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Recent work at Bell Laboratories has demonstrated the utility of applying sophisticated pattern 
recognition techniques to obtain a set of speaker-independent word templates for an isolated word 
recognition system [Levinson et al., IEEE Trans. Acoust. Speech Signal Process. ASSP-27 (2), 134-141 
(1979); Rabiner et ai., IEEE Trans. Acoust. Speech Signal Process. On press)]. In these studies, it was 
shown that a careful experimenter could guide the clustering algorithms to choose a small set of templates 
that were representative of a large number of replications for each word in the vocabulary. Subsequent 
word recognition tests verified that the templates chosen were indeed representative of a fairly large 
population of talkers. Given the success of this approach, the next important step is to investigate .fully 
automatic techniques for clustering multiple versions of a single word into a set of speaker-independent 
word templates. Two such techniques are described in this paper. The first method uses distance data 
(between replications of a word) to segment the population into stable clusters. The word template is 
obtained as either the cluster minimax, or as an averaged version of all the elements in the cluster. The 
second method is a variation of the one described by Rabiner [IEEE Trans. Acoust. Speech Signal 
Process. ASSP-26 (3), 34-42 (1978)] in which averaging techniques are directly combined with the 
nearest neighbor rule to simultaneously define both the word template (i.e., the cluster center) and the 
elements in the cluster. Experimental data show the first method to be superior to the second method 
when three or more clusters per word are used in the recognition task. 

PACS numbers: 43.70.Sc 

INTRODUCTION 

Recent studies of isolated word recognition systems 
have shown that a set of carefully chosen templates can 
be used to bring the performance of speaker-independent 
systems up to that of systems trained to the individual 
speaker (Levinson e! al., 1979; Rabiner et al., 1979). A 
key aspect of that work was that a very sophisticated 
set of pattern recognition algorithms was used, along 
with a fairly large amount of human intervention (i.e., 
decisions on merging, splitting, branching, etc.), to 
create the set of templates (multiple) for each word in 
the vocabulary. Not only is this procedure time con- 
suming (e.g., it took about 30-45 rain to cluster 100 
repetitions of a single word) but it is impossible to 
reproduce exactly, and it is highly dependent on de- 
cisions made by the experimenter. As such this pro- 
cedure is inappropriate for a general word recognition 
system. It is the purpose of this paper to investigate 
and discuss several fully automatic alternatives to the 
clustering approaches used by Levinson et al., 19'/9. 

Prior to discussing the automatic approaches which 
we have studied for clustering word data, it is worth- 
while reviewing the structure of the entire word rec- 
ognition system. Figure 1 shows a block diagram of the 
recognition system. There are three modes in which 
the system can run as determined by the position of the 
MODE switch. Mode I is a training mode in which the 
talker speaks a given word list (i.e., the word vocab- 
ulary) into a standard telephone, an autoeorrelaiion 
analysis is made of the digitized speech (as determined 
by an endpoint detector), and the autocorrelation co- 
efficients are put into a store. Mode 2 is a clustering 
mode in which a pattern recognition algorithm finds all 
replications of a given word, segments them into clus- 
ters, and updates a word reference store with a tem- 
plate representative of each cluster. Finally mode 3 is 

a testing mode in which the talker can say any word in ' 
the vocabulary, an autocorrelation and an LPC analysis 
is made of the digitized speech, a dynamic time warped 
distance between the unknown word and each reference 

template is made, and an appropriate decision rule 
chooses the recognized word. The recognition system 
of Fig. 1 has been successfully applied in a variety of 
word recognition contexts (Rabiner, 1978; Itakura, 
1975; Rosenberg and Itakura, 1976; Levinson et al., 
1978; Rosenberg and Schmidt, 1977; Gupta el at., 1978). 

Earlier work on clustering used highly sophisticated, 
interactive, pattern recognition algorithms for ob- 
taining a set of stable clusters for each word in the vo- 
cabulary. The word templates were chosen as the 
"minimax center" of the cluster, i.e., the point in the 
cluster whose maximum distance to all other points in 
the cluster was minimum. In this paper we consider 
several alternative procedures for clustering. In par- 
ticular we investigate: 

(1). Two fully unsupervised algorithms for clustering. 
One algorithm uses only the matrix of distances (sim- 
ilarity) between tokens of each word to be clustered and 
attempts to place each token uniquely in a cluster with 
all other tokens which are similar (distance within some 
threshold). A second algorithm attempts to combine 
(by averaging) tokens which are similar (small distance) 
to directly give both the cluster set and the cluster 
center. 

