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A Level Building Dynamic Time Warping Algorithm
for Connected Word Recognition

CORY S. MYERS, STUDENT MEMBER, IEEE, AND LAWRENCE R. RABINER, FELLOW, IEEE

Abstract—Dynamic time warping has been shown to be an effective
method of handling variations in the time scale of polysyllabic words
spoken in isolation. This class of techniques has recently been applied
to connected word recognition with high degrees of success. In this
paper a level building technique is proposed for optimally time aligning
a sequence of connected words with a sequence of isolated word refer-
ence patterns. The resulting algorithm, which has been found to be a
special case of an algorithm previously described by Bali! and Jelinek,
is shown to be significantly more efficient than the one recently pro-
posed by Sakoe for connected word recognition, while maintaining the
same accuracy in estimating the best possible matching string. An anal-
ysis of the level building method shows that it can be obtained as a
modification to the Sakoe method by reversing the order of minimiza-
tions in the two-pass technique with some subsequent processing. This
level building algorithm has a number of implementation parameters
that can be used to control the efficiency of the method, as well as its
accuracy. The nature of these parameters is discussed in this paper. In
a companion paper we discuss the application of this level building time
warping method to a connected digit recognition problem.

GLOSSARY OF TERMS

Test pattern.
Length (in frames) of test pattern.
Reference pattern v.
Number of reference words.
Length (in frames) of eth reference pat-

tern.
Super reference pattern consisting of a

sequence of concatenated reference
patterns.

Number of reference patterns in a string.
Length (in frames) of 1 concatenated ref-

erence patterns. (Also the frame of the
super reference pattern which corre-
sponds to the end of the lth reference
pattern.)

Dynamic warping path.
Local distance between mth frame of

the test pattern, and the nth frame of
the super reference pattern.

Global distance between test pattern and
super reference pattern.
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Accumulated distance to frame m of the
test pattern and frame n of the super
reference pattern.

Lower boundary function.
Upper boundary function.
Lower warping function constraint.
Upper warping function constraint.
Accumulated distance to frame m of the

test pattern, and frame n of the lth ref-
erence of the super reference pattern.

Accumulated distance to frame m of the
test pattern, and the last frame of the
lth reference of the super reference
pattern.

Local distance between themth frame of
the test pattern, and the nth frame of
the lth reference of the super reference
pattern.

Modified lower boundary function for
the lth level.

Modified upper boundary function for
the lth level.

The frame of the test pattern where the
optimal path maps e1 to cb(1) for the lth
referenceof the super reference pattern.

Minimum number of references in a su-
per reference pattern.

Maximum number of references in a su-
per reference pattern.

Distance between test pattern and super
reference pattern Rq(1) Rq(2) •
Rq up to frame m of the test pat-

tern.
Best super reference pattern of length L
that matches the test pattern.

Minimum value of D (m) over all pos-
sible super reference patterns of length

The index v,of the reference pattern R0,
that gives D(m).

Pointer at grid point (m, n) and level Ito
initial value e11 at level 1— 1 from
which best path to (m, n) came.

Position along the test pattern, at frame
m and level 1, from which the best

path to the grid point (m, N) came.
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Value of fr,(m) associated with the ref-
erence word v that gave Dr(m).

DTW distance between reference pat-
tern R and the portion of the test
pattern between frame b and frame e.

Best DTW distance between any refer-
ence pattern and the test pattern be-
tween frames b and e.

Reference pattern giving best DTW dis-
tance for the portion of the test pat-
tern between frames b and e.

The global search region at the lth level
in the level building algorithm.

Average length of a reference pattern.
Initial frame of reduced search range at

the start of the lth level.
Final frame of reduced search range at

the start of the lth level.
Local minimum of D1(m — 1, n) at

(m — 1)st frame of the test.
Range parameter for local minimum

search.
Distance threshold on accumulated dis-

tance at the mth frame of the test.
Minimum value of threshold on distance.
Slope of distance threshold curve.
Variable region at end of test pattern

within which warp can end.
Variable region at beginning of reference

pattern within which warp can start.
Variable region at end of reference pat-

tern within which warp can end.

I. INTRODUCTION

S INCE its introduction into the speech recognition area by
Sakoe and Chiba in 1971 [1], the technique of dynamic

time warping (DTW) has found widespread use in a variety of
speech recognition applications [2] —[13]. This algorithm has
proven itself reliable and robust for a wide variety of isolated
word recognition systems. Recently, extensions of the algo-
rithm have been investigated for application to the problemof
connected word recognition [9] —[131. The results obtained
in connected digit recognition studies have been sufficiently
promising to justify intensified study into the performance and
implementation of an efficient algorithm to solve this prob-
lem. It is the purpose of this paper to present a level building
dynamic time warping algorithm that can be applied to con-
nected word recognition problems. The algorithm will be
shown to be an efficient implementation of the two-level
algorithm proposed by Sakoe [10], and is more general but as
efficient as the "sampling" algorithm proposed by Rabiner and
Schmidt [111.

The proposed level building algorithm is a special case of the
stack decoding algorithm of Balil and Jelinek [13] ,which has
been proposed for use in a continuous speech recognition sys-
tem. Although there are several implementational differences
between the algorithm of Bahl and Jelinek and the one pro-

posed here, the major differences are in terms of emphasis and
presentation. Bahl and Jelinek used a probabilistic finite state
machine model for the input and used information theory to
formulate a probabilistically optimum decoding of the output.
In this paper we use a signal processing formulation, leading to
a series of algorithms which progressively lead to the full level
building DTW algorithm. Included in our presentation is a full
discussion of the implementational aspects of the algorithm in-
cluding the way in which backtracking is carried out—a major
step in the method. In order to keep the presentation rigor-
ous, we have developed a complete, but often cumbersome,
notation which allows the reader to link together the mathe-
matic concepts with the implementation. We know of no sig-
nificantly simpler notation which allows us to accomplish
these tasks. hi a companion paper a simplified verbal descrip-
tion of the level building algorithm is provided which gives a
more intuitive description of how this method works [14].

For readers who are already familiar with the stack model of
Bahi and Jelinek, it is worthwhile enumerating some of the
general relationships between the notations of the level build-
ing (LB) algorithm (as described in this paper), and the stack
algorithm. These include the following.

1) The test pattern T(m) of the LB algorithm corresponds
to the output sequence Y of the stack algorithm.

2) The frames of the reference pattern, R(n), of the LB
algorithm correspond to the set of states, S, of the stack algo-
rithm.

3) The accumulated distance vector D1(m), in = l,2, ,M
of the LB algorithm corresponds to the state vector Q(Y/X) at
the corresponding confluence node.

