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An Improved Endpoint Detector for Isolated
Word Recognition

LORI F. LAMEL, STUDENT MEMBER, IEEE, LAWRENCE R. RABINER, FELLOW, IEEE,
AARON E. ROSENBERG, MEMBER, IEEE, AND JAY G. WILPON

Abstract—Accurate location of the endpoints of an isolated word is
important for reliable and robust word recognition. The endpoint de-
tection problem is nontrivial for nonstationary backgrounds where arti-
facts (i.e., nonspeech events) may be introduced by the speaker, the
recording environment, and the transmission system. Several techniques
for the detection of the endpoints of isolated words recorded over a
dialed-up telephone line were studied. The techniques were broadly
classified as either explicit, implicit, or hybrid in concept. The explicit
techniques for endpoint detection locate the endpoints prior to and
independent of the recognition and decision stages of the system. For
the implicit methods, the endpoints are determined solely by the
recognition and decision stages Of the system, i.e., there is no separate
stage for endpoint detection. The hybrid techniques incorporate as-
pects from both the explicit and implicit methods. Investigations
showed that the hybrid techniques consistently provided the best
estimates for both of the word endpoints and, correspondingly, the
highest recognition accuracy of the three classes studied. A hybrid end-
point detector is proposed which gives a rejection rate of less than 0.5
percent, while providing recognition accuracy close to that obtained
from hand-edited endpoints.

I. INTRODUCTION

I SOLATED word recognition is based on the premise that
the signal in a prescribed recording interval consists of an

isolated word, preceded and followed by silence or other
background noise. Thus, when a word is actually spoken, it is
assumed that the speech segments can be reliably separated
from the nonspeech segments. (Clearly, in the case when there
is no speech in the recording interval, a request to repeat the
spoken word must be made.) The process of separating the
speech segments of an utterance from the background, i.e., the
nonspeech segments obtained during the recording process, is
called endpoint detection. In isolated word recognition sys-
tems, accurate detection of the endpoints of a spoken word is
important for two reasons, namely:

1) reliable word recognition is critically dependent on ac-
curate endpoint detection

2) the computation for processing the speech is minimum
when the endpoints are accurately located.
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This paper discusses the problem of accurately locating the
endpoints of isolated words for recordings made over dialed-up
telephone lines. Problems in endpoint detection arise from
transients associated with the speaker and/or the transmission
system (i.e., the telephone system). This type of background
noise complicates the endpoint detection problem consider-
ably. For example, often the beginning or end of an isolated
word is obscured by speaker generated artifacts such as mouth
noises, e.g., clicks, pops, lip smackings, and heavy breathing.
Similar types of artifacts may be introduced by the telephone
transmission system. In many applications, the problem is fur-
ther complicated by nonstationary backgrounds where there
may be concurrent background conversations and noises due
to movements of chairs, door slams, etc. One way of minimiz-
ing the effects of such transient backgrounds is to use a close-
talking, noise cancelling microphone for recording the speech
signal; however, this approach is not feasible for transmission
over telephone lines. Hence, an accurate endpoint detection
method is an essential component of an isolated word recog-
nizer which operates over dialed-up telephone lines.

The endpoint detection techniques described in this paper
assume that the desired spoken word is present in a given re-
cording interval. This type of processing is reasonable for
"nonreal-time" speech recognition systems. For "real-time"
applications, the beginning of the spoken word must be de-
tected before the word has ended (or else a large buffer storage
is required). Many of the techniques to be described in this
paper can be readily modified for such real time applications.

The importance of accurate endpoint detection was noted
by Martin [11, who showed that recognition performance was
directly related to endpoint accuracy. Although an endpoint
detector is an essential Component in all speech recognition
systems, there has been very little published about specific
algorithms for performing this task [2]. The reason for this is
that most laboratory systems use reasonably clean recordings
and, hence, there is no problem in finding endpoints from a
simple heuristic, whereas commercial manufacturers, who have
to worry both about real-time response and difficult recording
conditions, are reluctant to publish their successful, working
algorithms. As such, one purpose of this paper is to establish
a framework for endpoint detection algorithms, and another is
to provide an improved, heuristically conceived and carefully
tested endpoint detection method.

The essential components of a speech recognition system are
feature extraction, pattern comparison, and a decision rule.
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Fig. 1. Block diagrams of canonic forms of the explicit, implicit, and
hybrid endpoint detectors.