(2). Differences between word templates obtained by 
the minimax center (i.e., an actual token) and those ob- 
tained by averaging techniques (i.e., an artifically 
created token). 

(3). Differences between averaging different feature 
sets to give word templates from clustered data. 

The organization of this paper is as follows. In Sec. 
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FIG. 1. Block diagram of the isolated word recognition system. 

I we discuss the two unsupervised clustering procedures 
that were used. In Sec. II we discuss the applicability of 
averaging procedures to obtain word templates from 
clustered data. 'In Secs. III and IV we present results 
obtained from applying the techniques of Secs. I and II 
to the 39-word vocabulary of Levinson et al. (1979) and 
Rabiner et al. (1979). Finally in Sec. V we discuss t•e 
implication of the results for practical implementations 
of word recognition systems. 

I.' UNSUPERVISED ALGORITHMS FOR CLUSTERING 
WORD DATA 

Following the development in Levinson et al., 1979, 
we assume that we are given a finite set, 9, of N ob- 
servations 

n={x,,x2,...,xN}, (1) 

where each observation x t is a token representing a 
replication of a spoken word. Each token has an in- 
herent duration (e.g., x• is n i frames long), and each 
frame of the token is some measured set of features. 

In the recognition system of Fig. 1, the feature set is 
the set of (p + 1) autocorrelation coefficients (p = 8). 
Equivalently the set of p LPC coefficients or any trans- 
formation of them (Markel and Gray, 1975) could be 
used as the feature set. 

Since it is intended that the clustering of the N ob- 
servations be based entirely on distance (similarity) 
data (as is done in the actual recognition system), a 
distance •i• between tokens x• and x• is defined as 

1 Ed(k,w(k),i,j) ' (2) 
where the local frame distance d(k, w(k), •,j) is the log 
likelihood distance proposed by Itakura (1975) between 
the kth frame of x i and the w(k)th frame of x/, i.e., 

J • i J 'Rl(a) J' 

where a is the vector of LPC coefficients of the Ith 

frame of token i, R• is the matrix of autocorrelation 
coefficients of the kth frame of token i, and ' denotes 
vector transpose. The function w(k) is the warping func- 
tion obtained from a dynamic time warp match of token 
j to token i which minimizes di• over a constrained set 
of possible w(k) (Levinson el al., 1979; Sakoe and 

Chiba, 1971 and,1978; Rabiner et al., 1978). 

From the initial set of N tokens, an N x N distance 
matrix • can be defined with entry •i• defined as 

d,• = 2 2 (4) 
Equation (4) yields a symmetric distance matrix (d• 
--d•) requiring storage for only N(N- 1)/2 terms (since 
d,=0 all i). The purpose of the clustering is to rep- 
resent the set I2 as the union of M disjoint clusters, 
•w•,i=l,2,...,M} such that 

•= U %. (5) 

The total number of clusters, M, need not be known or 
specified • p•{o•{. We denote the center of prototype 
of cluster • as }i and we note that }i need no! be a 
member of 

In the earlier supervised approach a sequence of four 
procedures was used interactively to determine both the 
number of clusters (M) and the tokens belonging to each 
cluster. The four procedures were the chainmap (which 
identified large prominent clusters), the shared nearest 
neighbor method (which identified overlap between clus- 
ters), the k-means procedure (which ascertained the 
detailed structure of the data), and the ISODATA pro- 
cedure which merged and split the clusters until an 
optimal configuration Was found (Levinson et al., 1979). 
Although this approach was quite successful, the ne- 
cessity for having a fully automatic clustering proce- 
dure led to the following methods. 

A. Unsupervised clustering without averaging (UWA) 

A block diagram of the first procedure (called the 
UWA method) is given in Fig. 2. For riorational purposes 
we define the partial observation set •]• as the ordered 
observation set without the tokens that were included 

in clusters %, wa, . . . , wi, i.e., 

n;.,: n - - (6) 
i=! 

= ,x;.)}, (7) 
where x• is an element of set •, and q(j) is the number 
of tokens that remain to be clustered after the first j 
clusters have been formed. [By definition q(O)=N.] 
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FIG. 2. Flow diagram of the UWA clustering procedure. 