With these correspondences in mind, the reader should be able
to generalize other aspects of the two algorithms.

Before presenting a formal derivation of the new DTW algo-
rithm, it is worthwhile reviewing the differences between con-
nected word recognition and continuous speech recognition.
For the connected word recognition problem, it is assumed
that a set of reference patterns are available for each unit of
the vocabulary (generally the units are isolated words), and
that the connected word pattern can be matched by an abutted
sequence of isolated reference patterns. In this case the pur-
pose of the DTW algorithm is to provide the optimum time
alignment between the spoken input and the sequence of
abutted reference patterns, as well as to determine (in an ef-
ficient manner) which of the many possible strings of refer-
ence patterns best matches the spoken input. For continuous
speech recognition, there is generally no fixed set of reference
patterns, and, instead of dynamic time warping for alignment,
a segmentation and labeling scheme is used to provide an esti-
mate as to the spoken input utterance. Hence, major differ-
ences exist in both concept and implementation for connected
word and continuous speech recognition systems.

The outline of this paper is as follows. In Section II we re-
view the connected word recognition problem, and set up a
general DTW solution to the problem of comparing a given
abutted word string to the spoken input string. In Section III
we present the level building DTW algorithm and show how it
can be used to choose the string that provides the best possible
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II. APPLICATION OF DYNAMIC TIME WARPING TO
CONNECTED WORD STRINGS

IM
D' mm d(m,w(m))

w(m) Lm=i

subject to the endpoint constraints

(2b) i = argmin - [DA(m— l,n')]
L(n) n' U(n)

DA(m,n)d(m,n)+DA(m- l,).
3) Final solution D =DA(M, 0(L))

match to the spoken input string. A highly efficient imple-
mentation of the algorithm is given in this section. In Section
IV we compare the level building DTW algorithm to the two-
level method proposed by Sakoe [101, and show that, by
appropriately rearranging the order of minimizations, the two-
level algorithm becomes the level building DTW algorithm. In
Section V we show how modifications can be made in the im-
plementation of the level building DTW algorithm to increase
the efficiency and accuracy of the method. Finally, in Sec-
tion VI we compare the level building DTW algorithm to the
methods proposed by Sakoe [101, and Rabiner and Schmidt
[11] in terms of computation and storage. The advantages of
the new algorithm will be seen in these comparisons.

Rq(L)

( L-I)

Rq ( L—I)

(P)Nq(1)

Rq I)

RS

m(TEST)

Fig. 1. Illustration of dynamic warping alignment between test pattern
T and super reference pattern Rs.

rithm. If we denote the local distance between the mth frame
of the test pattern, and the nth frame of the super reference as
d(m, n), then the constrained endpoint DTW minimizes the
global distance D, defined as

Assume we have an unknown test pattern, T(m), m =1,

2, , M where, for each value of m, T(m) denotes a vector
of features, and Mis the length of Tin frames. We also assume
that T is to be time registered with a sequence of L reference

patterns Rq(1)(fl), Rq(2)(fl), where each Rqk,
k = l,2, . , L is one of a set of V reference patterns R0,
v = 1, 2, . . , V. The length of the uth reference pattern is
denoted as N0. As suggested by Sakoe [101 , we define a "su-

per" reference pattern, R(l)q(2) .. q(L) (which will be de-
noted as Rs when there is no ambiguity), as the concatenation
oftheL reference patternsRq(1),Rq(2), . . .

Rs Rq(1) Rq(2) Rq(3) Rq (la)

or

Rq(i)(fl — 0(0)), 1 + 0(0) n 0(1)

Rq(2)(fl 0(1)), 1 +cb(l)<n Ø(2)

R3(n)=
Rq(1)(fl0(l 1)), 1 +0(1 l)n'0(l)

Rq(L)(fl0(L 1)), l÷0(L- l)<n<0(L)

where the length function 0(l) is defined as

0(1) = Nq(k)

ç5(O)=O

The time registration of the test pattern T, with a "super" ref-
erence pattern Rs can now be proposed as a dynamic time
warping alignment problem as illustrated in Fig. 1. The opti-
mum time alignment path is denoted by w and we have

n =w(m)

as the functional mapping between test frame m and super ref-
erence frame n. Since Rs can be treated as a single reference
pattern (when q (1) is known for all 1), time alignment between
T(m) and R S(n) (i.e.,determination of w) can be accomplished
using a single application of a constrained endpoint DTW algo-

(4)

w(l)1 (5a)

w(M)çb(L) (5b)

and to prescribed local path constraints on w(m). We will as-
sume, for the moment, that w (m) is any nondecreasing func-
tion, but later we show how restrictions on the slope of w(m)
may be incorporated into the level building algorithm. Al-
though the DTW algorithm for minimizing (4) is well-known
[2], we summarize the steps in its implementation because of

(ib) their importance to the level building DTW algorithm to be
presented here. The steps in the niethod are the following.

Algorithm 1 -Constrained Endpoint DTW Algorithm
1) Initialize DA(0, 0)O,DA(O, n) °°,n

(2a) 2) Recursively, form = 1,2, ,M, and for n 'L(m), . .

U(m), compute

(3) argrnin f(x) is the value of x that minimizes f(x), DA (m, n) is

the accumulated distance along the best path from the point
(m = 1, n = 1) to the mth frame of the test pattern and the nth
frame of the super reference pattern, L (m) and U(m) are
"lower" and "upper" boundary functions on the values of n
for a given value of m in order to restrict the range of w to
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m

ALGORITHM 2

—"''n.,.

n

ALGORITHM Ifall within a reasonable set of the (m, n) plane, and where E(n)
and U(n) are lower and upper restrictions on the incremental t L
slope of w(m), i.e., w(m) - w(m — 1). Specification of L(m),
Um), Ln), and Un) are unnecessary, at this point, for
understanding the implementation of the DTW algorithm,
and we only assume that w(m) is nondecreasing, i.e., U(n) n. 22

III. A LEVEL BUILDING APPROACH TO DYNAMIC jjjL1-'TIME WARPING

The most important feature of Algorithm 1, as implemented
above, is not the specific sequence of steps, but the observa.

