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ABSTRACT 

The log likelihood measure has been widely used in speech 

recognition for comparing speech signals. Recently it has been pro- 

posed as a measure for assessing the quality of coded speech. In 

this paper we present an interpretation of the log likelihood ratio 

measure within the theoretical framework of a waveform coder dis- 

tortion model. 

1. Introduction 

The purpose of this paper is to present an interpretation of the 
tog likelihood ratio measure [1-31 within the theoretical framework 
of a generalized waveform coder distortion model. As such, we 
first define the log likelihood ratio measure and then give an 
interpretation of this measure in terms of a generalized coder dis- 
tortion model. Finally we discuss the implications of the results 
and show how they can be applied to objectively measure coder 
quality. 

II. The Log Likelihood Ratio 

The principal assumption on which the log likelihood ratio dis- 
tance is based is that speech can be represented by a p' order all- 

pole model of the form 

x(n) = ±a,x(n—m) + Gu(n) 

where x(n) is the sampled speech signal, a(m=1,2 p) are the 
coefficients of an all-pole filter, I/A(z), which models the reso- 
nances of the speech production mechanism, G is the gain of the 
filter, and u (n) is an appropriate excitation source for the filter. 

The waveform coder can be represented as shown in Fig. 1 in 
which x(n) is the input speech, which can be modelled according 
to Eq. (1), and y(n) is the decoded output. 

The log likelihood ratio for comparing x (n) and y (n) can then 
bedefinedas [1] 

a R aj 1= log 
aRaJ 

where 
= LPC coefficient vector (1,a1,a2 a',) for the original 

speech x(n) 

a = LPC coefficient vector (l,ãi,â2 a) for the coded 
speech y(n) 

and R is the correlation matrix of y (n) whose elements are 
Nli—jI 

r(i—j)t = Y y(n)y(n+i—jI), i,j = 0,1 p 1 (3) 

where N is the number of samples used in the analysis (i.e., the 
frame size). 
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Fig. 1. Waveform Coder 

An interpretation of the log likelihood ratio can be given with 
the aid of Fig. 2 [21. The filter Ar(z), defined as 

A(z) = 1 + (4) 

is the inverse of the all-pole filter which models the spectrum of 
y(n), and A(z) is a similarly defined inverse filter for the signal 
x(n). When y(n) is filtered with its inverse spectral model, A(z), the output signal corresponds to the minimum prediction error or 
residual error of the LPC model of y(n). The energy of this resi- 
dual signal (over the speech segment) is defined as a, and it can be 
shown that a = G = aRaJ. Similarly if y(n) is passed through 
the filter A (z), the output corresponds to another prediction resi- 
dual whose energy over the same speech segment is 3 a, where = aRaj. The equality exists only when A(z) = A.,(z). From 

(1) Eq. (2) it can now be seen that the log likelihood ratio has the form 

/ log (f3/a) (5) 

An alternative interpretation of the likelihood measure, which is 
illustrated in Fig. 3, is based on the equation 

1 = log(p'/a') (6a) 
G,2 

log —. (6b) G aRa 
where G, and G are the gains of the linear predictive representa- 
tions of x(n) and y(n), as defined in Eq. (1). 

y(n) r1u'(n) rT1 MINIMUM 
(2) RESUUAL 

RESWIJAL 

Fig. 2. Interpretation of the log likelihood ratio. 

x(1U(fl)iiii2a# RESUAL 

RESUAL 

Fig. 3. An alternate interpretation of the log likelihood ratio. 
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Ill. Waveform Coder Model 

Figure 4 shows a block diagram of the waveform coder distor- 
tion model which we have investigated. This model, also used by 
Aaron et al [71 for a delta modulator is composed of a time-varying 
linear filter and an additive noise source. The rationale for this 
model is that the time-varying filter, h(n), models the 'linearly 
correlated" distortions in the coder (i.e. attenuation, delay, bandlim- 
iting, reverberation) and the noise source, e (n), accounts for the 
nonlinear distortions in the coder (i.e., additive noise, tonal noise, 
clicks, etc.). 

Given the input x(n) and the output y(n) of the coder, the 
problem of determining the two components of the model becomes 
a classical system identification problem (assuming h (n) to be of 
(finite) duration M samples) under noisy conditions [81. Once an 
estimate of the filter h (n) is obtained, the "uncorrelated noise corn- 
ponent* ê(n) can be estimated according to Fig. 5. The solution, 
of course, is not unique and is subject to careful interpretation.** 
When properly used, however, the model can provide useful 
insights into the dynamics of a coder. 