The UWA clustering algorithm uses the following 
steps: 

1. Initialization -j = 0. 

2. Determination of the minimax center of the obser- 

vation set 9Jo,. (Initially j = 0 and 9• = •). We denote the 
minimax center as }•.• which is obtained as 

.•j+,=x•,•maxS(x•,,xJ)•<min max •(x'•,x'•), (8) 

i.e., the minimax center is the token x•, such that the 
maximum distance to any other token in •;.• is mini- 
mum. Since all distances of any token in • to any 
other token in • are precomputed and stored in D, mini- 
max computations of the type given in Eq. (8) are es- 
pecially simple to implement. 

3. Initial choice (k = 0) of the cluster •%+, as 

u (g) 

where T is a user-defined distance threshold. Thus the 

initial choice of the (j + 1)st cluster is the set of all 
tokens in f•,• that 'are within a given distance of the 
cluster center :•jo•. 

4. Determination of the minimax center of c0J•t using 
Eq. (8) on only the tokens in co (•} J+ 1' 

(• using gq. (9). 5. Increment k and determine •o•.• 
Check if o•J• _- o•J.• •) of if k >KMAX, a user-supplied 
iteration check. If either is true the jth cluster is ob- 

tained as wJ.•, j is incremented, and the observation 
set f•.• is obtained from Eq. (6). The algorithm pro- 
ceeds to step 2 as long as 12•., is not an empty set. If 
neither check above is true the algorithm proceeds to 
step 4 and continues. 

It can be seen that prominent, distinct clusters will 
be readily found by this procedure since the cluster 
sets at consecutive iterations wfil be identical. How- 

ever, for highly overlapping data, as the cluster center 
changes so does the cluster composition, causing the 
need for several iterations. These iterations are rem- 

•iniscent of the merge and split phases of ISODATA 
(Ball and Hall, 1965). 

The only user-supplied inputs to the UWA method are 
the lower half-matrix of distances, the number of ob- 
servations N, the distance threshold T, and the maxi- 
mum iteration count KMAX. Initial values of T are 

chosen based on theoretical estimates of LPC distances 

(Itakara, 1975; Tribolet et al., 1979); however the al- 
gorithm itself can modify T to increase (lower T) or 
decrease (raise T) the total number of clusters required 
to represent the observation set. Typically a maximum 
iteration count of 10 is used. For most clusters only 1 
or 2 iterations are required to obtain a stable result. 

The UWA algorithm is fully automatic and can cluster 
a set of 100 observations into from 10 to 25 clusters 

in about 1 min. Each cluster is represented by a clus- 
ter center }. We have considered two distinct methods 

of obtaining the cluster center. Consider cluster w•, 
with J tokens, i.e., 

. . . (lO) 

We define the L• norm of •o• as 

, (11) 

where we define the averaging in Eq. (11) as proceeding 
on a frame-by-frame basis. For time normalization 
we define the minimax center of w• to be the standard 
and we warp each of the J tokens to the minimax center, 
and then average the warped tokens to give x•r. The 
two cluster centers we have considered are 

1. The minimax center, as defined previously. 

2. The "average" token as obtained from Eq. (11) 
with p = 1. 

The details of the averaging procedure will be dis- 
cussed in Sec. II of this paper. Although we have not 
investigated larger values ofp in Eq. (11), they may be 
of interest in some applications, e.g., the rms token 
for p =2 or the "largest" token for p =•o. 

B. Onsupervised clustering with full averaging (UFA) 

The second unsupervised clustering algorithm we have 
considered is one which attempts to find clusters in the 
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FIG. 3. Flow diagram of the UFA clustering procedure. 

vicinity of the averaged center of the current obser- 
vation set. A flow diagram of the UFA method is given 
in Fig. 3. This method is similar to the one used by 
Rosenberg and Sambur (1975) for clustering speaker 
verification features, and by Rabiner (1978) for word 

cluste ring. 

There are basically three stages to the UFA algorithm. 
In the first stage the averaged center of the current ob- 
servation set is found by recursively warping each token 
of the observation set to an estimate of the center, and 
updating the center estimate by averaging the warped 
tokens. For the second stage the elements of the cur- 
rent cluster are found as those tokens of the observation 

set whose distances to the estimate of the cluster center 

(as found in the first stage) is less than some specified 
threshold. (If the cluster set is empty, the threshold is 
increased progressively until at least a single token is 
in the cluster. This situation may occur with outlier 
points.) The third stage of the procedure is to recursively 
estimate the center of the cluster set obtained in the 

second stage using the procedure of the first stage. 