(L),NQ(L)
tion that the algorithm can be implemented in levels, i.e., one 1L
reference (of the super reference pattern) at a time. To see
how this can be done, we first defineD1 (m, n) as the local ac
cumulated distance to the mth frame of the test, and the nth 2,Nq(z -w;!Wm/
frame of the lth reference in the super reference pattern, i.e., (I ),I'lq ()1

I I
£ IDl(m,n)DA(m,n+4(l- 1)). (6)

We next define ó1(m) as the accumulated distance to the mth m

frame of the test, and the last frame of the lth reference digit, Fig. 2. Graphical description of the computatiOns of Algorithm 1 and 2
showing the detailed manner in which the computation is performed.i.e.,

.51(m) D,(m,Nq(,)) DA(m, ct(l)) (7a)
line n = çb(l) is saved (shown by the heavy dots), and used as a

10 for m = 0 set of initial distances for the next level.
o (m) foo

for m 0. (7b)
A. Extension of the Level Building Algorithm to Multiple

We now can compute the optimum path in levels as follows. Reference Patterns
Algorithm 2— Constrained Endpoint DTW Using Level Solu In the preceding section we showed that a given super refer.

tions ence pattern Rs could be time aligned with a test pattern T
1) For l 1,2,'" ,L, do steps 2)-4). using a level building DTW algorithm. We now show how this
2) Initialize D1(m, 0) = fi,_1(m), m = 0, 1," . , M. same approach can be applied to a set of variable reference
3) Recursively, for m = 1, 2,' . , M, and for n L,(m), patterns—i.e., when each, reference of the super reference pat-

U,(m), compute tern is one of a set of V reference patterns.
= argmin [D, (m — 1,n')] Before showing how this task is accomplished, several points

L(n) n' iJ(n) must be made. First, we define a set of "test" endpoints, e1,
such that,D,(m,n)D,(m- 1, )+d,(m,n).

w(e,)=(l), (10)4) D,(m)=D(m,Nq(l)),m1,2,"' ,M.
5) D =DL(M). i.e., e1 is the value of m (along the test pattern) where the op.

timal path w maps e1 to 0(l), the end of the lth reference pat-d1 (m, n) is the local distance between the mth frame of the
tern. Fig. 1 illustrates the relation between e1 and (1) for a

test, and the nth frame of the lth reference, i.e.,
simple example. If w(m), the warping path, is known, we can

d,(m, n) = d(m, n + ç(l — 1)) (8) determine the values e1 as

and L,(m) and U,(m) are modified lower and upper boundary e1 =w1 (0(l)), 1 = l2,"' ,L. (11)
functions to account for the lth level, i.e., Since we will be interested in comparing the distance scores

L,(m) = max (1, L(m) — 0(1 — 1)) (9a)
of a set of super reference patterns compared to a given test,
it is necessary to normalize the values of D. However, from

U,(m) = mm (Nq(1), U(m) — b(l — 1)). (9b) (4), we see that the normalization factor is M, the length of
the test, and this is independent of the super reference pattern.

A graphical description of Algorithms 1 and 2 is given in Thus, it is not necessary to normalize the values of D for two
Fig. 2. For Algorithm 1 (shown at the top of the figure) the different super reference patterns in order to compare their
computation is done in vertical strips (i.e., variable n for each distances.
m) which generally include frames from two or more refer. Another point that we must keep in mind is that, in general,
ences. lor Algorithm 2 (shown at the bottom of the figure) the length of the super reference pattern, L, is not known.
the computation is done in a sequence of vertical strips within Generally all that is known is a set of bounds on L of the form
each reference. Following all the vertical strips for the lth ref.
erence, the set of accumulated distances along the horizontal LMIN L LMAX. (12)
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argmin [D,(m— 1,n')]
L(n)(n'U(n)

D1(m,n)=d,(m,n)+D1(m- 1,).

6) D'(m)=D1(m,N0).

7) 5(m) mm [ñ(m)],ml,2," ,M.1vV
8) W1(m) argmin [ñ(m)1,m=1,2," . ,M.ivV
9) L argmin [b°(M)]

LMIN I(LMAX

D =Df(M).
\ S_

IU) J AW1(ei) 'W2(e2)

this we define Dr(m) as the accumulated distance to the mth
frame of the test, and the end of the lth reference pattern of
the best partial super reference pattern (to frame m). Then we
have

mm [Dq(1)q(2),...,q(l)(m)1 (14a)
q(1)q(2)," ,q(l)

with initial values

10 for m0
(14b)

t°°, for m0.
We can now modify Algorithm 3 to give the following.

(13) Algorithm 4

1) Initialize D(0) = 0, D(rn) = m 1, 2, - , M,
D(0)=°°,l=l,2,

2) For! = 1,2, -" , do steps 3) through 7).
3) For v = 1,2,, Vdo steps 4) through 6).
4) Initialize D1(m, 0) D1 (m), form = 0, 1, . . ,M.
5) Compute using Rq(j) (at the lth stage), for m = 1, 2, .

M, n L1(m)," - , U1(m)

Hence, we must worry about variable length super reference
patterns as well.

Finally, for a given super reference pattern R(1)q(2).. . q(J)
we define the distance Dq(1)q(2). ..q(J4(lfl) as the distance
provided by DTW Algorithm 2 when matching the entire super
reference Rs to the portion of the test pattern between frame
1 and framem. ThUs,D=Dq(j)q(2)...q(L)(M).

We can now state the connected word recognition problem
as the solution to the minimization

mm [ mm (Dq(1)q(2)...q(L)(M))1,LMINLLMAX q(1),q(2),",q(L)

i.e., minimize the distance D over all possible super reference
patterns of all possible lengths. The sequence q(1), q(2), .
q(L) which minimizes (13) is chosen as the estimated test
pattern.

In order to solve (13) efficiently, we wish to use a level
building approach of the type described in Algorithm 2, i.e.,
where we decide on the proper lth reference pattern before at-
tempting to find the proper (1 + 1)st reference pattern. To
show how this can be done, the following theorem is needed.

Theorem: If there exists a super reference pattern RrS1 r2 . rj'
such that,

Drjr2 ...r1(e,) D2 ...1(ei),
for any R1 2 then Dr1 . yjj1 (ej÷ 1) D132. -s1r1.
(e1+1) for any R12...81 and any Rr1+1. (The proof of this
theorem is given in the Appendix.)

This theorem may be interpreted as saying that if the best
sequence of I reference patterns to match the test up to frame

e1 is Rr1 R.2 - Ri.,, then this set of! reference patterns
wifi be the first I reference patterns of the best sequence of
length I + 1 where the (1 + 1)st reference pattern corresponds
to the portion of the test pattern between frame (e1 + 1) and
frame e11. (Note that f RrS1 . . . r and R1 . . . end at different
frames along the test then the above theorem need not be
true.)

Using the above theorem, we can now find the optimal string
of length L as follows.

Algorithm 3

1) For 1=1,2," ,LMAX do steps 2 and 3.
2) Forvl,2," ,V,compute

Dr1 r2 ri_i (e1) from steps 2)—4) of Algorithm 2.

3) r1 = argrnin [Drir2.1 (v V
,1\ DS —nI"P) "L "rlr2"rL
A is the best super reference of length L. It is readily

seen that, at every level 1, this algorithm finds the reference
pattern which minimizes the incremental distance at that level.