Endpoint detection must be performed somewhere in the pro-
cessing. The processing for finding word endpoints can be
done explicitly, implicitly, or in a hybrid manner (i.e., a com-
bination). These three approaches are illustrated in Fig. 1.
For explicit endpoint detection methods, as shown in Fig. 1(a),
the endpoint detection precedes and is independent of the
recognition and decision stages of the recognizer. Typically,
the endpoints of the spoken word are estimated from mea-
surements made on the input speech and sent in a feed-for-
ward manner to the next stage of the system.

In a purely implicit approach to endpoint detection [Fig.
1(b)], the endpoints of the isolated word are determined
solely by the recognition and decision phases of the word
recognition system; i.e., there is no separate stage for endpoint
detection. An implicit endpoint detection method would
attempt recognition using all (or possible a large set of all)
possible endpoint sets.

The hybrid techniques [Fig. 1(c)] for endpoint detection
incorporate ideas from both the explicit and implicit methods.
Similar to the explicit approach, one or more estimates of each
of the endpoints are obtained from features measured from
the input utterance. Based on feedback from the recognition
scores, alternative endpoint sets are considered. We consider
all three types of endpoint detectors in this paper.

The organization of the paper is as follows. In Section II,
a brief review of an explicit and an implicit endpoint detector
is given. In Section III, a hybrid endpoint detector is described.
In Section IV, an experimental evaluation of the performance
of the endpoint detectors in an isolated word recognition sys-
tem is presented and discussed. A final summary is given in
Section V.

II. EXPLICIT AND IMPLICIT ENDPOINT DETECTION

An example of an explicit endpoint detector is the energy-
based approach as described by Rabiner and Sambur [2].
Using the energy contour of the recorded signal and an appro-
priate set of thresholds, the "beginning" and "ending" of the
word are estimated. In [2] , the zero-crossing contour was
used to refine the word endpoints for words with fricative
beginnings and endings. For telephone line recordings (with
a 3 kHz bandwidth), the use of zero crossings is not effective.
Hence, this feature is not used in the explicit endpoint detec-
tor which was evaluated in this paper. Only one endpoint set
was obtained from this method, and a rejection occured when-
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Fig. 2. Block diagram of a DTW-based implicit endpoint detector.
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Fig. 3. Block diagram of the feed-forward processing of the hybrid
endpoint detector.

ever a consistent set of endpoints could not be found due to
poor recordings, line transients, etc.

An example of an implicit endpoint detector is given in Fig.
2 [3]. For this system, all (reasonable) combinations of be-
ginning points (B) and ending points (E) are used and the best
output from the pattern similarity stage and decision rule
(lowest distance) is used to implicitly define the word end-
point as well as the recognized word.

III. AN IMPROVED HYBRID ENDPOINT DETECTOR

A block diagram of the proposed hybrid endpoint detector is
given in Fig. 3 [4]. The input to the detector is the energy
arrayR1(O), / = 1,2, . . ,L,whereListhenumberofframesin
the recording interval. There are three blocks in the process-
ing, namely, adaptive level equalization, energy pulse detec-
tion, and endpoint ordering. The function of each of these
blocks is explained in subsequent sections. The output of the
endpoint detector is the ordered set of beginning points B(m)
and ending points E(m), where each set defines a word end-
point pair. For each endpoint pair, the pattern similarity and
decision stages of the recognizer find the word with the small-
est distance. If the distance obtained from one endpoint pair
is sufficiently small, no other endpoint pairs are tried. Other-
wise, the next pair of endpoints is tried, and the process is
repeated. We will see later that the endpoint ordering algo-
rithm is biased to include short events occurring prior to or
following the main body of the word (e.g., stop releases, etc.)
in the early endpoint pairs. Hence, the proposed method is
applicable to vocabularies with similar words such as "for"
and "afore," "tore" and "store," etc.

