from (16b); instead
these values are obtained directly as

N-i
B(O) x(2n+l)

n odd

B(N/2) = -B(0).

Thus, from the N/2-point real FFT of y(n), the N-point real
FFT of x(n) can be recovered using (8), (16), and (17). In
addition, x(n) need only be specified for 0 'n <N/2. A sum-
mary of the procedure for obtaining X(k) is as follows.

1) Compute B(0) as

N-i N/4-i
B(0)=x(2n+1)=2 x(2n+l).

n0 n0

2) Form the sequence y (n) as

y(n)x(2n)+(x(2n+ 1)
-x(2n-1)), n=1,2,",N/4-1

y(N/2 - n)"x(2n) - (x(2n + 1)

-x(2n-1)), n=1,2,",N/4-1
y(O) x(0)

y(N/4) = x(N/2).

3) Take the N/2-point real
Y(k),0kN/2- 1.

(11) 4) FormA(k),B(k)as

A(k)"Re[Y(k)], k=0,1,2,",N/4

B(k)=
Im k)]

, k=l,2, •.,N/4.

2
sin(- k)

5) Form X(k) as

X(k)=A(k)+B(k), k=l,2,",N/4
X(N/2-k)=A(k)-B(k), k=l,2,",N/4

X(0)=B(0)+A(0)

(13) X(N/2)=A(0) - B(0).

II. REDUCTION IN COMPUTATION FOR ODD
HARMONIC SEQUENCES

N-i
x(n)= X(k)W, n =0,1," ,N- 1

k=O

iN-i 1 N-i- — X(k) W + X(k) W7"N k0 k=O
ft odd k even

FFT of y(n); call this result

(12)

An implementation of this procedure is given in Appendix I.
A similar procedure is used when the sequence x(n) is odd.

(14) The sequence y(n) of (9) is again formed; however, a(n) is
now an odd, real sequence, and c(n) is an even, real sequence.
Appropriate modifications are made in the procedure to re-
flect these differences. An implementation of this procedure

(15) is given in Appendix II.

(16a) In the special case where x(n) is a real sequence that is

1l6b known to have a DFT for which only the odd harmonics are
'

present, i.e.,

X(k)0, keven, (18)

we can also take advantage of this special symmetry by using a

frequency domain approach. In this case, we first form the
inverse DFT of X(k), giving

(19)

(20)

(21)

(22a)

(1 7a)

(17b)

—a(n)+b(n)

where

1 N-I

a(n) k=O
ft odd
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12irn
y(n) = 4 sin

4sin()x(n), n=O,l,2,,N/2-l.
Thus, the procedure for obtaining X(k) is as follows.

1) First form the coefficients Re [X(1)] and Im [X(N/2) —
1)] directly from the relations

N1 f2ir \
Re [X(1)J =

x(n)cos(-ç-n)n=O

N-i
Im[X(N/2- 1)1 = x(n)cos(n)(1)n.n0

It is readily shown that for a sequence containing only odd
harmonics, the signal x (n) satisfies the relation

x(n+N/2)-x(n), n=O,1,,N/2-1,
i.e., the upper half of the sequence is the negative of the lower
half of the sequence. Thus, exploiting (29), only N/2 values of
x(n) need be stored, and Re [X(l)] and Re [X(N/2 - 1)1 can
be efficiently computed as

N—i N/21 /2ir \
b(n) = X(k) W17'. (22b) T2 = x(n) cos J-

n)
(30b)

k=O n0
k even n odd

For sequences with only odd harmonics, (18) shows that Re [X(1)] = 2[Tl + T21 (30c)
b(n) 0. We now form the (complex) sequence Y(k) as

N
Y(k) = X(2k) + / [X(2k ÷ 1) Re [x( - i)] = 2[Ti - T2]. (30d)

- X(2k - 1)], k = 0, 1,.. ,N/2 - 1. (23) 2) Weit the sequence x(n) by 4 sin ((2T/N)n) for n =
The N/2-point inverse DFT of Y(k) is obtained as 0, 1," , N/2 - 1, i.e.,

Y(fl)=))E Y(k)h/j, n=o,i,._,q- 1 Y(n)=x(n)4sin(n), 0<n<N/2- 1.