Based on the above discussion and the flow chart of 

Fig. 3, the detailed steps of the UFA method are: 

1. Initialization in which the cluster center (j) is set 
to 0 and the initial observation set •' is set to •2, the 
entire set of tokens. 

2. Determination of the k = 0th estimate of the cluster 

center, :•(o) of the (j + 1)st cluster by first finding the 
average duration (in frames) of the tokens in the set 
l-•J.,, and then finding the token in l'•.• that is closest 
in duration to the average. 

3. Determination of the averaged center of the ob- 
serralion set f•.• by dynamic time warping each token 

j+, and then averaging (on a frame-by-frame 
basis) the features of the tokens. Thus if we denote 

•2J+• as 

' - ' ' ... x[} (12) 
then 

./+! --- •- 

where the jth 

x , (13a) 

frame of •+*;!) is 

where •(i) is the w•ping p•th 
•[ •o • (g•oe •nd Chib• 1971 •nd 1078). The ite•- 
•tion• of E•. (12) •nd (13) te•m 
•, • u•e• defi•ed ite•alio• co•t, o• when 

•.•, •+z , (14) 

where T' is a sm•l distance indicaH• cen•er point 
convergence. (The refer shoed no•e that the dynamic 
time wa•s required in Eq. (13) cannot be precomputed; 
•hus this s•ep is extremely time consuming.) 

4. De•erminalion of •he cluster set •+, • •1 tokens 
of •.z within a specified distance of •he cluster center 
of •he preceeding s•ep. This step is •so a time con- 
suming one in that distances c•no• be precompu•ed. 

5. Determination of the averted center of •he clus- 
ter set •.,. This procedure is idenUc• •o •he one of 
step 3 excep• •he k = 0•h estimate of •he cluster center 
is •he fin• esUmate of step 3, and •he se• of tokens is 
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FIG. 4. Example (two-dimensional) showing fundamental dif- 
ferences in UWA and UFA clusters for an observation set 

drawn from coj., instead of 

6. Updating the cluster counter j, the observation set 
f•j.t and checking if f•.• is empty. If so the procedure is 
done; if not we return to step 2 and iterate the entire 
procedure. 

As noted above, the UFA algorithm is considerably 
Mower than the UWA algorithm since all distances must 
be computed as needed. Typically it takes about 1 h to 
automatically cluster 100 tokens of a word into a set of 
from 10 to 25 clusters for the UFA method. This is 
about 60 times longer than the UWA method. 

Although no formal proof exists, we have found ex- 
perimentally that the UWA and UFA algorithms tend to 
cluster data in significantly different ways. Figure 4 
shows an abstract plot of a set of data and a series of 
circles indicating how the data would be clustered using 
the UWA and UFA methods. The'UWA method can lo- 

calize each cluster anywhere in the observation space 
and thus clusters tend to be balls distributed in the ob- 

servation space.which are uniform in their coverage of 
the space. Because of the recursive averaging of the 
UFA method, the clusters tend to be centered near the 
center of the observation space and consist of balls with 
significantly larger overlap than for the UWA method. 
We will see the effects of such clustering in the statis- 

tics of the clusters given in Sec. III, and in the rec- 
ognition results of Sec. IV. 

II. AVERAGING TECHNIQUES USED TO OBTAIN 

CLUSTER CENTERS 

For both algorithms of Sec. I the concept of averaging 
tokens of the observation set to form a cluster center 

was discussed. Thus one important consideration in 
implementing the algorithms for clustering is the man- 
ner in which this averaging is carried out. To facilitate 
this discussion we consider two tokens x and y in the 
observation set f•. Token x is assumed to consist of 

N, frames of LPC features, and token y consists of N• 
frames of features, where each frame is a set of p + 1 

(p = 8 in our system) unnormalized autocorrelation co- 
efficients. If we denote the ith frame of x (or y) as 
x(i) (or y(i)) then we can represent x and y as the set 
of vectors 

x = (x(1), x(2),..., x(i),..., x(Nx)), (15a) 

y: (y (1), y (2),..., y (i),..., y (N•)), (15b) 
where 

x(i) = (Xo(i) , xt(i),... , x,(i)) (16) 

and similarly for y(i). Although the features we are 
using to represent the token are the unnormalized auto- 
correlation coefficients of each frame, alternative, 
equally attractive feature sets can be derived by suitable 
transformations (Markel and Gray, 1975). Included 
among such feature sets are the LPC coefficients, the 
log areas, the PARCOR coefficients, the roots of the 
LPC polynomial, etc. 