A. The Adaptive Level Equalizer

The first stage of the hybrid endpoint detector is the adap-
tive level equalizer which normalizes the (log) energy array to
the background noise level. The equalized energy array R ,(O)
is determined as

k,(O)"log [R,(O)] — Q, ,L

where Q is the "averaged" noise background level which is
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Fig. 4. Example illustrating the use of energy thresholds to find begin-
ning and ending frames of energy pulses.

obtained as follows. First, minimum energy Emin is obtained
as

Emin = mm {log[R,(0)] }.
1 1L

Then a histogram is taken of the low 10 dB of the log energy
levels from the values of log [R,(0)J versus 1. A three-point aver-
aging of the histogram is made, and the peak of the histogram
is found. Q is chosen as the peak of the smoothed noise level
histogram.

The level equalized energy array has the property that during
silence it fluctuates around the 0 dB level, and during speech it
is considerably larger. Thus, absolute energy thresholds can
be defined for detection of the presence of speech-like signals,
as described in the next section.

B. Energy Pulse Detection

Based on the output of the adaptive level equalizer (0),
a set of four energy thresholds k1, k2, k3, and k4 are defined
as illustrated in Fig. 4. The purpose of these thresholds is to
define the presence of an "energy pulse," i.e., a speech-like
burst of energy during the recording interval. The assumption
is made that the spoken word contains a sequence of one or
more such energy pulses, and the only problem is to find those
pulses and to determine which ones belong to the spoken
word.

The detection of energy pulses proceeds from left to right.
Values of R1(0) are scanned (as 1 varies) and when R1(0) ex-
ceeds the first threshold k1, the frame number (A1) is re-
corded. IfR1(0) exceeds the higher threshold k2 before falling
below k1, the beginning of an energy pulse is detected. The
beginning point is nominally chosen as frame A1, unless the
rise time (from A1 to A2) is too long, in which case the be-
ginning point is chosen as frame A2. The ending frame is
detected in a manner similar to the starting frame using thresh-
olds k2 and k3. However, if the duration from A3 to A4 is
too long (this typically indicates breathing at the end of the
word), the frame A3 is used as the ending frame of the energy
pulse.

Two further tests are made on each detected energy pulse.
The peak energy of the pulse is measured, and if it falls below
the level threshold k4, the energy pulse is rejected as being
part of the word. Also, the overall pulse duration is measured,
and if it is too short (less than five frames, i.e., 75 ms), the
energy pulse is rejected.

The output of the energy pulse detector is a series of pulse
beginning points PB(m) and pulse ending points PE(m),
m = 1, 2, - ,MforMdetectedpulsesintherecordinginterval.
When M =0 (he., no detected pulses), the recording is rejected
and no endpoints are found. Checks are also made on whether
pulses of significant energy occur at the boundaries of the
recording interval. If so, the recording is again rejected. A
flow diagram of the energy pulse detector is given in Fig. 5(a).

C. Pulse Endpoint Ordering
The purpose of the pulse endpoint ordering box is to deter-

mine, in order of likelthood (as defined below), the possible
sets of word endpoint pairs from the set of pulse endpoints.
The ordering logic is based on the following assumptions.

1) The isolated word whose endpoints are to be determined
consists of one or more energy pulses.

2) The frame in the logenergy contour with the maximum
energy wifi always be included within the spoken word.

3) The larger the stopgap between two energy pulses, the
less likely that they come from one multiple-pulse word.

4) Energy pulses separated from the pulse containing the
maximum energy by a stopgap of greater than 150 ms are
unlikely to be part of the word.

Based on these assumptions, the energy pulses are grouped
into combinations of word-endpoint pairs and ordered. A
flow diagram of the ordering procedure is given in Fig. 5(b),
and Fig. 6 illustrates the method. In Fig. 6 we see three de-
tected energy pulses, F1, F2, and F3, with pulse separations
X1 and X2 frames. If both X1 and J2 are less than 150 ms,
then the first pair of endpoints is chosen as A1 and A6, the
second pair is chosen as A3 and A6 (assuming X1 >X2), the
third pair is chosen as A1 and A4, and the fourth pair is cho-
sen as A3 and A4. If X1 > 150 ms and X2 <150 ms, the
ordered endpoint pairs are (A3, A6), (A3, A4), and (A1 ,A4).
Finally, if both X1 and X2 are greater than 150 ms, the or-
dered pairs are (A3, A4), (A3, A6) and (A1 ,A4). This simple
example illustrates how the ordering is sensitive to pulse
separation.