(24) 3) Take the N/2-point real FF1 of y(n). Call this result
Y(k),O<k<N/2- 1.

= 1

N-1 X(2k) wjy 4) Recursively solve (23) for X(2k ÷ 1) (since X(2k) =0)
(N/2) for k= 1, 2, ,NJ4 — 2, with appropriate initial conditions,

i.e.,/ N/2-1
÷

(N/2)
[X(2k + 1) -X(2k -

1)1 W. Im [X(1)] = -Re [Y(0)] /2

(25)
Re [X(l)] = 2 (Ti + T2)

The first term in (25) is readily seen to be 2b(n) (which is Re [X(2k + 1)] = Im [Y(k)I ÷ Re [X(2k — 1)],
identically 0 for this case since X(2k) = 0 for all k). The sec- k = i, 2, ,N/4 — 2
ond term in (25) can be written as

Im [X(2k+ 1)] =-Re [Y(k)] +Im [X(2k- 1)],
N/2—i(/) [X(2k+l)-X(2k-l)}W7f k=1,2,',N/4-2

Im [X(N/2- 1)] =Re [Y(N/4)]/2
2/[Wj,_ WP}a(n). (26)

Re [X(N/2 - 1)] = 2(T1 - T2).
Therefore,

A computer program that implements this procedure is given
in Appendix III.

III. SEQUENCES WITH BOTH TIME SYMMETRY AND

(27)
HAVING ONLY ODD HARMONICS

The sequence x(n) can simultaneously possess special
properties in both the time domain (i.e., time symmetry) and
the frequency domain (i.e., odd harmonics only). For such
sequences, one can essentially apply the algorithms discussed
in Sections 1 and II in sequence. The simplest procedure is to

8
use one algorithm first, and at the place where the FF1 is

2 a1 called, simply insert the call for the second algorithm withap-
propriate code to account for the format in which the trans-
form is returned. However, as in most cases, such a simple

(28b) approach is not generally as efficient as it can be made, since
the additional properties of the sequence can be exploited to
reduce computation and/or memory.

By way of example, consider a sequence which is symmetric

(29)
in time and which is known to contain only odd harmonics.
We again denote this sequence as x(n), defined for 0 n
N — 1. It is readily shown that x (n) satisfies the relations

x(N/2 - n) -x(n), n = 0, 1 ,N/4 - 1 (31a)

x(N/4) x(3N/4) = 0 (31b)

in addition to the usual symmetric sequence (3) and odd
(30a) harmonic sequence (18), (29) relations. Thus, one need

specify x(n) for 0 n N/4 - 1 to uniquely define this Se-

N12—1 /2ir \
T1

x(n)cosJ-n)n=o
n even
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quence. As such, simply imbedding, for example, the odd
harmonic subroutine within the symmetric sequence subrou-
tine yields an inefficient algorithm. For maximum efficiency,
we first preprocess x(n) to form the N/2-point sequence
y(n) as

y(n) = x(2n) + [x(2n + 1)

—x(2n—1)], n1,2,",N/8—l (32a)
y(N/4 - n) -x(2n) + [x(2n ÷ 1)

- x(2n - 1)], n = 1, 2, ,N/8 - 1 (32b)
with initial and fmal values

y(0)x(O) (32c)

y(N/8)=-2x(N/4- 1). (32d)

The sequence y(n) represents the first N/4 points of an odd
harmonic N/2-point sequence. Thus, we can use the procedure
of Appendix III directly on y(n) to give the N/2-point com-
plex odd harmonic sequence Y(k). The desired DFT X(k) is
obtained from Y(k) via the relation

X(2k + 1) =
[Im

[Y(2k + 1)]

+ Re [Y(2k+
1)]/[2 sin ( (2k +

k=0,1,,N/8—1 (33a)

X(N/2 - 2k - 1) =

[Im
[Y(2k + 1)]

k=O,1,"-,N/8- 1. (33b)

The reader is reminded that X(k) is 0 for k even, and X(k) is
purely real because x(n) is symmetric. An implementation of
this procedure is given in Appendix IV.