Algorithm 3, however, has a major flaw—namely, it assumes
that the test endpoints e1 , e2, , e are known at each level.
This, however, is not the case since the e1 are not determined
until the entire path is known. Hence, Algorithm 3 must be
modified so that, for all possible sets of e1 , e2, , eL, the
best sequence of L reference patterns is determined. To do

The array W1(m) records the index v of the reference pattern
R0 which gives the best path to the end of the lth level at the
mth frame of the test. The array D1° (m) is the accumulated
distance to the end of the lth level using reference pattern R,
at the frame m of the test.

Algorithm 4 may be looked at as building up all possible
paths, one reference pattern at a time. Step 2) initiates build-
ing paths by levels, 1. Step 3) loops through all reference pat-
terns at level 1. Steps 4)—6) perform the dynamic program-
ming (DP) recursion for a fixed reference pattern q(l) at level
1. (This is similar to the computations of the level building of
Algorithm 2.) Steps 7) and 8) finds the best path for all pos-
sible references at the end of the lth level, and records the ref-
erence pattern R0 associated with the best path. Step 9)
chooses the best length for the best super reference pattern,
and step 10) recovers the best super reference pattern.

Fig. 3 illustrates a typical example of the use of Algorithm 4.
For simplicity we assume that L =4 is known, that w(m) is
restricted to be in the parallelogram shown in Fig. 3, and that
V= 2, i.e., only two reference patterns exist. We denote the
two reference patterns as A and B. This figure shows, at each
level, the best reference pattern associated with the mth frame,
Rw1(m), and the best path from the previous level. For ex-
ample, at the first level, the reference pattern can end at any
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m(TEST)

of building up warping paths for a two refer-
ence case.

one of six different frames along the test. If it ends at either
of the first two frames then the best reference is A, and if it
ends at any of the other four locations the best reference is B.
At each level, for all possible ending frames, the best reference
is obtained, until at level four a unique best reference is ob-
tained. To obtain the best super reference pattern, we trace
back from the end of the test, giving the pattern R3 =RB
RA RA ® RB, with endpoints e1, e2, e3, and e4 M along
the test pattern.

B. Implementation of Backtracking
The last step in Algorithm 4 recovers the optimum super

reference string R S by concatenating patterns from a set of
test pattern ndpbints, e1, I =1, 2, . . , L. In order to obtain
the set of endpoints, some form of backtracking must be
added to Algorithm 4. The backtracking information must be
recorded during the computation of D1(m, n) because the best
path to the point (m, n), at the lth level, is unique—hence,
there .is a unique ending point e1 . associated with each grid
point (m, n). Fig. 4 illustrates this key point. It is assumed
that the optimum path to the point (m, n) at the lth level
came from the point (ej_1 , (l— 1)) at the end of the (1- 1)st
level. Hence, we define a "from frame" array F1(m, n) as the
value of e1_1 from which the best path to (m, n), at the ith
level, using reference q(l), came. Then we can backtrack a
fixed super reference pattern (Algorithm 2) by the following
steps.

Backtracking Algorithm
1) Forl=1,2, ,L,dosteps2)—4).
2) For m = 0, ,M, initialize F1 (in, 0) =m.
3) For m = 1,2," , M, n = L1(m),." , U1(m), compute
and D1(m, n) as in step 3), Algorithm 2, and compute

F1(m,n)'F1(m- l;).
4) F1 (in) F1 (m,N0),m1,2,",M.
5) eL =f.

6)e1=F,1(e11),l=L—1,L—2,",l.

P1(m) keeps track of the position along the test at the end of
the (1— l)st level from which the best path to (m,N) came.
F1(m, n) is computed as F1(m - 1,) because the best path
to (m, n) came from the same place as the best path to each
intermediate point of the path, namely (m — 1,fi). Fig. 5
shows an example of a time alignment along with several local
paths. It can be seen that FL(eL) is eL_i ,and that, using the
F1(m) array, it is possible to trace back the endpoints at each
level.

With the above discussion, it is fairly straightforward to
apply a backtracking procedure to Algorithm 4 (i.e., when the
super reference patterns are variable). We define F?(m) as the
value of F1(m) associated with the best reference word W1(m)
(smallest distance) at the lth level, and with position m of the
test. We also define F'(m) as the value of F1(m) for reference
R. Thus, the total level building DTW algorithm becomes
Algorithm 5.

Algorithm 5—LevelBuilding DTW Algorithm
1)InitializeD(m)=0,form=0,D(m)=°°,m=1,2,

2) For! = 1,2," , do steps 3) through 7).
3) Forv=l,2, , V,dosteps4)through6).
4) For in = 0, , - ,M, initialize D,(m, 0) = D_1(m),

F1(m, 0) = m.

5) Form = l,2,,M,andn=L1(in),,U1(m)com-
puteusingR R.

= argmin_ [D1 (m
— 1 , n')I

L(n) n' U(n)

D1(m,n)d1(m,n)+D1(m- 1, )

Pg
(Inn)
F)m,n)ee_

I e1 M

m (TEST)

Fig. 4. Backtracking pointer from grid point (m, n) to initial value e1_1
at the lth level.

Fig. 3. Typical example

e_
m(TEST)

Fig. 5. Example. of time alignment with several local paths.
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F,(m,n)F,(m— l,).

6) Form = l,2," ,M,compute

D(m) =D1(m,N)

fr(m) =F1(m,N).

7) Form=1,2," ,M,compute
(m) = mm [fi(m)]

1 V

W1(m)= argmin [(m)]1v V

pB(m)wl(m)(m)

8) L = argmin
LMIN I'LMAX

D =i5(M).

9) eL =i1:.
ln\ _z'B ( — — —.J) e1—r11ej÷1 , — ,

11) R8 RW1(e1) R W2(e2) • ®RWL(eL).
Algorithm 5 represents a complete, level building approach

to optimally matching a concatenated set of reference patterns
(with variable references) to a given test pattern. The output
of the algorithm is the optimal number of reference patterns,
L, the minimum string distance D, the references in the string

Rw1(ej), Rw2(e2), . . ,Rw(e), and the set of test pattern
endpoints, e1, that match the last frame of reference patterns
in the string.

IV. RELATIONSHIP OF LEVEL BUILDING ALGORITHM 5
TO Two-LEVEL DTW ALGORITHM OF SAKOE

In a recent paper, [10] Sakoe proposed an alternative DTW
algorithm, called the two-level DP matching algorithrt, for ob-
taining the "best" match to a given test string of words. The
algorithm may be summarized as follows.

