
Abstract One of the major drawbacks of the standard pattern
recognition approach to isolated word recognition is that poor per-
formance is generally achieved for word vocabularies with acousti-
cally similar words. This poor performance is related to the pattern
similarity (distance) algorithms that are generally used in which a
global distance between the test pattern and each reference pattern
is computed. Since acoustically similar words are, by definition,
globally similar, it is difficult to reliably discriminate such words,
and a high error rate is obtained. By modifying the pattern similar-
ity algorithm so that the recognition decision is made in two passes,
improvements in discriminability among similar words can be
achieved. In particular, on the first pass the recognizer provides a
Set of global distance scores which are used to decide a class (or a
set of possible classes) in which the spoken word is estimated to
belong. On the second pass a locally weighted distance is used to
provide optimal separation among words in the chosen class (or
classes) and the recognition decision is made on the basis of these
local distance scores. For a highly complex vocabulary (letters of
the alphabet, digits, and 3 command words) recognition improve-
ments of from 3 to 7 percent were obtained using the two-pass
recognition strategy.

L Introduction

The standard' pattern recognition approach to isolated word
recognition is a 3-step method consisting of feature measurement,
pattern similarity determination, and a decision rule for choosing
recognition candidates. This pattern recognition model has been
applied to a wide variety of word recognition systems with great
success [1-31. However the simple, straightforward approach to
word recognition runs into difficulties for complex vocabularies, i.e.
vocabularies with phonetically similar words. For example, recogni-
tion of the vocabulary consisting of the letters of the alphabet
would have problems with letters in the sets 4 {A,J,K},

= ]B,C,D,E,G,P,V,T,Z1 etc. In the above case the problems are
due to the inherent acoustic similarity (overlap) between sets of
words in the vocabulary. It should be clear that this type of prob-
lem is essentially unrelated to vocabulary size (except when we
approach very large vocabularies), since a large vocabulary may
contain no similar words (e.g. the Japanese cities list of Itakura
[21), and a small vocabulary may contain many similar words (e.g.,
the letters of the alphabet).

It is the purpose of this paper, to propose, discuss, and evaluate
a modified approach to isolated word recognition in which a 2-pass
method is used. The output of the first recognition pass is an
ordered set of word classes in which the unknown spoken word is
estimated to have oôcurred, and the output of the second pass is an
ordered list of word candidates within each class obtained from the
first pass. The computation for the first pass is similar in nature
but often reduced in magnitude from that required for the standard
one-pass word recognizer. The computation of the second pass
consists of using an "optimally' determined word discriminator to
separate words within the equivalence class.

H. The Two-Pass Recognizer

Assume the word vocabulary consists of V words. The ii'"
word, v, is represented by word template R, i=l,2 V, where
each R( is a multidimensional feature vector. Similarly we denote
the test pattern as T (corresponding to spoken word q in the voca-
bulary) where T is again a multidimensional feature vector. For
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simplicity we assume that the pattern similarity and distance com-
putation is carried out using the "normalize and warp' procedure
described by Myers et al. [41. A "standard" word duration of N
frames is adopted, and each reference pattern is linearly warped to
this duration. We call the warped reference patterns R. Similarly
the test pattern is linearly warped to a duration of N frames, yield-
ing the new pattern T. A dynamic time warping alignment algo-
rithm then computes the 'standard" distance

D(T,R,) =-- d(T(k),R1(w(k))) (I)
k1

where d('i'(k),f(('2)) is the local distance between frame k of the
test pattern, and, frame '2 of the reference pattern, and w(k) is
the time alignment mapping between frame k of the test pattern,
and frame w (k) of the i reference pattern.

We define the local distance of the k5 frame of the test pattern
to the sv(k)th frame of the it5 reference pattern as d(k) where

d1(k) =d(T(k),R(w(k))) (2)
so D(T,R) of Eq. (1) can be written as

N
D(T,R) =-' d(k) (3)

5=1

If R1 corresponds to the correct reference for the spoken word t
(i.e. i=q), then we would theoretically expect the local distance
dq (k) to be independent of k, with d assuming values from a x2 dis-
tribution with p (8 for the system we are using) degrees of freedom
[2] for the case where the speech features are those of an LPC
model and the log likelihood distance measure is used for the local
distance. Thus if we plotted d5(k) versus k, we would expect it to
vary around some expected value d, where

d —E[d5(k)] =E[xi (4)

An example of a typical curve of dq(k) versus k is given in Figure
la. (a)
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Fig. I Curves of d1 (k) versus k for 3 cases.