In order to average tokens x and y we must have a 
correspondence between frames of x and frames of y. 
For simplicity, we assume token y is being mapped to 
token •. As such a dynamic time warping procedure is 
used to give the mapping 

x (i) - y (k)= y (w (i)) (17a) 

or 

k=w(i), i= 1,2,...,N=, (1%) 

i.e., the ith frame of token • corresponds to the k 
=w(i)th frame of token y. AS such when we average 
tokens • and y we produce token z 

z: (z(1), z(2),..., z (N,)), (18) 
where 

z(i): « ix(i) +y (w (i))] (19a) 

and the kth component of z(i), i.e., %(i), is obtained 
simply as 

z• (i) = « [x•(i) +y•(w(i))] (19b) 

When we average Q tokens of G, we successively warp 
each of the tokens to the estimated center of the clus- 

ter and then average the time registered patterns. (Of 
course we normalize by 1/Q in this case.) 

The most important consideration in performing the 
averaging is the choice of feature sets. The issue here 
is the stability of the resulting averaged feature set. 
Although each individual feature set is guaranteed stable 
(by the LPC method of analysis), when certain LPC 
feature sets are averaged, stability cannot be guaran- 
teed. To illustrate this point Fig. 5 shows a series of 
root locus plots obtained by taking the weighted average 

z•(i) = axe(i) + (1 - ot)y•(w(i)), (20) 

where a went from 0to 1 in steps of 0.01. For a=0 
(as indicated by the O's in the plots) the roots of the 
averaged LPC polynomial are at the roots of the LPC 
polynomial for the w(i)th frame of token y. For • = 1 
(as indicated by the x's in the plots) the roots are at the 
positions of the roots of the ith frame of token x. For 
other values of a the roots move continuously between 
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(c) 

FIG. 5. Variations of the root locations of an LPC polynomial 
as a function of the averaging coefficient a for averaging of 
(a) normalized autocorrelation coefficients, (b) log areas, and 
(e) arcsin PARCOR coefficients. 

these positions. Figure 5(a) shows one example of the 
effect of averaging normalized autocorrelation coeffi- 
cients. It is readily seen that the root locus is generally 
an irregular (but continuous) path between the roots 
(Shadle and Atal, n.d.). It is also seen that, for this ex- 
ample, one pair of roots goes outside the unit circle 
(unstable) for a large range of vaIues of a. This result 
is possible since stability is not guaranteed when auto- 
correlation coefficients are averaged. Figure 5(b) and 
5(c) show similar plots when the features that are av- 
eraged are the log areas and the arcsin of/he PARCOR 
coefficients, respectively. For these plots we see very 
different root loci; however more significantly we see 
that the roots always stay inside the unit circle thereby 
guaranteeing stability of the averaged system. 

Alternative indications of the effects of averaging dif- 
ferent feature sets are shown in Fig. 6 which shows two 
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plots of the variation of the (pseudo) area function of the 
vocal tract corresponding to values of _ix from 0 to 1 in 
steps of 0.2. Figure 6(a) shows the re'suit obtained when 
the normalized autocorrelation coefficients are aver- 

aged: Figure 6(b) is for averaging of log areas. Sig- 
nificant differences are seen in the (pseudo) areas for 
a = 0.4 and 0.6 for the two different averaged feature 
sets. 

In light of the above discussion it is seen that aver- 
aging different LPC feature sets can produce significant 
differences in the resulting (pseudo) areas, roots, etc. 
However when both the feature sets being averaged are 
from essentially the same speech sounds, and when a 
sufficient number of them are averaged, we would ex- 
pect that almost any LPC feature set can be averaged 
and still give good results. These conditions are met 
when the tokens to be averaged all lie within a single 
cluster (as in the UWA method). For the UFA method 
these conditions are not generally as well met and we 
might expect some significant differences in the results 
depending on which feature set is averaged. 