Algorithm Si (Sakoe)
I. Word Level Matching

1) Compute word distances D(b, e, v) for 1 b '(eM
and for 1 v V where D(b, e, v) is the DTW distance be-
tween reference pattern R and the test pattern, subject to the
endpoint constraints w(b) = 1, w(e) = N, i.e., reference R
matches the portion of the test pattern from frame b to
frame e.

2) Compute best beginning-ending distances, (b, e) as

mm [D(b,e,v)]1 v V
P(b,e)= argmin [D(b,e,v)]

1 u V
where P(b, e) keeps track of the best reference pattern that
matches the test between frames b and e.

II. Phrase Level Matching
1) Initialize D (0) = 0. (16)
2) Compute, fore = 1, 2, ,M,andforl 1,2,",

LMAX, the quantities

1 (e) = argmin [ñ(b, e) i- i5j1(b
— 1)] — 1 (1 7b)1 b e

where r(e) is the ending point, along the test, of the (1— 1)st
reference pattern in the sequence which generates the mini-
mum distance D1(e).

3) Find best length of sequence, L, as

L = argmin [Dj9(M)}.
'MIN lLMAX

4) Set string endpoints as

eL M (19a)

e0 =0. (19b)

5) BacktrackforlL- l,L- 2," ,1,to give

e1"1(e1+1). (20)

6) Recover best reference pattern indices u1 , v2, , V as

= (e11 + l,e1), 1 = 1,2, . ,L.
7) Form best string as

(22)

We now show how Algorithm 5, the level building algorithm,
can be expressed as a single, but important modification of
Sakoe's algorithm. If we substitute (15a) into (17a) we get

Df(e)= mm [ mm (D(b,e,v))+b1(b- 1)]. (23)Ibe 1vV
Ifwe reverse the order of the minimizations we get

D(e) = mm [ mm e, v) +ñ 1(b
- 1))]. (24)i<u<V 1be

With the reversed order of minimizations we can rewrite Algo-
rithm Sl to the modified form that follows.

Algorithm S2
I. Word Level Matching
1) For 1 b e M, andfor 1 V,computeword

distancesD(b, e, v).
II. Phrase Level Matching

1) InitializeD(0)0.
2) Forl1,2, steps 3) and 4).
3)Fore=2,3,",M,andforvl,2,",V,compute

first minithization results

ñ (e) = mm [D (b, e, u) ÷ fl 1(b
—

1)1 (25a)1 be
(iSa) e) argmin [D(b,e,u)+b1(b— 1)]— 1 (25b)1 be
(1 5b) where D (e) is the best distance to frame e of the test when

the lth reference pattern is R, and F,v (e) is the frame along
the test at which the (1— 1)st reference pattern ended.

4) Compute second minimization

(18)

(21)

mm [(e)] (26a)1 v V
1(e)r argmin [(e)] (26b)

1 L( V

ñf(e)" mm [(b,e)+1(b- 1)] (17a) e)(e) (26c)1be
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where W1(e) is the reference pattern at level / and test frame e
which minimizes D(e).

5) Find best length L as

L = argmin [ñ(M)].
LMIN 'ILMAX

6) Set endpoints

eL M. (28)

7) Backtrackforl=L—l,L—2,,l,giving

ei=P?÷1(ej+i). (29)

8) Recover best reference patterns as

= W,(e,), 1 = 1,2, ,L. (30)

9) Form best reference string as

Rf=RVleRV2$..RVL. (31)

Algorithm S2 is important because the computation of
D'(e) can be made for all e (i.e., I e M),and for a fixed
v (reference pattern) in a single time warp, given D,1 (m),
m = 0, 1," , M, without having to compute D(b, e, v), sep-
arately. This can be accomplished as follows.

Algorithm S3—[Replacement for steps I-i), and 11-2) and 3)]

1) Initialize, form 0,1,"

Dj(m, 0) =1(m)
F(m,0)m.

2) For m = 1,2, .. , M, and n L(m),- .. , U(m), (where
N is the length of the vth template) recursively compute

n - argmln [D,(m— 1,n)] (33)
L(n)n' U(n)

D1(m,n)D,(m-' l,)+d1(m,n)

F1(m,n)=F1(m- 1,).

3) Fore =2,3, ,M, get final output

ñ'(e) D1(e,N)
fr'(e) =F,(e,N). (35b)

It can be seen that the computation of Algorithm S3 along
with steps 2).-9) of Algorithm S2 are essentially identical to
the computation of Algorithm 5 of the previous section, thus
completing the proof that the two-level DP matching algo-
rithm of Sakoe is essentially identical to the level-building
algorithm. The reason we have described the level-building
algorithm in such detail is because it is an orderof magnitude
more efficient than Sakoe's two-level DP matching algorithm.
We will examine issues of computation and storage of the two
algorithms in detail in Section VI. First, we devote more
attention to implementational aspects of the level building
algorithm.

V. IMPLEMENTATIONAL ASPECTS AND MODIFICATIONS
OF THE LEVEL BUILDING DTW ALGORITHM

We have shown that a level building DTW approach can be
used to match a concatenated series of reference patterns to a

Fig. 6. illustration of the use of lower and upper boundary constraints
on the global region of paths in the level building DTW algorithm.

connected test string. The basic principles used in formulating
the algorithm were backtracking path recovery, and local
optimality of the path. By local optimality we mean that the
best path from the grid point (1, 1) to the grid point (m, n)
that goes through the grid point (m', n') includes, as a subsec-
tion, the best path from (1, 1) to (m', n'). Hence, by proceed-
ing from left to right, the algorithm finds the best partial
string, at each level, and for each value of m, and recovers the

(32a) correct path by backtracking from the end of the string.
There are a number of computational aspects of algorithm S

(32b) that should be discussed in order to better understand how
this algorithm is used in practice. In this section, we discuss
these questions.

A. Range Restrictions on n

If we examine the computation of Algorithm 5 for obtain-

(34a) ing the accumulated distance at grid point (m, n) at level 1,
D1(m, n), we see that the global range on n is restricted by a

(34b) set of lower and upper boundary constraints, L (m) and U(m).
Typically, these boundary constraints restrict the area of the
(m, n) plane in which the best path can lie. For example a

(35a) standard set of global constraints is

(m+l)
L(m)

2
(36a)

U(m) 2(m - 1) +1. (36b)

The global set of constraints of (36) is independent of n and
merely restricts the path w to lie in a subset of the (m, n)
plane, defined by lines of slope - and 2 originating at the
point (1, 1). Fig. 6 illustrates how such path constraints affect
the computation of the level building algorithm. We see that
at the first level, the DTW recursion needs to be computed
only for the shaded region G1, and not for the entire (m, n)
plane. If we define E1 as the ending region (along the m axis)
at the end of the first level, then it should be clear that the
width of E1 varies as the length of the reference patterns vary.
Hence, the width of the ending region, E1, is a superposition
of the widths of the ending region over the set of V reference
patterns.