Fig. 5. Identification of the parameters of the coder distortion 
model. 

The first issue which was considered in using this model is the 
rate at which h (n) was allowed to vary. For the model to be per- 
ceptually meaningful, the filter should vary at a rate which is 
detectable to the ear as a time-varying filter, but not faster (i.e., 
approximately at the same rate at which formants vary in speech 
production). Any changes which are more rapid should show up in 
the noise component of the model. Based on this reasoning, 12-20 
msec segments of speech were used in computing estimates of 
h (n). Estimates were then interpolated (using overlapping seg- 
ments) every 2-5 rnsec to ensure smooth changes of the filter. 

Another important feature of the model which had to be care- 
fully chosen was the number of samples, M, in the impulse 
response h (n). An estimate for this value was determined by exa- 
mining the ratio of the power of the "uncorrelated noise" com- 
ponent, e(n), to the total distortion d(n) = y(n)— x(n) of the 
coder as a function of M the assumed length of h (n). Figure 6 

M 

Fig. 6. "Uncorrelated noise" to total-noise ratio for the waveform 
coder. 

shows an example of this noise power ratio, denoted as 
(expressed in dB), as a function of M for an ADPCM coder in an 
overload region (where o- denotes the power of e(n) and o 
denotes the power of d (n)). The curves are normalized to 0 dB at 
M = 0 since ê(n) = d(n) at this point. Three speech regions were 
analyzed, including an unvoiced region, a semi-voiced region, and a 
strong voiced region. In the unvoiced region it is seen that most of 
the coder distortion (d(n)) is due to the "uncorrelated component" 
(P(n)), whereas in the strong voiced region most of the distortion 
is due to the attenuation in the coder (because of overloading). 
Also it is seen that most of the separation of the "uncorrelated" and 
"correlated" components of distortion in the coder can be achieved 
with a two point (M"2) filter model h (n). 

This interpretation seems reasonable since it suggests that the 
filtering distortion for this type of coder is primarily that of a pure 
attenuation (due to clipping) and a spectral tilt (due to loss of high 
frequencies). For example, Fig. 7 shows typical frequency 
responses of the filter for three different input signal levels (—18 

dB, 0 dB Optimum level, and +18 dB) for the ADPCM coder in 
a strong voiced region. 

An important consideration in choosing the filter length, M, is 
that it should not be longer than necessary, due to the sensitivity of 
the system identification analysis to the coder noise [81. For exam- 
ple, Fig. 8 shows the frequency response of an M = 6 point filter 
for the same speech segment as in Fig. 7 (+18 dB condition). The 
large spectral variations of the filter apparently have no physical 
significance since the curves of Fig. 6 show clearly that little change 
occurs in ê (n) as M goes from 2 to 6. Thus the filter coefficients 
are essentially those of a large class whose output is orthogonal to 
the error signal. 

IV. An Interpretation of the Log Likelihood Ratio 

By combining the likelihood ratio model in Fig. 3 with the coder 
model in Fig. 4 an interesting interpretation of this spectral distance 
can be given. Figure 9 illustrates this combination. The speech 
model defined in Fig. 9 is the all-pole filter G/A0(z) which is 
excited by the normalized excitation source u (n). This excitation 
source is defined to be the normalized residual error in the LPC 
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Fig. 4. A general distortion model for a waveform coder. 

*tn this paper we refer to e(n) as the uncorrelaled noise component of the filter model. Strictly speaking, ê(s) is short-time 
uncorrelated with x(n) for only the first M lags. 

We assume here that any fixed filtering performed in the coder, such as band limiting, is also performed on the reference 

c(s) prior to the estimation of h(s). Therefore, h(s) as we refer to it here, only accounts for the modification of the 

spectral shape due to quantization and not to any filtering that may be performed in the coder. Later when we refer to the 

use of this model in the interpretation of the log likelihood ratio we will assume that the filter in the coder distortion model 

contains both the effets of fixed filtering and spectral attenuation due to quantization effects. 
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Fig. 7. Typical frequency response for a strong voiced region of 
an ADPCM coder. 

C 1 2 3 

FREQUENCY (KHz) 

model of x (n) and therefore the output of the model is exactly 
x(n). The coder output y(n) is filtered by the inverse filter 

to produce the normalized residual v(n). In the absence 

of coder errors it is seen that y(n) x(n) and G = G, and there- 
fore v(n) = u(a). In this case the likelihood ratio, as defined in 
Eq. (6), is zero. 