Next we consider an N-point sequence which is antisym-
metric in time and which is known to contain only odd har-
monics. Denoting this sequence as x(n), it can be shown that
x (n) satisfies the relations

x(N/2-n)x(n), n0,1,,N/4-1

x(O)= x(N/2) = 0

in addition to the antisymmetric sequence (4) and odd har-
monic sequence (18), (29) relations, Thus, x(n) need only be
specified for 0 n N/4 to uniquely define this sequence.

For maximum efficiency in obtaining the DFT of antisym-
metric, odd harmonic sequences, we combine the procedure
for antisymmetric sequences with the one for odd harmonic
sequences. We first form the sequence y(n) as

y(n)x(2n)+ [x(2n+1)-x(2n- 1)1,

n=l,2,-,N/8-1
y(N/4-n)x(2n)- [x(2n+1)-x(2n- 1)],

n=1,2,"N/8-1

with initial and final values

y(O)2x(l) (35c)

y(N/8) rrx(N/4). (35d)

The sequence y(n) contains the first N/4 points of an N/2-
point odd harmonic, sequence. Hence, we again use the
procedure of Appendix III to give the N/2-point complex
odd harmonic sequence Y(k). The desired DFT X(k) is ob-
tained from Y(k) via the relation

Im[X(2k+1] = Im[Y(2K+1)]

I 2ir
-Re [Y(2k÷ 1)1/ sin (2k + i))]]

k0,1, ,N/8— 1 (36a)

Im[X(N/2- 2k- 1)] =
[Im[Y(2k+

1)1

-Re {Y(2k + 1)]/ [2 sin (2k + 1))]]

k=0,1," ,N/8- 1. (36b)
The reader is reminded that X(k) is 0 for k even, and X(k) is
purely imaginary because x(n) is antisymmetric. An implemen-
tation of this procedure is given in Appendix V.

IV. COMPUTATION TIME

The computation time for computing the transform of an
arbitrary real N-point sequence is r1 = s(N/2) log2 (N/2)
where 1 is a proportionally constant, When one employs any
of the symmetries and special properties discussed in this
paper, the computation time becomes

= a(N/4) log2 (N/4) + fIN (37)

where fIN represents the time for preprocessing and postpro-
cessing the sequences. For most practical cases, j3N<< a(N/4)
log2 (N/4), and thus the savings in computation using the ef-
ficient algorithms is on the order of 2 to 1.

A test was run to measure the actual time required to run
the subroutines of Appendixes I-V for a fixed size sequence.
Using the real FFT subroutine FAST [6], [7], a 1024 FFT
required 0.31 s. The subroutines FFTSYM and FFTASM re-
quired 0.19 s to run this same size transform, and the subrou-
tine FFTOHM took 0.18 s for this case. The subroutines
FFTSOH and FFTAOH took 0.12 s to run this same size
transform. Thus, for a 1024-point transform, the overhead
due to preprocessing and postprocessing (the fIN term) is on
the order of 20—30 percent of the time it takes to do the
N/2-point FFT.

V. SUMMARY

We have shown in this paper how one can exploit special
properties of some sequences to reduce the computation time

(35a) for obtaining its DFT. We have proposed a novel approach in
frequency (the dual of the time algorithm) which can be used
for sequences that are known to consist of only odd har-

(35b) monics. The details of the computation have been described

/ 2ir
+ Re [Y(2k + 1)]/[2 sin (2k +

l))]]

(34a)

(34b)
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along with a set of subroutines which perform this basic
computation.

APPENDIX I

The program given in this Appendix takes the real N-point
symmetric sequence x(n) and returns the (N/2 + 1) real points
of its DFT. On input only the first (N/2 + 1) points are sup-
plied to the routine; on output the first (N/2 + 1) real values
of X(k), the DFT of x(n), are returned.

