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Abstract—The log likelihood measure has been widely used in speech
research for comparing speech signals. Recently, it has been proposed
as a measure for assessing the quality of coded speech. In this paper we
present an interpretation of the log likelihood ratio measure within the
theoretical framework of a waveform coder distortion model. We then
discuss the implications of this interpretation and show how it can be
applied to the formulation of better objective measures of waveform
coder performance.

I. INTRODUCTION

A GREAT deal of research has been devoted to the de-
sign and implementation of speech waveform coders in

recent years. An important aspect of this research is the deri-
vation of objective measures that evaluate the performance
quality of these coders. For example, objective quality mea-
sures can provide insight into the types of distortion that are
present in a coder and help to identify how these distortions
can be traded to improve the quality of the coder output.
Such measures allow a designer to optimize parameters within
the coder without resorting to expensive and lengthy subjec-
tive evaluations, at least in the early stages of design. Further-
more, such measures can serve as important research tools for
understanding and identifying the fundamental concepts of
speech quality.

One class of measures which has found wide use in the
speech processing is the class of spectral distortion measures
[1] —[4]. In particular, the log likelihood ratio, sometimes
called the LPC distance measure, has been used in noise
studies by Sambur and Jayant [2], LPC vocoder studies by
Viswanathan et al. [4], and as quality measures by Goodman
et al. [5], Crochiere et al. [6], Barnwell et a!. [7], and Scag-
lola [8].

The purpose of this paper is to present an interpretation of
the log likelihood ratio measure within the theoretical frame-
work of a generalized waveform coder distortion model. This
interpretation has prompted an on-going investigation of
several new candidates for measuring waveform coder quality,
some of which have already exhibited better performance
over more conventional measures [9]. We first define and
discuss the log likelihood ratio measure [Section II] ,and then
give an interpretation of this measure in terms of the gen-
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eralized coder distortion model [Section III]. In Section IV
we discuss the implications of the results and show how they
can be applied to objectively measure coder quality.

II. THE LOG LIKELIHOOD RATIO

The principal assumption on which the log likelihood ratio
distance is based is that speech can be represented by a pth

order all-pole model of the form (see Fig. 1)

P
x(n)' amx(n-m)+Gxu(n) (1)

m=i

where x(n) is the sampled speech signal, am(m = 1,2, .. ,p)
are the coefficients of an all-pole filter l/A(z), which models
the resonances of the speech production mechanism, G is the
gain of the filter (as defined in (5a) later in this section), and
u(n) is an appropriate excitation source for the filter.

The waveform coder can be represented as shown in Fig. 2
in which x(n) is the input speech, which can be modeled
according to (1), andy(n) is the decoded output.
The log likelihood ratio for comparing x (n) and y (n) can

then be defined as

(2)

where

= LPC coefficient vector (1, a1, a2, ,as,) for the orig-

inal speechx(n)

= LPC coefficientvector (1, j ,,)for the coded
speechy(n)

and is the correlation matrix ofy(n) whose elements are

N-li-/I

rI(i-j)1 y(n)y(n+li-jI),
n =1

i—j——0,1,",p—l (3)
where N is the number of samples used in the analysis (i.e.,
the frame size). By interchanging the roles of x(n) and y(n),
an alternate distance measure can also be defined.

An interpretation of the log likelihood ratio can be given
with the aid of Fig. 3 [3]. The filter A(z), definedas

(4)
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Fig. 3. Interpretation of the log likelihood ratio.

is the inverse of the all-pole filter which models the spectrum
of y (n), and A (z) is a similarly defined inverse filter for the
signal x (n). When y (ii) is filtered with its inverse spectral
model A(z), the output signal corresponds to the minimum
prediction error or residual error of the LPC model of y (ii).
The energy of this residual signal (over the speech segment)
is defined as a, and it can be shown that

a= G
Similarly, if y (n) is passed through the filter A (z), the output
corresponds to another prediction residual whose energy over
the same speech segment is 3 > a, where (I =aR4. The
equality exists only when A(z) =A(z). From (2) it can now
be seen that the log likelihood ratio has the form

l=log(j3/a). (Sb)

In terms of a spectral interpretation it can be shown that the
log likelihood has the form [3]