From Fig. 9it can be seen that 

v(n) = 
--u(n)*h(n) + --e(n)*a(n) (7) 

where a(n) is the impulse response of A(z). Therefore 

/3' = IIv(n)fl2 Il--u(n)*h(n) + _e(n)*a(n)I!2 
Assuming that the noise component e(n) in the coder is uncorre- 
lated with u (n), Eq. (8) can be expressed as 

13' = 
Ilu(n)*h(n)Il2 + lIe(n)*a(n)II2 

Also it is assumed that u (n) is a spectrally flat signal, as appropri- 
ate for the LPC model of x(n), and that it is normalized so that 
U(e") 1. Therefore it can be shown that 

a' Ilu (n)l12 = 1 

e(n) 

i v(n) u(n) I I x(n) I 

G/A(Z)J P[H(z) fLGY1AX(Z 

Fig. 9. Combined speech model, coder distortion model, and 
likelihood ratio model 

and 

IIu(n)*h (n)12 = li (n)112 (11) 

Substituting Eqs. (9)-(11) into Eq. (6) then gives 

[G 
2+J...lle(n)*a(n)l12] 

(12) / 
logflh(n)II G2 F Y 

From the LPC model it can also be noted that the smoothed spec- 
tral estimate of x (n), denoted as X(e') is 

Finally, combining Eq. (13) with Eq. (12) gives 

(13) 

F Gfl F E(e'°) 2] log —I + 
log1IIIf(e'°)12+H 

(14) 
GJ2J (e") 

This form clearly illustrates the properties of the log likelihood 
ratio, within the context of the generalized coder distortion model. 
The first component of 1 in Eq. (14) is simply associated with a 
dynamic gain loss and can essentially be neglected whenever the 
original and the coded speech are gain normalized (unless the 
dynamic component of the gain varies widely). 

The second term in Eq. (14) has two components. The first 
component is due to the "correlated distortion' in the coder, 
denoted by the term ]IH(e'°)II2 and the second term is due to the 
"uncorrelated" noise component E(e") which is inversely weighted 
by the smoothed LPC spectrum GX/A (eJ0), of the input speech 
signal. As seen from Eq. (14) these two components of distortion 
are, in effect, weighted equally in the log likelihood ratio. 

In terms of predicting subjective quality, it is known that an 
equal weighting of these two components is not the most desirable 
[61. However, the functional form of the log likelihood ratio seems 
to be a good candidate for predicting subjective quality when only 
one of the components of distortion is significant. For example, in 
waveform coders in which there is no loss of bandwidth or attenua- 
tion of certain frequency bands, this measure can be useful in 
predicting subjective quality [6]. Also, in the case of vocoders 
where the predominant form of distortion is a spectral distortion 
(which might be associated with the term lH(e")H2) this measure 
has been found to be a good candidate as a predictor of subjective 
quality [41. 

When both components of distortion are simultaneously 8) present, however, the equal weighting of them in the log likelihood 
measure does not appear to be the most appropriate choice. The 
two components must be measured separately and then combined, 
with unequal weighting, to obtain a useful single measure. This has 
prompted an investigation of several related measures, whose 

(9) definition was motivated by the model of Figure 9 and Eq. (14). 

A reasonable approach to decoupling these components is to 
define two log likelihood measures, lo and 1N'. one associated only 
with the spectral distortion due to H(eJ0) and the other associated 
only with the additive noise effects E(e). Letting H(e")J = 1 

(10) and G, = G, Eq. (14) reduces to 

-a 

3 
a) 

= 

0 
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Fig. 8. Frequency response of the model when M is too large. 
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L 11 IH(') 1 
= 

io(i+ii 12J 
(15) 

If additive noise is not to be considered, (E(e°")==O, and assuming 
G=G) Eq. (14) reduces to 

1D 4 'l E(e"")=O 
= 

log[IIiI(e-t)II2] (16) 

Based on these two independent measures one may then attempt to 
combine them in an optimal way, so as to predict subjectively 
evaluated waveform coded speech quality. 

A number of objective measures have been defined in the litera- 
ture based on variations of the formulas of Eqs. (15) and (16). In 
particular, one modification that has been relatively successful [6] is 
a linear combination of a bandwidth measure and noise-to-signal 
ratio measure which has a similar functional form to that of Eq. 
(15). 

V. Conclusions 

Based on a generalized waveform coder distortion model, an 
interpretation of the log likelihood ratio measure was developed. 
The insight gained from such interpretation suggests several alter- 
nate ways of accounting for effects of coding distortions. 
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