The FFT subroutine used in this and subsequent routines
in Appendixes Il-V is the routine FAST described originally
by Bergland [6], and modified by Bergland and Dolan [7] -
For the direct transform [i.e., (1)], the input is an N-point
real sequence, and the first (N/2 + 1) complex values of its
transform are stored in the original array with the real part of
each DFT point preceding the imaginary part, i.e., Re [X(O)]
is followed by Tm [X(O)], which is followed by Re [X(l)],
which is followed by Im [X(1)], etc. The last (N/2 — 1) com-
plex values of the transform are not returned, as they can be
obtained via the DFT symmetry relations for real sequences,
i.e.,

X(N_k)=X*(k), k=1,2,---.
For the inverse transform (the subroutine FSST), the input
X(k) is assumed to be in the format returned by FAST. The
reader should note that for an N-point FFT, a total of (N +
2) storage locations are required [7].

The calling sequence for the subroutine is

CALL FFTSYM (X, N, Y)

where

X = array of size (N/2 + 1) which on input contains the first
half of the real symmetric sequence x(n), n =0, 1, - -

N/2, and on output contains the real part of the DFT,
X(k),k=0,l,-,N/2;

N size ofsequencex(n);
Y = scratch array of size (N/2 + 2).

C
C FORM NEW SEQUENCE. YIMI—X12.M)+(X12.M+1(—0(2.M—1((
C

00 30 I=2,N04
IND 2.1
Ti — X)IND( — X(IND—2I
VIII xIIND'-iI * Ti
INDI N02 * 2 I

Y(Ii4Di) = X(INO—iI — Ti
30 CONTINUE
40 TIll Xli)

Y(504-fi I — SINO2+1 I

C

C TAKE N/2 POINT IREALI FPT OF V
C

CALL FASTIY. NO2I
C
C FORM ORIGINAL OFT BY UNSCRAMBLING VIKI
C USE RECURSION TO GIVE SIN)TPN-II MULTIPLIER

TPN — TWOPL/FLOATIN)
COSI=2 -COS)TPN)
SINI-2. .SIN(TPN)
COSD=COSI /2.
SI NO—S I N 1/2
NINO — NO4 * 1

00 55 12,NIND
INS 2.1
BK YIINDI/SINI
AK VIINO—il
XIII = AK * SI)
NIND1 N/2 * 2 —
X(NINO1) AK — BK
TEMP—COS I .COSD—S IN I-SING
SINI—005I.SIND*SINI-COSD
COO I—TEMP

50 CONTINUE
Xli) — SO * PIll
XINO2+iI — Yll) BO
RETURN
END

APPENDIX TI

The program given in this Appendix requires as input the
first (N/2) points of the antisymmetric, real N-point sequence
x(n), and returns the (N/2 + 1) imaginary values of X(k), the
antisymmetric, imaginary N-point DFT of x(n).

The calling sequence is

CALL FFTASM (X, N, Y)

where

X = array of size (N/2 + 1) which on input contains the first
half of the real, antisymmetric sequence x(n), N = 0,
1,- -, N/2 - 1, and on output contains the imaginary
parts of the DFT, X(k), k =0, 1, - - -, N/2;

N size of sequence,x(n);
Y = scratch array of size (N/2 + 2).

C
C
C SUBROUTINE: FFTSYM
C COMPUTE OFT FOR REAL, SYMMETRIC, N—POINT SEQUENCE (((Ml USING
C N/2—POINT FFT
C SYMMETRIC SEQUENCE MEANS SIM(—XIN—M( , M—1 N/2—i
C NOTE, INDEX M IS SEQUENCE INDEX——NOT FORTRAN INDEX
C
C

SUBROUTINE FFTSYM(X, N, VI
DIMENSION 011), Xli)

C
C S — REAL ARRAY WHICH ON INPUT CONTAINS THE N/2*i POINTS OF THE
C INPUT SEQUENCE )SVER4ETRICAL)
C ON OUTPUT 0 CONTAINS THE P1/2+1 REAL POINTS OF THE TRANSFORM OF
C THE INPUT——I.E. THE ZERO VALUED IMAGINARY PARTS APE NOT RETURNED
C N — TRUE SIZE OF INPUT
C Y — SCRATCH ARRAY OF SIZE N/2+2

C
C FOR N — 2, COMPUTE OFT DIRECTLY
C

IF )N.GT.2I GO TO 10
T = Xli) * 5(2)
X12) 5)1) — 0(2)
Xli) — T
RETURN

10 TVOPI 5..ATAN)15)
C
C FIRST COMPUTE BO TERM, WHORE SO—SUM OF ODD VALUES OF SIM)
C

N02 — N/2
P104 N/4
NIND — N02 + 1

BS 0.
DO 20 I—2.NIND,2

BO BO + XII)
20 CONTINUE

BO — BO.2.