( A(e') 2 dw

llO[J A,(e'") 2ir

An alternative interpretation of the likelihood measure 1
of (2) and (4), which is illustrated in Fig. 4, is based on the
equation

I = log (8'/a')

= Ga,Raog G aRa
where G and G are the gains of the linear predictive repre-
sentations of x(n) and y(n), as defined in (1). These gains are
necessary to provide automatic scaling properties in the mea-
sure. In this way, two sequences which are identical except
for a gain factor will have a zero spectral distance 1. Thus,
unlike S/N-type measures, the log likeithood ratio is inherently
positive and a low value indicates a close agreement between
the spectral magnitudes of a test signal and a reference signal.
A zero distance means that the spectral magnitudes of both
signals are identical and a large spectral distance means that

e(n)

W(n)
X(fl) hn Z Y(fl)

Fig. 5. A general distortion model for a waveform coder.

the signals are significantly different. Differences in phases
do not affect this spectral distance measure. Hence, the
measure is insensitive to delays between the original signal and
its coded version, so long as the delay is short relative to the
analysis frame size.

An important consideration in the log likelihood ratio
formulation is that it is based on all-pole models of the signals
x(n) and y(n) in Fig. 2. For applications such as speaker
identification and verification, x(n) and y(n) are generally
"clean" speech signals and therefore are well modeled by all-
pole models. For the case of measuring coder performance,
however, the signal y(n) may be significantly distorted and
may have a substantial amount of noise added to it. Thus

(5a) it is not as clear that this signal can be well modeled by an all-
pole model.

In the next section we shall investigate a more elaborate
waveform coder distortion model which decouples the noise
and filtering distortions introduced by the coder. Then, in
Section IV, we shall analyze the effect of combining this coder
model with the likelihood ratio model of Fig. 4.

III. WAVEFORM CODER MODEL

Fig. S shows a block diagram of the waveform coder dis-
tortion model which we have investigated. This model, also
used by Aaron et al. [10] for a delta modulator, is composed
of a time-varying linear filter and an additive noise source.
The rationale for this model is that the time-varying filter
h (n) models the "linearly correlated" distortions in the coder
(i.e., attenuation, delay, band limiting, reverberation) and the
noise source e(n) accounts for the nonlinear distortions in

7a the coder (i.e., additive noise, tonal noise, clicks, etc.). When
" ' the components of distortion are split up in this way they

have distinctively different perceptual effects and are thus
(7b) meaningfully studied separately.

Given the input x(n) and the output y(n) of the coder
(Fig. 2) the problem of determining the two components of
the model becomes a classical system identificatiQn problem
(assuming h (n) to be of (finite) duration M samples) under
noisy conditions [11], [12]. Once an estimate of the filter
h (n) is obtained, the "uncorrelated noise component"
(n) can be estimated according to Fig. 6. The solution, of

11n this paper we refer to (n) as the uncorrelated noise component
of the filter model. StrictlX speaking, '(n) is short-time uncorrelated
with x (n) for only the first M lags.

Fig. 1. Ali-pole model of speech production.

X(nI______ WAVEFORM yIn)
CODER

Fig. 2. Waveform coder.
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Fig. 4. An alternate interpretation of the log likelihood ratio.
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Fig. 7. "Uncorrelated noise" to total noise ratio for the waveform
coder.

course, is not unique and is subject to careful interpretation.2
When properly used, however, the model can provide useful
insights into the dynamics of a coder.

The first issue which had to be considered in using this model
is the rate at which h(n) was allowed to vary. For the model
to be perceptually meaningful, the filter should vary at a rate
which is detectable to the ear as a time-varying filter, but not
faster (i.e., approximately at the same rate at which formants
vary in speech production). Any changes which are more
rapid should show up in the noise component of the model.
Based on this reasoning, 12—20 ms segments of speech were
used in computing estimates of h (n). Estimates were then
interpolated (using overlapping segments) every 2—5 ms to
ensure smooth changes of the filter.