D. Feedback in the Hybrid Endpoint Detector

As shown above, the output of the feed-forward portion of
the hybrid endpoint detector is an ordered set of estimates of
word endpoints. Each endpoint set is used in the recognizer
to determine the word with the lowest distance score. When-
ever the resulting distance score is too large, the recognizer
decision stage requests the next set of endpoints and, if
available, repeats the recognition comparisons. This process
continues until all endpoint sets are used or until a reliable
distance score is obtained.

IV. EXPERIMENTAL EVALUATION OF THE ENDPOINT
DETECTION METHODS

The performance of each of the three endpoint detection
algorithms was evaluated using a single-testing data set to pro-
vide a common basis for comparison. This testing set consis-
ted of three repetitions of a 39 word vocabulary, recorded by
each of ten talkers (four female and six male). •The talkers
were problematic ones, i.e., they were known to generate
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Fig. 5. (a) Flow charts of the energy pulse detector. (b) Flow chart of
the pulse ordering procedure.
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Fig. 5 continued. (b) Flow chart of the pulse ordering procedure.

(b)

many of the artifacts discussed in the introduction while
speaking isolated words. The 39 word vocabulary consisted of
the letters of the alphabet, the digits, and the words /sTOP/,
/ERROR/, and /REPEAT/ spoken in a randomized sequence.
The resulting test set included 1161 utterances (nine words
were lost due to manual recording errors). Of the recorded
utterances, 40—60 percent included artifacts of some type.

Each endpoint detector was evaluated on the basis of two
criteria, namely, 1) the recognition accuracies achieved by the
recognition system using the selected endpoints, and 2) the
goodness or accuracy of the locations of the endpoints. The
first criterion is a well-defined, quantitative measure of the
actual performance of the endpoint detector within the recog-
nition system. The second criterion, however, is highly subjec-

tive, as the accuracy of the endpoint detector is determined
relative to a humanly defined standard. Manual location of
the endpoints of an isolated word, determined from the time
sequence of the samples, the log energy contour, or some
other measurement, is subject to error, even given the knowl-
edge of what word was spoken. Fortunately, the continuity
of speech and the inherent redundancy in the speech allow the
endpoints to vary by small amounts (perhaps one to three
frames) without strongly affecting recognition accuracy. The
rejection rate associated with each method was also measured.
There is clearly a tradeoff between recognition accuracy and
rejection rate. The object is to simultaneously obtain the
highest recognition accuracy and the lowest rejection rate.
The recognition accuracy is upper bounded by the recognition

(I')

I,
L

(b)
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Fig. 6. Example illustrating the use of temporal constraints in discri-
minating between adjacent energy pulses.

scores obtained using clean speech (no artifacts) with manually
obtained endpoints. For most applications, the recognition
accuracy must attain a minimum performance level to be use-
ful. The cost of a high rejection rate is an inconvenience to
the user; if the rejection rate gets too large, the user will not be
willing to use the system.

A. Thelsolated Word Recognizer

The isolated word recognizer used in the evaluation is the
one described in [5]. Recognition is achieved by comparing
the test pattern to a set of previously stored reference tem-
plates (using a DTW alignment procedure) and selecting the
"closest match" (i.e., the reference with the smallest average
distance) as the recognized word. The reference set of words
consisted of twelve speaker-independent reference templates
per word created using statistical clustering techniques [51.

1Clearly, any template and test set can be used to evaluate an end-
point detection method.

I 114 35.1 71.6 8! 89,2 95.9 97 3
2 117 29.1 63.9 79.5 85 5 86.0 904
3 116 31.0 82.5 90.0 950 97.5 97 5
4 112 28.5 81.3 86.2 93.8 95 0 95.0
5 117 427 61.2 73.! 76 I 83,6 83.6
6 117 9.4 71.7 84.0 86.6 89.6 91 5
7 117 32.5 75.9 83.5 88.6 92.4 92.4
8 117 28.5 57.0 74.2 81.7 90 3 91 4
9 117 33.3 52.6 66.7 74.4 79.5 833

10 117 29.1 69.9 80.7 83:1 86.0 69.2

TOTs8L 1161 29.! 68.8 80.1 85.5 90.0 91.4

An average distance score is computed for the comparison be-
tween the test pattern and each time aligned reference pattern.
The decision rule of the recognition system creates an ordered
list of recognition candidates from the average distance scores;
i.e., the reference word with the smallest average distance is
the top candidate, the next smallest average distance is the
second candidate, etc.