Based on the above discussion, and informal experi- 
mentation with the various parameter sets, three fea- 
ture sets were chosen for averaging in the clustering 
algorithms. These were. the normalized autocorrelation 
coefficients (x, =Re) , the log areas (x, =g,), and the 
arcsin (sin") of the PARCOR coefficients (x,=p•). The 
arcsin transformation of the PARCOR coefficients is a 

transformation, suggested by Atal, for spreading out the 
distribution of the PARCOR coefficients around the pe•k 
(i.e., when the PARCORS are close to 1). In the next 
two sections we present results obtained on clustering 
using these three feature sets for averaging. 

III. OBJECTIVE EVALUATION OF CLUSTERING 
ALGORITHMS 

The clustering algorithms and averaging techniques 
of the preceeding sections were applied to a 39-word 
speech vocabulary consisting of the letters (A to Z), the 
digits (0 to 9), and the cueing words STOP, ERROR, 
and REPEAT (Rabiner et al., 1979). A total of 100 rep- 
lications of each word of the vocabulary from 50 dif- 
ferent male and 50 different female talkers were used 
as the tokens in the observation set. The 100 tokens 

of each of the 39 words were cIustered by the following 
procedures: 

C1-UWA algorithm, cluster centers obtained as the 
minimax centers, 

CIR-UWA algorithm, cluster centers obtained by 
averaging autocorrelation coefficients, 

C1G-UWA algorithm, cluster centers obtained by 
averaging log area coefficients, 

C1P-UWA algorithm, cluster centers obtained by av- 
eraging arcsin PARCOR coefficients, 

C2R-UFA algorithm with autocorrelation coefficient 
averaging, 

C2G-UFA algorithm with log area averaging, 

C2P-UFA algorithm with arcsin PARCOR averaging, 
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FIG. 6. Variations of the (pseudo) area function as a function of the averaging coefficient c• for averaging of (a) normalized auto- 
correlation coefficients, and (b) log areas. 

C3- Supervised algorithm of Levinson et al. (1979), 
cluster centers obtained as the minimax centers, 

C3R- Supervised algorithm with cluster centers ob- 
tained by averaging autocorrelation coefficients. 

The results using the C3 procedure provide a hound 
on the performance obtained by any of the automatic 
algorithms in the list above if we assume that a super- 
vised approach is at least as good as any unsupervised 
pattern recognition procedure. The results using the 
C3R procedure provide a comparison bebveen averaging 
and minimax methods for obtaining cluster centers, and 
provide a bound on the UWA clusters with post averaging 
to obtain the cluster centers, i.e., the C1R, C1G, and 
ClP results. 

One objective measure of the "quality" of the clus- 

tering is the measure 

1 04)(M- 1) 
(r = = = , (21) 

1 • 1 •' •' (n -- '• :•(x/ ,x• M .• m•(ml- 1) 

i.e., the ratio of the average intercluster distance (i.e., 
the average distance between cluster centers) to the 
average intra-eluster distance (Levinson et al., 1979). 
In Eq. (21) we assume the N= 100 observations are clus- 
tered into M closes, and the number of tokens in the 
ith cluster is m,. • noted in Levinson et al. (1979), 
for two spherie•ly symmetric clusters, •>2 implies 
no overlap. 

T•le I gives results obtained on the 9 clustering 
•gorithms for the qu•ity ratio (•), and 3 other elus- 

TABLE I. Statistics of the clustering algorithms. 

Number of Number of Size of 

clusters outliers largest 
per word per word cluster 

Quality Quality ratio (a) 
ratio (a) R G P 

C1- avg 10 13 27 2.95 3.88 
rain 3 6 18 2.21 2.66 

m•,x 13 24 47 4.22 5.26 

C2R avg 8 5 60 2.20 
rain 3 0 27 1.52 

max 16 11 90 2.99 

C2G avg 9 5 51 1.83 
rain 3 0 16 0.86 
max 15 11 82 2.52 

C2P avg 9 6 52 1.93 
rain 3 2 14 1.35 

max 15 11 85 2.85 

C3- avg 13 8 24 2.95 3.62 
rain 8 3 12 2.41 2.61 

max 19 16 36 3.88 4,70 

3.50 3.45 

2.39 2.37 

4.62 4.52 
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ter statistics: 

1. Number of clusters per word. 

2. Number of outliers (i.e. clusters with a single 
token) per word. 

3. Size (in tokens) of the largest cluster. 

The average (across all 39 words), and the minimum 
and maximum of each of the quantities is given in Table 
I. For the algorithms with post averaging (CIR, C1G, 
ClP, and C3R) the quality statistics are given following 
the results using the minimax center. 