Another important feature of the model which had to be
carefully chosen was the number of samples M in the impulse
response h (n). An estimate for this value was determined by
examining the ratio of the power of the "uncorrelated noise"
component (n) to the total distortion d(n) y(n) - x(n) of
the coder as a function of M, the assumed length of h (n).
Fig. 7 shows an example of this noise power ratio, denoted as
cJ/u, (expressed in dB), as a function of M for an ADPCM
coder in an overload region [where a denotes the power of
(n) and c denotes the power of d(n)]. The curves are
normalized to 0 dB at M =0 since (n) =d(n) at this point.
Three speech regions were analyzed, including an unvoiced
region, a semivoiced region, and a strong voiced region. In the
unvoiced region it is seen that most of the coder distortion
[d(n)] is due to the "uncorrelated component" [(n)],
whereas in the strong voiced region most of the distortion is
due to the attenuation in the coder (because of overloading).
Also, it is seen that most of the separation of the "uncor-

2We assume here that any fixed filtering performed in the coder, such
as band limiting, is also performed on the reference x (n) prior to the
estimation of '(n). Therefore, '(n) as we refer to it here, only ac-
counts for the modification of the spectral shape due to quantization
and not to any filtering that may be performed in the coder. Later
when we refer to the use of this model in the interpretation of the log
likelihood ratio, we will assume that the filter in the coder distortion
model contains both the effects of fixed filtering and spectral attenua-
tion due to quantization effects.

0 1 2 3
FREQUENCY (KHZ)

Fig. 9. Frequency response of the model when Mis too large.

related" and "correlated" components of distortion in the
coder can be achieved with a two-point (M =2) filter model
h (n).

This interpretation seems reasonable since it suggests that
the filtering distortion for this type of coder is primarily that
of a pure attenuation (due to clipping) and a spectral tilt (due
to loss of high frequencies). For example, Fig. 8 shows typi-
cal frequency responses of the filter for three different input
signal levels (-18 dB, 0 dB =optimum level, and +18 dB) for
the ADPCM coder in a strong voiced region. The optimum
input level is defmed as the signal level at which the S/N ratio
of the coder is maximum [5] —[7].

An important consideration in choosing the filter length
M is that it should not be longer than necessary due to the
sensitivity of the system identification analysis to the coder
noise [11]. For example, Fig. 9 shows the frequency response
of an M = 6 point filter for the same speech segment as in Fig.
8 (+18 dB condition). The large spectral variations of the fil-
ter apparently have no physical significance since the curves
of Fig. 7 show clearly that little change occurs in (n) as M
goes from 2 to 6. Thus the filter coefficients are essentially
those of the large class of linear systems [h (n)] whose out-
put [w(n)] is orthogonal to the error signal e(n) of Fig. 5.

Fig. 10 ifiustrates an example of an ADPCM coder in a
strong voiced region (the "O"in coffee) for an optimum input
signal level. Fig. 10(a) shows h(n), Fig. 10(b) shows IH(e") I,
Fig. 10(c) shows the input signal x(n) for this speech segment,
and Fig. 10(d) shows spectral estimates of the signals x(n),
w(n), and e(n) in the coder model. Fig. 11 illustrates similar
results for an unvoiced region. These results are typical of
those found in other coders such as delta modulators.

When we begin to consider the dynamics of the coders, a
clearer picture of what is happening within the coders begins
to emerge. By way of example, Fig. 12 shows plots for an
ADPCM coder of

1) short-time energy [Fig. 12(a)],
2) segmental signal-to-noise ratio S/N (the straight line shows

the average for the sentence) [Fig. 12(b)],

Fig. 6. Identification of the parameters of the coder distortion model.
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Fig. 8. Typical frequency response for a strong voiced region of an
ADPCM coder.
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Fig. 12. Dynamics of an ADPCM coder as a function of time. (a) An

rms input signal level. (b) Total segmental S/N. (c) w (n) to e (n)
ratio (dB) and (x (n) — w(n)) to x (n) ratio (dB).

and also provides a small amount of spectral shaping. This
effect can be perceived as a time-varying gain when listening to
w (n). Other than that there are no noticeable distortions in
w(n). The "uncorrelated" component e(n) is noise-like and
its amplitude varies syllabically with the input energy (it
sounds like highly attenuated whispered speech).