Generally, a set of local path constraints is superimposed on

(27)

m (TEST)
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Rqi)

a

/1
___—

—- / /
/

—

mITESTI

Rq(1)

Fig. 7. The global search regions for the level building algorithm with
LMAX possible references in the string.

the warping function to ensure that the warping path w (m)
does not change drastically as m increases. For example, if we
require that

0w(m)-w(m—l)2 (37a)

1 w(m)- w(m- 2), (37b)

m(TEST)

MT

sj S2

Fig. 8. Illustration of computational technique to reduce search range
in the n dimension.

super reference pattern. This region is illustrated as the shaded
i.e., the Itakura constraints, then the upper and lower local region in Fig. 7.
constraints become It is possible to estimate the area, in the (m, n) plane, cov-

ered by the level building dynamic time warping algorithm.L(n) = max (0, n - 2) (38a) For a string of length L = LMAX, and an unconstrained warp-
In if w(m — 1) w(m — 2) ing function, the average total area is

(38b)n- 1 if w(m- l)—'w(m-2) AT=LMAX NM (40)

If we examine the size of the global regions, G,, at the lth where N is the average length of a reference pattern. When the
level, as shown in Fig. 6, we see that G, grows continuously range is restricted to lie in the shaded region of Fig. 7, the av-
with 1. It should be clear that as 1 approaches L, the size of erage reduced total area is approximately
the actual string, the global region G1 should become small

—L M 3 41since the path must end at the point (M, Ø(LMAX)). As such AR — MAX

further restrictions on L(m) and U(in) may be imposed by assuming i.e., the test length is about LMAX
the boundary conditions at the end of the test. Such restric- times the average reference length. Hence, about a three to
tions are illustrated in Fig. 7 which shows a line of slope one reduction in computation is achieved by using appropri-
(from the end of the last reference) constraining the upper ately defined lower and upper boundary constraints.
region of the (m, n) plane. However, unlike Fig. 3 there is
no line of slope 2) from the point (M, (LMAx)) since it is B. Range Reduction Techniques
not known, a priori, whether L =LMAX. Thus, instead of the Several computational reductions may be incorporated into
global line of slope 2) coming from the end of the test, there is the level building algorithm. One simple one is to reduce the
a constraint line of slope 2) from each of the possible sets of range at any given level, as illustrated in Fig. 8. Part (a)of this
ending points (M, (l)), I =LMIN, , LMAX. These path re- figure shows the original search region (bounded by the dashed
strictions, however, are applied only at the given level, since lines), and the reduced search region (bounded by the solid
the correct length of the string, L, is not known during the lines). The search range is reduced so that regions of the (m, n)
computation of D1 (m, n). plane, where the paths have already accumulated a large dis-

Based on the above discussion, a reasonable set of lower and tance, are not considered as potential starting points for the
upper boundary constraints would be of the form next level. The method used to reduce the search range is ii-

r . lustrated in part (b) of Fig. 8. At the beginning of the Ith level,
L (m) = max

+ 1
2 (m - M) + cb(l) I (39a) the average distance to any ending point m at the end of the

2 J (I- 1)st level is computed, as well as, the minimum, _,
U(m)min [2(m- l)+ 1, (m-M)+(LMAx)] (39b) 1.1(m)1= mm (42)

where (LMAX) is the maximum length of the concatenated 1 a m M L m
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D1(m,n)- D,.,(F1(m,n)))
LD1(rn, n) = rn — F1(rn, n)

Rq(%)

Based on the value of çA .-, two values SI' and S? are found via
the rule

(rn)
Slargestm suchthat

m >1_i

MT for all m <5/ @3 a)

2 m
S1 = smallest m such that >

m

Mr for allrn>S2 (43b)

where MT is a parameter controlling the size of the starting
range. As MT approaches one, the values S/ and 5/ approach
each other, and the width of the reduced range approaches a
single point. (This is equivalent to making an unequivocal de-
cision about the correct reference at the end of the (I — 1)th
level; in this manner each level is essentially an independent,
constrained endpoint, DTW match.) As MT approaches 00the
reduced range is the same as the original range.

Fig. 8(b) illustrates the importance of using a reasonable
value of MT. In this example, the curve of Dj, (m)/m has two
distinct minima. This generally represents two possible ending
regions for the (1— 1)st reference, and any range reduction
which eliminates either one of them could potentially lead to
errors in obtaining the best string match. This example also
illustrates the importance of searching for S1' and 5/from the
extremes of the range, since it can be seen that the curve ex-
ceeds the threshold between S/ and S/. In this case we do not
want to reduce the range to eliminate this region.

It is straightforward to incorporate the range reduction tech-
nique into Algorithm 5 by replacing step 4) with the following.

Form = 0, 1, . . ,M, initialize1 () if S'<m<S2
Dl(m,0)1

li I

otherwise

F,(m,O)rn if S/<rn<S/
where

S/ 5/ = 1.

In addition, the modified upper and lower boundary func-
tions U1(m) and L1(m) are now given by

Lj(m)=max
[1

(m S/)

2(rn-M)+N] (44a)

U1(m)=min
[Nv2(rn_Si)

(rn-M)

m(TEST)

Fig. 9. Illustration of range reduction in the n dimension using a local
minimum search.

starting region (along the rn-axis), but also by following the
local minimum as is done in a local minimum DTW algorithm
[7]. In this case the local accumulated distance function
D1(rn, n) is computed for c(m) - n <c(rn) + €, 1 <
m <M,where

c(rn) argmin [D1(m— l,n)] (45a)
c(m—1)—em c(m—1)+e

c(l)1. (45b)

It should be noted that the local minimum algorithm must be
modified so that the lower boundary always includes a valid
starting point if there is one, i.e., the lower boundary c(m) —
must be set to 1 if S/ m ' 5/. This constraint is needed to
prevent the loss of possible path starting points. Similar local
minimum algorithms can be used where e is a variable which
is adapted to the data—i.e., e is large when the distance along
a vertical strip is close to the. local minimum over a broad
range, and is small when the distance along a vertical strip
increases rapidly away from the local minimum..

A further reduction in computation may be gained by the
use of accumulated distance thresholds [8]. A distance
threshold is used to abandon further comparisons for a given
reference pattern R, at a given level 1, when the incremental
accumulated distance at the level exceeds a given threshold.
We define the average incremental distance to (rn, n) at the
lth level as

(46)

whenever LD1(m, n) exceeds a threshold of the form

+ (LMAX — 1)NMAX + N0j (44b)

(m) = TMIN + TMAX - (rn - F1(m, n)). (47)

The, search for the current reference is abandoned. It should
be noted that the threshold test cannot be applied until all

where NMAX is the length of the largest reference pattern,
The last term in (44b) reflects a line of slope coming from
the point rn =Mas in Fig. 7.

valid starting points are tried, i.e., until rn > 5/.