Several interesting observations can be made from the 
data in Table I. First we see that post averaging of 
tokens to obtain cluster centers yielded significantly 
larger (• ratios than those obtained from minimax cen- 
ters. (Contrast CIR and C1, or C3R and C3.) It is also 
seen that the fully automatic results obtained using the 
UWA algorithm are essentially comparable to results 
obtained from the fully supervised approach (C3). How- 
ever results obtained from the UFA algorithm were 
significantly worse than any other method. As antici- 
pated in the earlier discussion, this is due to the extra- 
ordinarily large number of tokens in the biggest clus- 
ter (54 on average across C2R, C2G, and C2P). This 
result indicates that the tokens tended to be distributed 

in a small ring with respect to the averaged center of 
the set, and the largest cluster contained a significant 
slice of the ring. Informal experimentation with the 
distance threshold procuded small differences in these 
results. These cluster statistics therefore indicate 

that the UFA method would yield good results ff we were 
interested in only 1-2 clusters per word. 

In summary the cluster statistics indicate that the 
UWA method appears capable of providing a reasonable 
set of clusters with separability that is essentially as 
good as a previously successful supervised approach. 
Also it was shown that obtaining cluster centers by 
averaging methods yield significant improvements in 
cluster separability over using the minimax center. 

IV. RECOGNITION RESULTS 

An alternative, and more significant, measure of the 
performance of the clustering procedures is the recog- 
nition accuracy obtained in the system for which the 
templates were designed. As such we have tested the 
nine procedures (along with a randomly chosen set of 
templates) on the first three test sets discussed in 
Rabiner et al. (1979). These test sets (denoted TS1, 
TS2, and TS3) contained, respectively: 

TSI-1 repetition of the 39-word vocabularly by each 
of ten talkers (five male, five female) who were not 
part of the training set. Recordings from analog tape. 

TS2-1 repetition of the 39-word vocabulary by each 
of eight talkers (four male, four female) who were not 
part of the training set. Recordings in real time using 
a high speed floating point array processor. 

TS3-10 repetitions of the 39-word vocabulary chosen 
at random from the 100 talkers who trained the system. 

(No token here was part of the training set). 

ReCOgnition accuracies for TS1 were obtained as a 
function of p, the number of templates per word used in 
the reference set, where p varied from 1 to •2, and as' 
a function of the position, c, of the actual word in the 
final candidate list. For TS2 and TS3, recognition 
accuracies were measured for a fixed number (12) of 
templates per word and as a function of c for values of ß 
c from 1 to 5. In addition recognition accuracies were 
measured for a set of randomly chosen templates from 
the original training set. These results hopefully provide 
an underbound on the accuracy obtainable from the clus- 
tering procedures. 
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FIG. 7. Recogtzttjon accuracy as a ftmcUon oœp for the data of 
TSI for c=l (a), c=2 (b), and c=5 (c) for the C1, C3, and 
RAN clustering procedures. 
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Results of the recognition tests are shown in Figures 
7-11. Figures 7-9 show plots (for TS1 data) of the 
recognition accuracy as a function of p for c = 1 (a), 
c = 2 [top two candidates-- (b)] and c = 5 [top five candi- 
dates--(c)]. The decision rule for recognition is the 
KNN rule discussed in Rabiner et al. (1979) in which 
KNN=I for small values ofp and KNN=2 or 3 forp 
larger than about 4. Figure 7 shows the comparisons 
between the C1, C3, and RAN (random template) al- 
gorithms. It can be seen that, except forp = 1, the C1 
and C3 algorithms provide essentially identical recog- 
nition accuracies for all p and c. For p = 1 the C1 al- 
gorithm provides an improvement in recognition accu- 
racy of from 5% to 10% over the C3 algorithm for dif- 
ferent values of c. This result says the single biggest 
template of the LSVA procedure provides a better rep- 
resentation (on average) of each word than the single 
biggest template of the supervised approach. However 
once we use two or more templates per word, the rec- 
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FIG. 8. Recognition accuracy as a function of/) for t.he data of 
TS1 for c=1 (a), c=2 (b), and c=5 (c) for the CIR, CIG, ClP, 
and C3R clustering procedures. 

ognition accuracies of both procedures are comparable. 
Figure 7 also shows significantly poorer recognition 
accuracy from the randomly chosen templates than from 
either clustering approach. 