The example above helps to illustrate an obvious weakness
of the methods used in the past to measure coding perfor-
mance, that is, the characterization of both "linear" distor-
tion and "uncorrelated" noise by a single functional measure.

" ' Being perceptually distinct, these two coding effects should be
assessed independently. In the next section we shall interpret
the log likelihood ratio within the coder model framework
discussed above.

lv. AN INTERPRETATION OF THE LOG
LIKELIHOOD RATIO

By combining the likelihood ratio model in Fig. 4 with the
(9) coder model in Fig. 5 an interesting interpretation of this

spectral distance can be given. Fig. 13 illustrates this combi-
nation. The speech model defined in Fig. 13 is the all-pole
filter G/A(z) which is excited by the normalized excitation
source u (n). This excitation source is defmed to be the nor-
malized residual error in the LPC model of x(n), and there-
fore the output of the model is exactly x (ii). The coder
output y(n) is ifitered by the inverse filter (l/G)A(z) to

4000
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Fig. 10. Waveforms and spectra for the coder model in a strong voiced
region. (a) h(n). (b) IH(eIw) I (dB). (c) x(n). (d) Spectra of
I X(eJ°') I, W(eJ") I, and E(eP-'-') I in (dB).
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Fig. 11. Waveforms and spectra for the coder model in an unvoiced

region. (a) h(n). (b) IH(e'°') I. (dB). (c) x(n). (d) Spectra of
IX(e"-") I, W(eJ'-'-) , and IE(e") I in (dB).

3) filtered signal-to-"uncorrelated" noise ratio (S/.N) in
the coder model [Fig. 12(c)J ,i.e.,

(S/.N) 10

e (m))
(dB)

where the range of m is for a single (20 ms) segment, and

4) signal-to-"correlated" error ratio (S/JV) [Fig. l2(d)j ,i.e.,

( >x(m) '\
(S/JV)

l0lo1o(1[) w(m)J2)'
M can be seen in this figure, when the short-time signal

energy becomes large, the time-varying linear filter acts like an
attenuator (due to coder overload). In such regions the (S/JV)
approaches a 0 dB level. When the short-time energy is lower,
the linear filter of the model behaves like a variable attenuator
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Fig. 13. Combined speech model, coder distortion model, and likeli-
hood ratio model.

produce the normalized residual v(n). In the absence of
coder errors it is seen that y(n)x(n) and G =G and
therefore v (n) =u(n). In this case the likelihood ratio, as
defined in (7), is zero.

From Fig. 13 it can be seen that

where a(n) is the impulse response of A(z). Therefore,

G 1 2
= II v(n) 112 u(n) * h(n) +— . e(n) * a(n)G G

(11)

Assuming that the noise component e(n) in the coder is Un-
correlated with u(n) (as is generally the case), (11) can be
expressed as

G2 1

I3'IIu(n)*h(n)II2 +.IIe(n)*a(n)Il2.y y

Also, it is assumed that u(n) is a spectrally flat signal, as ap-
propriate for the LPC model of x (ii), and that it is normalized
so that I U(e"') I 1. Therefore, it can be shown that

a'=Ilu(n)I12 =1

IIu(n) *h(n) 112
= Ilh(n) 112.

Substituting (12), (13), and (14) into (7) then gives

1G2 1

LGy G
From the LPC model it can also be noted that the smoothed
spectral estimate of x(n), denoted as jX(e") I, is

I1(e1c0)I = lG/A(e'')l.
Finally, combining (16) with (15) gives

G2 Ee") 2
/ log [] + log [IIH(efw) 112 +

1(e1w)

This form clearly illustrates the properties of the log likeli-
hood ratio, within the context of the generalized coder
distortion model. The first component of 1 in (17) is simply
associated with a dynamic gain loss and can essentially be
neglected whenever the original and the coded speech are gain
normalized (unless the dynamic component of the gain varies
widely). In fact, in most recent studies on the subjective evalu-
ation of waveform coder quality, the goal has been to assess
effects other than loss. Speech is thus usually preprocessed,

by equalizing all test utterances to the same mean power (a
static equalization), to render loudness differences negligible.