B. Endpoint Detector Performance

For the explicit endpoint detector, the performance criteria
used were the recognition accuracy and the rejection rate. In
evaluating the implicit endpoint detector, the performance cri-
teria were the recognition accuracy, the rejection rate, and the
relative distribution of distance scores (for correct and in-
correct references). For the hybrid endpoint detector, the
criteria were the number of endpoint pairs found, the recogni-
tion accuracy, and the rejection rate.

1) Performance of the Energy-Based Explicit Endpoint
Detector: The results of the recognition tests on the energy-
based explicit endpoint detector are shown in Table I, which
gives, for each talker, the rejection percentage and the recogni-
tion accuracy as a function of candidate position, i.e., the
percentage of words that were correct in the top n positions of
the ordered candidate list. As can be seen in the column
labeled "% rejected," of the 1161 test words, 338,i.e., almost
30 percent, were rejected and a repeat requested. The rejection
rates range across talkers from about 10 to 42 percent. These
results show that the energy-based endpoint detector failed in
a large percentage of trials. The average recognition accuracy
for the top candidate is about 70 percent, ranging across
talkers from a low of 50 percent to a high of over 80 percent.
The overall recognition for the top five candidates ranges from
83 to 98 percent with an average of 91 percent. These results
indicate that the explicit endpoint detector is reasonably accu-
rate when the recording is relatively clean, but it tends to re-
ject the recording in the presence of artifacts.

2) Performance of the DTW-Based Implicit Endpoint
Detector: For the implicit endpoint detector based on DTW
matching, an important performance indicator is the distribu-
tion of the distance scores for both the correct and the in-
correct reference templates. It was found that, using a to-
tally unconstrained beginning and ending point DTW algorithm,
the distances between the tests and the correct references are
generally small and in the range one would expect for a correct
reference-test word recognition distance. By way of example,

n8 9Ea
Rn

-ML
MX

TABLE I
PERFORMANCE RESULTS FOR ENERGY-BASED EXPLICIT

ENDPOINT DETECTOR

Talker

Number of
words

spoken
0 Candidate Position

rejected I 2 3 4 5

MLI
MXI

(b)

(b)

Fig. 5 continued. (b) Flow chart of the pulse ordering procedure.
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2

Fig. 7(a) shows a histogram of distances obtained when the
test and reference words were the same for one of the talkers.
The data plotted include all the tokens recorded for that talker.
The solid curve is the measured histogram of distances and the
dashed curve is a Gaussian fit to the data. The average dis-
tance for the correct words is seen to be about 0.4 with a
standard deviation of about 0.1. Thus, the distances obtained
using the test and the correct reference pattern are seen to be
reasonably small. What is equally or, perhaps, more important
is the distribution of distances when the test pattern is com-
pared to incorrect reference templates. This result is illustrated
in Fig. 7(b) for the same talker where the test and refer-
ence words were different. It can be seen that there is sub-
stantial overlap in these two distributions, thereby implying a
substantial error in recognition. A similar set of histograms
are shown in Fig. 8 for a different speaker. Here, there is
almost total overlap in the distributions, implying an even
larger error rate that in the previous example.

Talker

Number
words

spoken

Recognition Accuracy
candidate position

2 3 4 5

I

2
3
4
5
6
7
8
9

10

114
117
116
112
117
117
117
117

117

117

27.2 36.8 56.! 65.8 76.3
25.6 34.2 41.9 47.0 47.9
44,0 64.7 70.7 75.9 81.0
55.4 67.0 75.9 80.4 83.0
7.0 28.2 37.6 49.6 564
7.7 14.5 23.9 32.5 37.6

33.3 53.9 60.7 70.9 76.!
29.1 47.9 61.5 68.4 72.7
27.4 48.7 59.0 63.2 70.1
28.2 44.4 58.! 65.8 72.7

TOTAL 1161 29.4 43.9 54.4 61.8 67.3

Words

Spoken

Number of

endpoint sets

I 2 3 mean

I
2
3
4 .

5
6
7
8
9

10

114
117
116
112
117
117
117
117
117
117

94 19 0
93 23 I

00 16 0
102 10 0
97 20 0
99 18 0
99 18 0

102 14 0
92 22 I
94 22 0

1.17
1.2!
1.14
1.09
1.17

1.15
1.15
1.12
.2!