If we now examine typical behavior of the curve of d1(k) versus
k when we see that one of two types of behavior generally
occurs. When.word q is acoustically very different from word i,
then d1(k) is generally large (compared to d of Eq. (4)) for all
values of k, and the overall distance score D of Eq. (3) is large.
This case is illustrated in Figure lb. However when we have
acoustically similar words, then generally d, (k) will be approxi-
mately equal to dq (k) for all values of k in acoustically identical
regions, and will be larger than d9 (k) only in acoustically dissimilar
regions. An example in which the dissimilar region occurs at the
beginning of the word (the first N frames) is shown in Figure ic.

The key point to be noted from the above discussion is that
when the vocabulary contains words that are acoustically similar,
and one of these similar words is spoken (i.e. it is the test utter-
ance), then the total distance scores for these similar words consist
of a random component (due to the variations of d(k) in the simi-
lar regions) and a deterministic difference (due to the differences in
the dissimilar regions). In cases when the size of the dissimilar
region is small (i.e. N << N in Fig. ic), then the random com-
ponent of the distance score can (and often does) outweight the
true difference component, causing a potential recognition error.
For highly complex vocabularies (e.g. the letters of the alphabet)
this situation occurs frequently.

One solution to the above problem would be to modify the
overall distance computation so that more weight is given to some
regions of the pattern than others. For example we could consider
a weighted overall distance of the form

N
W(k)d(T(k),R,(w(k)))

k—i
N

W(k)
k—i

where W(k) is an arbitrary frame weighting function, and the
denominator of Eq. (5) is used for distance normalization. The
problem with Eq. (5) is that a "good" weighting function is difficult
to define since the "optimal" set of weights is clearly a function of
the 'actually" spoken word (q) and the reference pattern being used
(i). Furthermore, any weighting that would help discriminate
between acoustically similar words, would tend to hurt the discrimi-
nation between acoustically different words.

The above discussion suggests that a reasonable approach would
be a 2-pass recognition strategy in which the first pass would decide
on an ordering of word "equivalence" classes (in which sets of
accfustically similar words occurred), and the second pass would
order the individual words within each equivalence class. For the
first pass recognition an unweighted (normal) distance would be
used, and for the second pass a weighted distance would be used.
We now discuss the issues involved in implementing such a two-
pass recognizer.

2.1 Generation of Word Equivalence Classes

Given the V vocabulary words v1,v2 we would like to
find a procedure for mapping words into acoustic equivalence
classes 4)j, j"—l,2,...,J, where J V. One approach is to use real
tokens of the vocabulary words and do dynamic time warping of the
feature sets and obtain word distances. From the word-by-word
distance matrices, word equivalence classes may be obtained using
the clustering procedures of Levinson et al. [5] in which the voca-
bulary words are grouped into clusters (equivalence sets) based
entirely on pairwise distance scores.

As an example of the use of the above techniques, consider the
39 word vocabulary consisting of the 26 letters of the alphabet, the
10 digits, and the 3 command words STOP, ERROR, and REPEAT.
These 39 words become clustered into the sets

B,C,D,E,G,P,T,V,Z,3,REPEAT, 4)2 = A,J,K,8,H,
= F,S,X,6, 4) = I,Y,5,4, 4) = Q,U,2, 4)6 L,M,N, 4) O
= R, 4' W, 4 = STOP, 4) = ERROR, 4)j 0, 1,

4)14 = 7, and 4) = 9, We will be discussing this vocabulary and the
resulting equivalence sets in Section III.

2.2 Determination of Class Distance Scores

Once all the vocabulary words have been assigned to one of the
J classes, the first recognition pass estimates an ordering of the
word classes in terms of class distance scores. The class distance
scores are computed as the minimum of the word distance scores,
for all words in the class, i.e.

= mm D(T,(1) , j=1,2 J (6)" 1'1

This computation is similar to the one used by Aldefeld et. al. [6]
for directory listing retrieval.

23 Choice of Weighting Functions for the Second Pass of Recognition

The output of the first recognition pass is an ordered set of word
class distance scores. For the second recognition pass, all words
within the top class (or classes) are compared to the unknown test
word pattern (T) using a weighted distance of the type discussed in
Eq. (5), and an ordering of words within the class is made. If
several classes have similar class distance scores, the words within
each of these classes are ordered in the same manner. Based on a
simple theoretical model, a reasonable choice for frame weighting is

WJ(k)
I <d1(k) > — < d,(k) >

[5(k) + tTd 1½
(k)

where d(k) is the local distance between repetitions of word i for
frame k, and dfl(k) is the local distance between spoken words j
and i for frame k, and where the expectations are performed sta-

(5) tistically over a large number of occurrences of the words v and v1.