The second term in (17) has two components. The first
component is due to the "correlated distortion" in the coder,
denoted by the term IlH(e) 112 and the second term is due
to the "uncorrelated" noise component E(eJw) which is
inversely weighted by the smoothed LPC spectrum G/A(e),
of the input speech signal. As seen from (17) these two
components of distortion are, in effect, weighted equally in
the log likelihood ratio.

In terms of predicting subjective quality, it is known that an
equal weighting of these two components is not the most
desirable [9]. However, the functional form of the log likeli-
hood ratio seems to be a good candidate for predicting subjec-

(10) tive quality when only one of the components of distortion is
significant. For example, in waveform coders in which there
is no loss of bandwidth or attenuation of certain frequency
bands, this measure can be useful in predicting subjective
quality [91. Also, in the case of vocoders where the predomi-
nant form of distortion is a spectral distortion (which might
be associated with the term IIH(e) 112), this measure has
been found to be a good candidate as a predictor of subjec-
tive quality [7].

When both components of distortion are simultaneously
present, however, the equal weighting of them in the log
likelihood measure does not appear to be the most appropriate
choice. The two components must be measured separately
and then combined, with unequal weighting, to obtain a useful
single measure. This has prompted an investigation of several
related measures, whose definition was motivated by the
model of Fig. 13 and (17).

A reasonable approach to decoupling these components is to
(13) define two log likelihood measures, 'D and 1N' one associated

only with the spectral distortion due to H(e) and the other
associated only with the additive noise effects E(e). Letting

(14) IH(e) I = 1 and G G, (17) reduces to

I E(e" 21
1N ?- !IH(e'')I=1 log i + -. I . (18)

L W(e ) j
If additive noise is not to be considered (E(eiW) =0, and as-
suming G G), (17) reduces to

1 IE(e'')=O = log [IIH(e'') 112]. (19)

(16) Based on these two independent measures one may then at-
tempt to combine them in an optimal way so as to predict
subjectively evaluated waveform coded speech quality.

'17'
A number of objective measures have been defined in the

'- -' literature based on variations of the formulas of (18) and (19).
In particular, one modification that has been relatively success-
ful [9] is a linear combination of a bandwidth measure and
noise-to-signal ratio measure which has a similar functional
form to that of (18). In an attempt to relate this measure
more closely to our knowledge of perception, the bandwidth
and noise/signal components of this measure were based on
an articulatory weighted frequency scale [6], [9] (i.e., the
bandwidth and the norm in (18) were computed over a
"warped" frequency scale which matched the well-known
articulation bands of speech). This led to the measure

(12)

and

(15)
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Q—A1 +A2

where

2

W(e) A

log [
II E(e") 1121 —

1 + II II +A3IW(e )IIA

lB
=B.::: eJ/sJ

1=1

e/ = the noise power in the jth articulation band;
= The signal power in the jth articulation band (after

filtering by any band-limiting filters, that are used by
the coder);

B = the number of articulation bands in the speech range
of 200-3200 Hz, (B 16);

= the bandwidth of the coder, measured as the percent-
age of bandwidth on an articulatory scale in the range
200-3200 Hz.

The bars above the equation indicate that the measurements
are an average over segmental (20—30 ms duration) measures
where the average is taken over sentence-length utterances.
The constants A1, A2, and A3 are weighting coefficients which
are obtained by matching the results of subjective and objec-
tive experiments. They were found for one experiment to be
A1 =10,A2 =1, andA3 =0.2, which matched the results of
the oblective measure Q to a 1-to-9 listener preference scale.
This measure has proved to be superior to conventional signal-
to-noise measures in predicting subjective ratings in two
different experiments [6], [8], [91.

V. CONCLUSIONS

Based on a generalized waveform coder distortion model,
an interpretation of the log likelihood ratio measure was
developed. The insight gained from such interpretation sug-
gests several alternate ways of accounting for effects of coding
distortions. The problem of developing objective measures
that reliably predict the subjective assessment of coded speech
quality is a complex one, which is further compounded by the
fact that it is often difficult to precisely establish such subjec-
tive assessments. Within this context, however, recent research
indicates that modified spectral distortion measures such as
those of (20) are better equipped to describe coder perfor-
mance than that of conventional signal-to-noise ratio measures.
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