C FOR N — 4 SKIP RECURSION LOOP
C

IF (N.EQ,41 GO TO 40

C
C

SUBROUTINE, FFTASM
COMPUTE OFT FOR REAL, ANTISYMMETRIC, N—POINT SEQUENCE SIM) USING
N/2—POINX PFT
ANT(SYMMETRIC SEQUENCE MEANS X(MI——X(N—Ml Mi N/2—i
NOTE: INDEX M IS SEQUENCE INDEU——NOT FORTRAN INDEX

SUBROUTINE FFTASMIX, N. VI
DIMENSION Xli), Y)il

S — REAL ARRAY WHICH ON INPUT CONTAINS THE N/2 POINTS OP THE
INPUT SEQUENCE IASSYMMETRICALI
ON OUTPUT X CONTAINS THE N/2+i IMAGINARY POINTS OF THE TRANSFORM
OF THE INPUT——I .E. THE ZERO VALUED REAL PARTS ARE NOT RETURNED

N TRUE SIZE OF INPUT
V = SCRATCH ARRAY OF SIZE N/2+2

FOR N 2. ASSUME SIi)—S, 5)21—C, COMPUTE DFT DIRECTLY

IF )N.EQ.2) GO TO 30
TWOPI B. .ATANIi .0)

C
C FORM NEW SEQUENCE, Y)M)U)2.M)*(Sl2.M+1)—0l2.M—i()
C

N02 — Nf2
NO4 P1/4
DO iS 12,N04

IND 2.1
Ti — SlING) —X(IND—2)
VIII SIIND—lI + Ti
INDi N02 * 2 —
YIINE1( —XIIND--i( * Ti

10 CONTINUE
'(Ii) 2.012)
V(N04*il —2.-X(N021

C
C TAKE P1/2 POINT (REAL) FFT OF P
C

CALL PAST(Y, NOZ(

C
C
C
C
C
C
C

C
C
C
C
C
C
C
C
C
C
C
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C
C FORM ORIGINAL OFT BY UNSCRAMBLING YIN)
C LISE RECURSION RELATION TO GENERATE 5INITPN.II MULTIPLIER
C

1PM — TIMOPI/FLOAT(NI
COSI—2. .CO5(TpN)
SINI—2..SIN)TPNI
COSO—COS /2
SI NO—SIN 1/2.
RING — NO4 * 1

00 20 I—2,NINS
IND .. 2.1
BK — YIINO—il/SINI
AK = Y)INO)
XII) — AK—BK
IND1 — NO2 + 2 — I

X)IND1) — —AK — BK
TEMP—COSI .COSD—SIN) .5IND
SINI—COSI .N)ND*SINI .C050
COO I—TEMP

20 CONTINUE
30 Xli) —0

X)NO2+1I — S.
RETURN
END

C
C
C SUBROUTINE: FFTOHM
C COMPUTE DFT FOR REAL. N—POINT, ODD HARMONIC SEQUENCES USING AN
C N/2 POINT FFT
C ODD HARMONIC MEANS X12.KI—0, ALL K WHERE 51K) IS THE OFT OF ElM)
C NOTE: INDEX M IS SEQUENCE INDEX——NOT FORTRAN INDEX

C
SUBROUTINE FF1041415. NI
DIMENSION Xli)