Figure 8 shows a comparison of the recognition 
accuracies for the post-averaged algorithms--namely 
CIR, C1G, CIP, C3R. It can be seen that for c = 1, the 
C3R and C1R provide from 30/0 to 5% higher accuracy 
than the C1G and C1P procedures for values ofp from 
3 to 8. Also, except for p = 1, the C3R provides essen- 
tially the highest recognition accuracies (by about 1%- 
2%) of the four procedures. This result is anticipated . 
from the earlier discussions. For c = 2 the C3R pro- 
cedure gives a 2% higher recognition accuracy than the 
other procedures (except for p = 1). For c = 5 all the 
recognition accuracies are comparable (to within +1%). 
By comparing Figs. 7 and 8, averaging to give cluster 
centers provides large improvements in recognition 
accuracy for small values of p, and small improve- 
ments near p = 12. However in almost all cases the 
recognition accuracy is higher with the averaging tech- 
niques. 

Figure 9 shows a comparison of the recognition ac- 
curacies for the full averaging procedures--C2R, C2G, 
C2P. These results show that the averaging of auto- 
correlation coefficients provided consistently better 
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FIG. 9. Recognition accuracy as a function ofp for the data of 
TS1 for c=1 (a), c=2 (b), and c=5 (c) for the C2R, C2G, and 
C2P clustering procedures. 
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FIG. 10. Recognition accuracy as a function of c for the data 
of TS2 for the CiR, C1G, CiP, and C3R clustering procedures. 

results than the averaging of log areas or arcsin 
PARCOR's. However, except for p: 1, it is seen that 
the recognition accuracies of the best C2 algorithm 
(C2R) were not as high as those of the C1R algorithm. 
For p = 1 the C2R procedure always gave significantly 
higher recognition accuracies (by about 7ø/0) than any 
other procedure. Thus if we were truly interested in 
the best, single universal template to represent each 
word in the vocabularly, the fully averaging clustering 
procedure would yield the best results. 

Figures 10 and 11 show recognition results from TS2 
and TS3, respectively. For each of these figures, rec- 
ognition accuracy is plotted as a function of c, the num- 
ber of candidates considered, for p = 12 templates per 
word. Results are plotted for the four post-averaging 
procedures (C1R, ciG, CIP, and C3R) since these 
yielded.uniformly the highest accuracies. The results 
given in these figures show that only small differences 
occur in the performance of these different procedures. 
In general the recognition accuracy is about 80% for the 
top candidate, and increases to about 98% for the top 
five candidates. 

V. DISCUSSION AND SUMMARY 

The purpose of this investigation was to determine 
if a fully automatic word template clustering procedure 
could obtain the performance of a previously investi- 
gated, supervised approach to clustering. To this end 
•vo procedures were described--one in which the clus- 
ters were obtained from a matrix of distances between 

pairs of tokens, and one in which averaging techniques 
were heavily relied on to provide estimates of cluster 
centers from which individual clusters could be defined. 
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FIG. 11. Recognition accuracy as a function of c for the data 
of TS3 for the CiR, C1G, ClP, and C3R clustering procedures. 

method with post-averaging is slightly worse than the 
supervised method with post-averaging. 

3. The UWA method with averaging of autocorrelation 
coefficients to give cluster centers provides perfor- 
mance which is as good as, or better than that obtained 
when other LPC feature sets are averaged. 

4. The UFA method provides the best, single tem- 
plate, representation of each word. However when 
multiple templates per word are used, the incorporation 
of averaging into the clustering procedures appears to 
lump together too many tokens in the largest cluster, 
thereby making the following clusters hard to find in a 
reasonable manner. As such this procedure should not 
be used when multiple clusters are desired. 

The results of this investigation indicate that a rea- 
sonably simple, fully automatic clustering procedure 
can be used in a speaker-independent, isolated word 
recognition system and still provide good performance. 
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