By way of example, Figure 2 shows examples of plots of
<d,(k)> versus k and W(k) versus k for some typical cases.
Figure 2 shows a series of plots for the following cases:

1. (Fig. 2a) Curves of <dfl(k)> and for the case where
word i was the letter I, and word j was the letter Y. It can be
seen that <d(kl> (the solid curves) is approximately con-
stant whereas <dfl(k)> differs from <d(k)> only at the
beginning of the word (i.e. the first 8 frames). It can also be
seen that the curves of o (the dashed curves) are compar-
able for the cases j=i and for with only small differences
occurring in the first 8 frames.

2. (Fig. 2b) Curves of <dfl(k)> and for the case where
word i was the letter A, and where j corresponded to the
letters JK and 8. Similar behavior to that of Fig. 2a is seen in
that <d11(k)> is approximately constant, and <d(k)> is
larger than <d5(k)> at the beginning of the word, for words
J and K, and at the end of the word, for word 8. For the
word 8, the curve of is also fairly large at the end of the

word, indicating the high degree of variability in the plosive
release of the word 8.

3. (Fig. 2c) This part shows the results of averaging the data of
Fig. 2b over all j with j in the class of word i - i.e. class
weighting templates. In this case the curve of
shows flat behavior except at the beginning (due to J,K) and
end (due to 8). If storage of word weighting curves is burden-
some, the use of class weighting curves could be considered as
a viable alternative.

2.4 Generation of Distance Scores for the Second Recognition Pass

We have now shown how to assign words to classes, how to get
class distance scores for the first recognition pass, and how to assign
weights for pairs of words within a word class. The next step in the
procedure is the determination of the distance for the second recog-
nition pass based on the pairwise weighted distance scores.

D(T,R)

(7)
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2.5 Overall Distance Computation

III. Evaluation of the Two-Pass Recognizer

3.1 Class Recognition Accuracy for the First Pass
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Fig. 3 Block diagram of the overall two-pass recognizer.
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this procedure works in some practical recognition examples.
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Fig. 2 Examples of frame-by-frame distances for words within
word equivalence classes.

To see how this is accomplished, we define a pairwise weighted
distance D3, as

In order to test the ideas behind the two-pass recognizer, a data
base of existing recordings was used. The word vocabulary con-
sisted of the V—39 word vocabulary of the letters of the alphabet,
the digits (0-9), and the three command words STOP, ERROR, and
REPEAT. The training data for obtaining word and class reference
templates, and pairwise word weighting curves, consisted of 1 repli-
cation of each word by each of 100 talkers (50 men, 50 women).
The word reference templates (12 per word) were obtained from a
clustering analysis of the training data [3,5]. The pairwise word
weighting curves were obtained by cross-comparing all word tokens
within a word class, averaging the time aligned distance curves, and
computing both the averages and standard deviations for each
frame.

To test the performance of the overall system, two test sets of
data were used. These included:

1. TS1 - 10 talkers (not used in the training) spoke the vocabu-
lary one time over a dialed up telephone line.

2. TS2 - 10 talkers (included in the training) spoke the vocabulary
one time over a dialed-up telephone line.

Two sets of performance statistics were measured. For the first
recognition pass the ability of the recognizer to determine the
correct word class was measured. For the second recognition pass
the improvement in word recognition accuracy (over the standard
one-pass approach) was measured. The results obtained are
presented in the next two sections.

(8)

where i is the index of the reference pattern (i.e. one of the words
in the equivalence class) and j is the (assumed) index of the test
pattern (again one of the words in the equivalence class).

The quantity D1 of Eq. (8) is computed for all i,j pairs (with
i in .the word class with minimum class distance, and a matrix
of pairwise distances D is obtained. The word distance, D, is
obtained as

D

ji
(9) The ability of the recognizer to determine the "correct" word

class of the spoken word was measured using word templates and
obtaining class distance scores from the word distance scores. The
number of templates per word varied from 1 to 12 in the tests to

If we can make the assumption that the probability of a class see the effects of the number of reference templates on the class
error on the first recognition pass is significantly smaller than the accuracy. The K-nearest neighbor (KNN) rule was used to meas-
probability of a word error on the first pass, then the final distance ure class scores with values of KNN=1 (minimum distance), and
for each word of the minimum class is the distance as obtained on KNN=2 (average of two best scores).

the second recognition pass. However there are applications in The results of the class recognition accuracy tests are given in
which it is desirable to have a distance score for every word in the Figure 4. Figure 4 shows plots of class error rate (based on the top
vocabulary. Hence, in these cases, it is necessary to combine the C classes) as a function of the number of templates per word for
ordering from the second pass, with the distances from the first values of KNN'l and 2, and for C=l (top candidate), C=2 (2
pass. The basis for such a strategy is that distances on the first pass best classes), and C=3 (3 best classes).
are statistically more reliable than distances on the second pass,
whereas order statistics (within the class) are more reliable on the Several interesting observations can be made from Figure 4.