C
C X — REAL ARRAY WHICH ON INPUT CONTAINS THE FIRST N/S POINTS OF THE
C INPUT
C ON OUTPUT S CONTAINS THE 5/4 COMPLEX VALUES OF THE ODD
C HARMONICS OF THE INPUT——STORED IN THE SEQUENCE REIXII II, IM)X)i II.
C RE)X(2) ) IM)S)2) 1,
C ....NOTE S MUST BE DIMENSIONED TO SIZE N/2+2 FOR FFT ROUTINE
C N — TRUE SIZE OF S SEQUENCE

C FIRST COMPUTE REALIX(i)) AND RSALIX(N/2—i)) SEPARATELY
C ALSO SIMULTANEOUSLY MULTIPLY ORIGINAL SEQUENCE BY SIN)IWOPI.IM—i)/N)
C SIN AND COS ARE COMPUTED RECURSIVELY
C
C
C FOR N 2, ASSUME X)1)=XS, 5121——TX, COMPUTE DFT DIRECTLY
C

IF )N.GT.2) GO TO 10
5)1) — 2.XIi)
XI2) = 0.
RETURN

iS TWOPI 8.ATANIi.5)
IFS = TWOPI/FLOST(NI

C
C COMPUTE Xi—REALIXI1)) AND X2=IMAGINARYISIN/2—1I)
C SIN) S)N).4..SINI1TNOPI.II—1I/N)
C

Ti — S.
C
C 005D AND SIND ARE MULTIPLIERS FOR RECURSION FOR SIN AND COS
C COSI AND SINI ARE INITIAL CONDITIONS FOR RECURSION FOR SIN AND COS
C

COED — COSITPN'2.)
SIND—SINITPN.2,)
CCXI
51141 — 0.
NOD = N/2
DO 20 I—i,NO2.2

I = X)II.COXI
Xli) — S)II'4..DINI
TEMP — COO I COSD — SI N I • S I ND

SINI =COSI.SIND,-SINI.COSD
COSI — TEMP
Ti — Ti * I

20 CONTINUE
C
C RESET INITIAL CONDITIONS ICOXI,SINII FOR NEW RECURSION

C
COSI = COS)TPN)
DINI — SINITPN)
12 — 0.
DO 35 h—2.N02.2
I = X)I).COSI
XIII — SIII.4..SINI
TEMP — COSI.COSD — SINI.SIND
SINI — COSI.SIND * SINI.COSD
COOl — TEMP
12 T2 + T

30 CONTINUE
Si 2. .111*12)
52 2. .)Ti—T21

TAKE 14/2 POINT IREAL) FF1 OF PREPROCESSES SEQUENCE S

CALL FAST(S, N02)

FOR N — 4——SKIP RECURSION AND INITIAL CONDITIONS

IF )N.EQ.4) GO TO 50

INITIAL CONDITIONS FOR RECURSION

SI2I — —5111/2
Xli) — El

FOR N = S. SKIP RECURSION

IF )N.EQ.8) GO TO 5S

UNSCRAMBLE YIN) USING RECURSION FORMULA

NIND — N02 — 2
DO 45 I—3,NIND.2

T — XII)
XII) — X)I—2) i 511+11
SM-/il — 5)1—I).— I

45 CONTINUE
SD XINO2) =X)NO2-'-1)/2.

S)NO2—i) = X2
RETURN
END

C
C
C

C
C
C

C
C
C

C
C
C

C
C
C

APPENDIX III

The program given in this Appendix requires as input the
first (N/2) points of the real, odd harmonic N.point sequence
x(n), and returns the (N/4) complex values of the odd har-
monics of X(k), the N-point DFT of x(n). The output format
is the real part of each DFT point, followed by its imaginary
part.

The calling sequence is

CALL FFTOHM (X, N)

where

X array of size N/2 which on input contains the first half
of the odd harmonic sequence x(n), 0 n N/2 - 1,
and on output contains the odd harmonics of the DFT;
X(k), k= 1, stored as Re[X(1)1, Im[X(l)},
Re [X(3)] , Im [X(3)1

N size of sequence,x(n).

APPENDIX IV

The program given in this Appendix requires as input the
first (N/4) points of the real, symmetric, odd harmonic N-
point sequence x(n), and returns the (N/4) real values of the
odd harmonics of X(k), the N-point DFT of x(n). The routine
calls the subroutine FFTOHM of Appendix III.