C. Test Endpoint Constraint Relaxation

Another method of range reduction is illustrated in Fig. 9. One simple modification to the level building algorithm is
Here we show the range reduced by not only shrinking the to relax the ending condition that (L) = w(M). Rather than
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forcing the path to end at frame M of the test pattern, more
flexibility in the algorithm is achieved if we allow the path
to end within the region from M - END to M. (Clearly if
SEND = 0 we are back to the constrained endpoint case.) The
use of a variable ending region is important because it reduces
the burden of the endpoint detector (in the recognizer) to
find precisely the ending frame of the spoken string of words.
The endpoint modification can be implemented by searching
for the best string (lowest normalized distance) within the
modified ending region. Thus, in Algorithm 5 (Section 111-B)
we replace steps 8) and 9) with the following:

8) (L,E) argmin argmin [(e)/e]
LMIN'ILMAX M-IEND(eM

9) eL E

where E is used to record the ending point.

D. Modified (Partial) Reference Patterns
Another modification to the level building algorithm is

suggested by the work of Rabiner and Schmidt [11]. They
proposed that the time warping not use the entire reference
pattern, but instead be allowed to eliminate a portion at the
end of the reference pattern. This type of modification ac-
counts for some of the gross features of coarticulation be-
tween consecutive reference patterns. Another interpretation
is that the reference patterns, obtained generally from isolated
occurrences of spoken words, are generally longer than the
word spoken in a string, and this type of modification ac-
counts for some of the word shortening in a connected string.
To implement this modification, we require that, at any
level, the warping function end somewhere between frames
N — 6R2 and N of the reference pattern, rather than being
forced to end at frame N, as is normally the case. If the
parameter tSR2 is set to 0, then this modification is transparent
in the algorithm. In general, one would expect that the maxi-
mum number of frames which can be eliminated from the end
of the reference pattern, 6R2 should be a function of the ref-
erence pattern itself. However, for simplicity, we assume 6R2
is a constant for all reference patterns. To implement a modi-
fied reference pattern, step 6) of Algorithm 5 is modified to
the following.

6) Form =1,2, ,Mcompute
= argmin [D1(m, n)INU-8R2 n 'N

ñ'(m) D1(m, ff)

P1L(m) =F,(m, i)

where i is used to indicate the best ending point in the refer-
ence pattern.

A similar modification can be used in the level building algo-
rithm at the beginning of reference patterns. If we assume
that the warping function can begin anywhere from frame 1 to
1 + of the reference pattern (where 6R1 =0 says that we
use the whole beginning region) then we need to modify step
5) of Algorithm 5 to give the following.

The modified local constraints say that if n is within the ex-
panded starting region of the reference pattern (within the
first + 1 frames), then the previous accumulated distance
can come from the initial conditions at the end of the previous
level.

E. Multiple Candidate Strings

For many applications of connected word recognition, it is
required that more than one super reference pattern be given
as a possible recognition candidate. The level building algo-
rithm, as described here, is not directly applicable to obtain
the best Q sets of super reference patterns because only the
information on best candidates is retained. One reasonable
way to generate a list of plausible candidates is to retain the
data (distances, backtracking pointers, etc.) on both the best
and second best choice at every level and every ending point.
To generate alternate candidates, the normal backtracking pro-
cedure is followed, but second best references are inserted in
place of first best references at the different levels. It should
be noted that this technique is not guaranteed to generate the
best Q candidates; however, it does give a reasonable list of
candidates.

F. Use of Syntactical Constraints

The level building algorithm, as described in this paper, can
only be applied to an unrestricted set of super references—i.e.,
without syntactical constraints among the references in the
string. It is easy to modify the level building algorithm, how-
ever, if we observe that, just as the best way to any level does
not depend on any future level, the best way to any state in a
finite state machine (FSM) (with no loops) depends only on
past states. We shall assume that the syntax may be repre-
sented by a FSM M (S, V, z, Z) where S is a set of states
{s0, Sj, , s_} (j3 = IS!), V is a vocabulary (labeled 1, 2,

'y), ('y = V!), is the set of allowable transitions, i.e.,
: S X V-÷S s ES is the initial state, and t C Z is the set of
final states. Furthermore, we assume that M has no loops and
that the states s, s are ordered so that if i /
then there is no path from s to s. Thus, the best path to state
s' and frame m of the test depends only of states s,, for 0
i '( i'. In this case, the algorithm is similar to the level build-
ing algorithm with the following exceptions.

5) For m = 1, 2, , M and for n = Lj(m),., U1(m),
compute using R =R0

( _argmin - [D1(m— 1,n')}

I

' =O,orL(n)n' U(n)

for

- argmin [D,(m— l,n')]
L(n)n"U(n)

for

D1(m,n)d1(m,n)+D,(m- 1, )

F,(m,n)F1(m- iJI).
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TABLE I-A
COMPUTATIONAL COMPARISONS OF CONNECTED WORD DTW ALGORITHM

Les ci

Building
Two-Level
DP Warp Sampling

Reduced Level
Building

Number cl
Basic Time Warps L, V M - V 1. V L V

Sue ci
Time Warps N -31/3 N (2R+l) N 2i±l) N (2s+l)

Total Computation
ForDistances L,,15-V-N 31/3 M-V-N-(214+l) L-V--N(2i+I) L-V-N(2r±l)

Storage 3 31 2 31 1216+1) 0 3- M L1,

1) The results are built up by states s0,s1, - , ,rather
than by levels.

2) In building up to a particular state, instead of using all
references of the vocabulary, we use all transitions to that
state.

3) The output of one state is used as the input to another
state when there is a transition joining the two.

4) Backtracking must keep track of both previous endpoints
and previous states.

Such an algorithm requires I time warps—i.e., on,e per
transition, where II Vt SI since z(s, q) need not be de-
fined for a11s and q. The algorithm also requires 4ISIMstor-
age locations—i.e., one for each of the accumulated distances,
the associated word, the associated previous ending point, and
the associated previous state.

VI. COMPUTATIONAL COMPARISONS OF CONNECTED
WORD DTW ALGORITHMS

It is worthwhile comparing the level building DTW algorithm
to the two-level DP warp of Sakoe [101, and the sampling
DTW algorithm of Rabiner and Schmidt [11J. The compari-
sons will be in terms of both computation and storage for pro-
cessing an L-digit string.