These include:second pass than on the first pass. One very simple way of combin-
ing distances and word orders is to obtain second pass ordering for 1. The KNN=1 rule performs consistently better than the
every word in the vocabulary (i.e. apply the method of Section 2.4 KNN'""'2 rule for class discrimination, for all values of C and
to all word classes), and then reorder the word list using distances Q. This result is in contradiction with the results of Rabiner et
from the first pass, and ordering within the class from the second, al. [3] who found significantly better performance for KNN=2
pass. than for KNN=l. The explanation of this behavior is that the

KNN=2 rule provides significantly improved, within-class2.6 Summary of the Two-Pass Recognizer
discrimination, (at the expense of slightly worse between class

Figure 3 shows a block diagram of the full two-pass isolated discrimination) and that when the only function is to deter-
word recognition system. In the next section we demonstrate how mine the class, the KNN="l rule is superior.
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Fig. 4 Plots of class accuracy as a function of the number of
templates per word (Q), class position (C), and KNN
rule (K). For a 15 class vocabulary.

2. With 6 templates per word, error rates of about 4% (C=l), 1%
(C=2), and 0% (C=3) are obtainable, indicating that the full
contingent of 12 templates per word is unnecessary for proper
class determination. Using 6, rather than 12 templates per
word reduces the computation in the first recognition pass by
50%. If we always use 2 or more word classes, the required
number of templates per word for the first pass can be reduced
to 4 with no serious loss in class accuracy.

The results shown in Figure 4 indicate that high accuracy can
readily be achieved in determining the correct equivalence class for
each word in a very complex vocabulary. Hence there would
appear to be no problems in implementing the first pass of the
recognition system.

3.2 Within-Class Word Discrimination for the Second Pass and Overall
Performance Scores

The two-pass word recognizer was tested on the words of TS1
and TS2. For each test set a total of 390 words were used (39
words X 10 talkers). For TS1, the word recognition accuracy (for
the best candidate) on the first pass was 78% and for TS2 (with
talkers from the training set) the word recognition accuracy on the
first pass was 85%. At the output of the second pass, the word
recognition accuracy for the best candidate was 84.6% for TS1 and
88.5% for TS2, representing potential improvements of 6.6% and
3.5% respectively. The reason that a larger improvement in accu-
racy was obtained for TS1 data than for TS2 data was that the accu-
racy on the first pass was lower for TS1 than for TS2 (where the
talkers were in the training set) and hence there was more room for
improvement within the word classes.

Figure 5 shows plots of the changes in accuracy that are
obtained for TS1 data when a threshold is imposed on the distance
scores at the output of the first recognition pass. The threshold
specifies that the second recognition pass is skipped if the distance
of the second word candidate is more than the threshold greater
than the distance of the first word candidate. Clearly this procedure
is a strictly computational one since low distance scores for a single
word on the first pass are highly reliable indicators that no second
pass is necessary. The data plotted in Fig. 5 shows the percentage
of cases where the actually spoken word comes in a lower position
on the second pass than in the first pass within the word class; it
also shows the percentage of cases when the spoken word comes in
a higher position on the second pass than the first pass, and the
difference (the improvement) between the two curves. All the
results are plotted as a function of the distance threshold for per-
forming the second pass computation. It can be seen from these
figures that the two-pass recognizer is not ideal - i.e. there is a
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significant fraction of words for which a worse position results at
the output of the second pass. However, on balance, it is seen that
a real improvement in recognition accuracy results, and it it this
improvement that makes the procedure a viable one.

N ThROVEMENT ON SECOND
PASS

Cl WORSE ON SECOND
PASS

0 DIFFERENCE OVERALL
IMPROVEMENT)

THRESHOLD

Fig. 5 Percentage improvement, decrease, and the resulting
difference in word position at the output of the second
recognition pass for TS1 data as a function of the dis-
tance threshold.

IV. Discussion

The results presented in the preceding section show that
improved recognition accuracy can be obtained via a two-pass
recognition algorithm. It was shown that the improvements were
both global - i.e. in an absolute recognition sense, and local - i.e.
within the classes of equivalent words. Although the proposed
two-pass recognizer has a number of possible implementations, it
was shown that the best choices were to use a reduced set of word
templates on the first pass, and to use all word classes that had rea-
sonably small distance scores on the second pass.
V. Summary

In this paper we have shown that a two-pass approach to isolated
word recognition is a viable one when the word vocabulary consists
of sets of acoustically similar words. The first recognition pass
attempts to determine accurately the class within which the spoken
word occurs, and the second recognition pass attempts to order the
words within the class based on weighted distances of pairwise com-
parisons of all words within the class.
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