The calling sequence is

CALL FFTSOH (X, N, Y)

where

X = array of size (N/4) which on input contains the first
quarter of the real, symmetric, odd harmonic sequence
x(n), n = 0, 1,' , N/4 - 1, and on output contains the
real part of the odd harmonics of the DFT, Re [X(k)]
k=1,3,",N/2-1;

N size of sequence x(n);
Y = scratch array of size (N/4 ÷ 2).

C SUBROUTINE: FFTSOH
C COMPUTE OFT FOR REAL, SYMMETRIC. ODD HARMONIC. N—POINT SEQUENCE
C USING N/4—POINT FFT
C SYMMETRIC SEQUENCE MEANS S)M)—X)N—M) , M—i N/2—i
C ODD HARMONIC MEANS X)2E)0, ALL K. WHERE 01K) IS THE OFT OF SIM)
C 0(M) HAS THE PROPERTY X(M)——S)N/2—M), M—0.i N/4—i, SIN/4I—D
C NOTE: INDEX M IS SEQUENCE INDEX——NOT FORTRAN INDEX
C — —
C

SUBROUTINE FFTSOHIS,N,Y)
DIMENSION XI1),Y)i)

C
C S — REAL ARRAY WHICH ON INPUT CONTAINS THE N/4 POINTS OF THE
C INPUT SEQUENCE (SYMMETRICAL)
C ON OUTPUT S CONTAINS THE N/4 REAL POINTS OF THE ODD HARMONICS
C OF THE TRANSFORM OF THE INPUT——I.E. THE ZERO VALUED IMAGINARY
C PARTS ARE NOT GIVEN NOR ARE THE ZERO—VALUED EVEN HARMONICS
C N — TRUE SIZE OF INPUT
C V — SCRATCH ARRAY OF SIZE N/4+2
C
C
C HANDLE N — 2 AND N — 4 CASES SEPARATELY
C

IFIN.GT.4) GO TO 5
IF)N.EQ.4) GO TO 4

C
C FOR N—2, ASSUME X1l)—X5, X)2I=—XS, COMPUTE OFT DIRECTLY
C

X)1)O. 'Xli)
RETURN

C
C N — 4 CASR. COMPUTE OFT DIRECTLY
C
4 S)112..Slil

RETURN
N IWOPI—B..ATANI1,S)



RABINER: SYMMETRY IN FFT COMPUTATION 239

C
C FORM NEW SEQUENCE. Y(M)—Sl2.MI+lXl2.M+1)—X(2M—l))
C

NO2—N /2
N04N14
N08Nl8
IFINO8,EQ.l) GO 1025
DO 20 I=2,NO8
1ND2. I
T1X( IND)—Xl IND—2I
V I) =X (I ND—i +11
IND1—N/4+2—i
V ND1 ) =—X I ND—I +T 1

DO CONTINUE
25 Vlil-.X(l)

V(N08*1I=—2. .X(N04)
C
C THE SEQUENCE V IN/4 POINTS) HAS ONLY ODD HARMONICS
C CALL SUBROUTINE FFTOHM TO EXPLOIT ODD HARMONICS
C

CALL FFTOHMIY,N02)
C
C FORM ORIGINAL DFT FROM COMPLEX ODD HARMONICS OF VIK)
C BY UNSCRAMBLING YIN)
C

TPNTWOP I /FLOAT)NI
C0512 •COS(TPN)
SINI=X. •SIN(TPN)
COSD=COSITPN.2, I
SIND—SIN)TPN.2, I
0040 I=1.NOR
15D2. I
BKYI INDI /SINI
TEMP—COAl .COSD—SINI S ISO
SINI..COS I.S IND*5 IN I. COSD
0051 —TEMP
AI<'YI ISO—i
X III =AK+BK
INDI—N /4-4-i—I

40 XIINDI)=AK—BK
RETURN
END

APPENDIX V

The program given in this Appendix requires as input the
first (N/4 + 1) points of the real, antisymmetric, odd har-
monic N-point sequence x(n) and returns the (N/4) imaginary
values of the odd harmonics of X(k), the N-point DFT of
x(n). The routine calls the subroutine FFTOHM of Appendix
III.