A. Computation
For the level building algorithm with local and global range

constraints of 2 to 1, and - to 1 (i.e., the range falls within a
parallelogram of the type shown in Fig. 7), the number of
local distance calculations of Algorithm 5 is

NDAS = VLMAX NM/3 (48)
where N is the average duration (in frames) of a reference pat-
tern, LMAX is the number of levels (if L <LMAX, then gen-
erally LMAX levels will not be required), V is the number of
references per level, M is the duration of the test pattern, and
N .M/3 is the average number of distances at each level.

For the two-level DP warp of Sakoe, the number of local
distance calculations is

NDs1 =VMN(2R+1) (49)

where R is a range parameter for the fixed range DTW algo-
rithm used in this method [5}.

For the sampling DTW algorithm of Rabiner and Schmidt
[11] , the number of local distance calculations is

TABLE I-B
TYPICAL COMPUTATIONAL REQUIREMENTS FOR THE CASE LMAX= 5, V = 10,

M=I20,N=35,=8,=I2,R=12,=1,5,L=4
DTW Algorithm

Level Two-Level
Building OP Warp Sampling

Reduced Les'el
Building

Number of
BusicTimeWarps 50 1200 60 40

Size of
Time Warps 1400 875 595 075

Total Computation
For Distances 70.000 1,050,000 35,700 35.000

Storage 1 1000 6000 0 1800

NDRS = V-L -N-(2+ l)y (50)

where is a range parameter for a local minimum DTW algo-
rithm [7] , and 3 represents the average number of candidate
strings being processed. (Rabiner and Schmidt [11] showed
that on average!

Finally, by incorporating the range reduction techniques of
Section V into the algorithm, the number of local distance
calculations of the "reduced level building" DTW algorithm
becomes

NDASR -VLN.(2e+l) (51)

where C is the range parameter for following the local mini-
mum.

Table I-A summarizes the computational aspects of these
connected word DTW algorithms. The row labeled number of
basic time warps refers to the number of times the DTW algo-
rithm is applied. The size of the time warp is the (average) size
of the region in the (m, n) plane covered by a typical time
warp, and the total is the number of distances of (48)—(51).
(The row labeled storage will be explained below.)

Table I-B gives a numerical comparison of the computation
for the typical parameter values

LmaxS, V10, M120, N35, 8, E12,
R12; 31.5, L4.

It can be seen that the two-level DP Warp of Sakoe needs to do
about 20 times more time warps than any of the other algo-
rithms, and that, for this example, the ratio between the total
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e11
d(m,w(m)).

m e1+ 1

for any R152..51, thenDrir2.. rjrj1 (e1÷1 )<D5152 -s1r11
(e1+ j) for any R51 2 and any

Proof: Let R . . be a general super reference pattern
of length 1 and let Rr1 r2" be the super reference pattern
which minimizes the distance D5152.. . over all possible
s1s2 s. Then, by definition, we have

e1

D5152.51(e1) = d(m, w(m)) (Al)
m=1

and

D5152...511+1(e,÷1)" d(m,w(m)) (A2)
m= 1

e1 e11
d(m,w(m))+ d(m,w(m))

m=1 m=e1+1

(A3)

computation of the two-level DP Warp method, and the re-
duced level building algorithm is 30 to 1! It can also be seen
in Table I-B that the total computation is comparable for the
sampling and reduced level building algorithms.

B. Storage
The storage requirements for the different connected word

DTW algorithms refer to storage for arrays that are specific to
the algorithm—hence, storage for reference patterns, and ac-
cumulated distance functions (D1 (m, n)), which are common
to all algorithms, are not included here. The storage of the
level building algorithm is that required for the vectors D(m),
W1(m), F(rn). Each of these vectors is ofsizeM. Hence, the
total storage of both the level building, and the reduced level
building algorithm is

SAl =SA5R =3 -MLMAX. (52)

The storage for the two-level DP matching algorithm is

S51=2-M-(2R+l) (53)

for the matrices of distance and best word, for each of the
(2R + 1) pairs of beginning and ending points. The storage
for the sampling algorithm is essentially 0 since only a small
list (125 locations) of accumulated strings is retained in this
method.

The storage requirements of the four algorithms are sum-
marized in the last row of Table I-A, and some numerical com-
parisons are given in the last row of Table I-B. It can be seen
that the two-level DP warp method requires about three times
the storage of the level building algorithm.

VII. SUMMARY

A novel approach to dynamic time warping alignment of a
connected word string and a concatenated set of reference
patterns has been described. The algorithm was shown to be
applicable to connected word recognition problems and a
highly efficient implementation was described. A number of
assumptions were used in deriving the algorithm, namely:

1) An overall assymetric function was used—not a distance
per pattern.

2) Reference patterns were concatenated, not overlapped.
3) Consecutive reference patterns were independent—i.e.,

there was no level interaction.
The final output of the algorithm was the best concatenated

reference pattern that matched the input string.
A number of modifications to the algorithm were described

to increase the flexibility and accuracy of the method. In a
companion paper we present results on the use of the reduced
level building algorithm to a connected digit recognition appli-
cation. There it is shown that a highly accurate and efficient
connected digit recognizer can be implemented using the level
building algorithms.

APPENDIX

Theorem: If there exists a super reference pattern R1r2...
such that

Drir2...r,(ei) <D5152...51(e1)

(A4)

Since the second term in (A4) is dependent only on R,÷1
and since the sequence Rr1 Rr2

- n Rrj minimizes
• . - (e1), then to minimize + 1 (e1 +1) the best

(1 + 1) long sequence will have Rr1 Rr2
- - R,.1 as its

first 1 reference patterns.
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Direct (Nonrecursive) Relations Between
Cepstrum and Predictor Coefficients
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Abstract—Direct, i.e., nonrecursive, relations are derived for the
cepstrum in terms of the predictor coefficients and vice versa. Con-
nections with algebraic roots, symmetric functions, statistical moments,
and cumulants are pointed out. Some implications for pitch detection
are also discussed.

INTRODUCTION

ECURSIVE relations between cepstrum and predictor
coefficients [1] have long been known [2]. For some

purposes, knowledse of direct relations between these two
sets of important parameters characterizing sources and
signals is desirable.
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DERIVATION OF THE MAIN RESULT

Let

p
A(z)L akz; a0=1; (1)

k=o

be an "inverse filter" polynomial [2] of order p whose roots
ae inside the unit circle. The a, are the predictor coefficients.
Then l/A(z) is a (stable) all-pole filter whose cepstrum cbeffi-

The well-known recursive relation between the a and c0 is
obtained by differentiating (2) with respect to z and equat-
ing equal powers of z5 ,yielding [3]