C
C
C HANDLE N 2 AND N 4 CASES SEPARATELY
C

IF)N.GT,41 GO TO S
IFIN.EQ,4I GO TO 4

C
C FOR N—2, ASSUME 5)1)—S. X12)—0, COMPUTE OFT DIRECTLY
C

S 11=0
RETURN

C
C N 4 CASE, ASSUME 5)11—5)31—0, X)2I=—S)4I—XS, COMPUTE DFT DIRECTLY
C
4 XII ——2, .5)2)

RETURN
S TAOPI—8,.ATAN)1.SI

C FORM NEW SEQUENCE. YIMI—XI2.M)*IXI2.M*II--X)2.M—1I)
C

NO2=N/2
NO4—N/4
NOR—N/A
IFINO8,EQ.1) GO TO ?
DO 20 I2.NOR
I 50—2. I

Ti—SI INDI—X( IND—2)
Y) I —XI INS—l )+TI
IND1=N14*2—I
YIIND1I—X IIND—i)—TI

20 CONTINUE
25 YI1I—2..XI2)

V)NOS*i )-X)NO4*1 I
C
C THE SEQUENCE V 5/4 POINTS) HAS ONLY ODD HARMONICS
C CALL SUBROUTINE FFTOHM TO EXPLOIT ODD HARMONICS
C

CALL FFTOHMIY.N021
C
C FORM ORIGINAL OFT FROM COMPLEX ODD HARMONICS OF YIK)
C BY UNSCRAMBLING VlSI

TPN—FWOPI /FLOAT (NI
COSI—2, .COS)TPN)
SINI=2, .SIN(TPN(
C050—COS I I PN.2. I
SIND=SIN)TPN.2. I

DO 40 I—I NON
IND—2. I
BK—V II ND—Il/SIN I
TEMP—Cool .COSD—SINI .51511
SIN I—COO I.SIND+SINI. COSD
COO I—TEMP
AK—V II ND)
XII I—AK—BK
1501 —N /4+1—I

40 XIIND1 1——AS—BK
RETURN
END

The calling sequence is

CALL FFTAOH (X, N, Y)

where

X = array of size (N/4 + 1) which on input contains the first
quarter of the real, antisymmetric, odd harmonic se-
quence x(n), n 0, 1, ,N/4 - 1, and on output con-
tains the imaginary parts of the odd harmonic of the
DFT, Im [X(k)] , k = 1, 3, ,N/2 - 1;

N = size of sequence x (n);
Y = scratch array of size (N/4 + 2).

C
C
C SUBROUTINE: FFTAOH
C COMPUTE OFT FOR REAL. ANTISYN9IETRIC, ODD HARMONIC. N—POINT SEQUENCE
C USING N/4—POINT FFT
C AN'TISYMMETRIC SEQUENCE MEANS X)MI——XIN—MI . M1 N/2—l
C ODD HARMONIC MEANS 5)2.51—5, ALL K, WHERE 5151 IS THE OFT OF XIM)
C VIM) HAS THE PROPERTY XIM)=S)N/2—MI , U—S. 1,,,.. N/A—I - SIO)—0
C NOTE: INDEX M IS SEQUENCE INDEX——NOT FORTRAN INDEX
C
C

SUBROUTINE FFTAOHIX,N,Y)
DIMENSION X)lI.VI1I

C S = REAL ARRAY WHICH ON INPUT CONTAINS THE IN/4*l) POINTS OP THE
C INPUT SEQUENCE )ANTISYMMETRICAL)
C ON OUTPUT X CONTAINS THE N14 IMAGINARY POINTS OF THE ODD
C HARMONICS OF THE TRANSFORM OF THE INPUT——I .E. THE ZERO
C VALUED REAL PARTS ARE NOT GIVEN NOR ARE THE ZERO—VALUED
C EVEN HARMONICS
C N = TRUE SIZE OF INPUT
C V — SCRATCH ARRAY OF SIZE N/4+2
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