1.19

TOTAL 116! 972 182 2 ,
The conclusion drawn from these examples is that a totally

unconstrained beginning and ending point DTW algorithm
allowed the recognizer too much freedom in the determina-
tion of the endpoints. By allowing the algorithm to discard
any portions of the test, it was able to match the test pattern
as well or better to the incorrect reference patterns than to the
correct reference patterns. These conclusions are verified in
the recognition accuracies obtained using this implementation
of an implicit endpoint detector, as shown in Table II, which
shows recognition accuracy as a function of candidate posi-
tion. Although the rejection rate is zero for all talkers, the
recognition scores are too low for reliable recognition. For the
top candidate, the recognition scores range from less than 10
to 55 percent correct across talkers. Even for the top five
candidates, the recognition scores only range from 37 to 83
percent, with an average of less than 70 percent. Overall
recognition for the implicit endpoint detector using five can-
didates is lower than for the top candidate using the explicit
endpoint detector.

3) Performance of the Energy Hybrid Endpoint Detector:
For the hybrid endpoint detector, one important factor is the
number of endpoint pairs located, as this is an indication of
the potential gained by using feedback from the recognizer.
The number of endpoint pairs located for each talker is given
in Table III. The data show that, on average, only slightly
more than one endpoint pair is found. The effectiveness of
the' screening operations of the endpoint detector is reflected
in the small number of endpoint pairs found by eliminating
energy pulses corresponding to extraneous artifacts. Since for
the majority of the tests (84 percent), only one endpoint pair
was located, it is reasonable to use this hybrid endpoint detec-

TABLE II
PERFORMANCE RESULTS FOR DTW-BASED IMPLICIT ENDPOINT DETECTOR

(a) DISTANCE FOR MATCHES

(b) DISTANCE FOR MISMATCHES

of average word distance for matches (a) and mis-
one talker using an unconstrained endpoint DTW

TABLE III
STATISTICS ON THE NUMBER OF ENDPOINT SETS FOR THE HYBRID

ENDPOINT DETECTOR

I—z
00

Fig. 7. Histograms
matches (b) for
algorithm.

z
00

Fig.8. Histograms of average word distance for matches (a) and mis-
matches (b) for another talker.

(a) DISTANCE FOR MATCHES

.'t

(b) DISTANCE FOR MISMATCHES



784 IEEE TRANSACTIONS ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, VOL. ASSP-29, NO. 4, AUGUST 1981

Talker

Number
Words

Spokes
Number of

rejects

Recogeitius Accuracy

I 2 - 3 4 5

t
2
3
4
5
6
7
8
9

to

t 14
t 17
t 6
t 12
17

t 7
t 7
t 7
t 7
t t7

I

0
o
0
0
0
0
I
2
t

79.6 97.3 98.2 99.t 00.0
73.5 86.3 90.6 95.7 96.6
84.5 93.t 95.7 98.2 99.t
8t.t 86.6 89.3 92.0 92.9
74.3 8t.t 88.9 91.4 9t.4
7t.8 84.6 87.2 89.7 92.3
74.4 92.3 96.6 97.4 98.3
6t.2 77.6 86.2 93.1 94.8
70.4 60.9 84.3 85.2 89.6
78.4 87.9 95.7 97.4 99.t

TOTAL I 61 5 74.9 86.8 9t .3 93.9 95.4

tor with only the top estimated endpoint pair as an explicit
endpoint detector. The recognition accuracies obtained using
only the top endpoint pair are given in Table IV for the indi-
vidual talkers. The overall recognition is about 75 percent for
the top candidate position and 95 percent for the top five
candidate positions. Comparing these results to those of the
explicit endpoint detector shows there is a 10—15 percent in-
crease in the recognition accuracy for the top candidate for
most of the talkers. Averaged over all of the talkers, there is
4-6 percent improvement in recognition accuracy for all
candidate positions.

The advantage of supplying several estimates of the end-
points is demonstrated by the use of a distance threshold for
requesting additional endpoint pairs during the decision stage
of the recognition process. If the recognition score obtained
using the best estimated endpoint pair does not provide a
sufficiently small distance, recognition with the second end-
point pair may be attempted. Setting a low distance threshold
for reliable recognition will cause recognition to be attempted
with successive endpoint pairs unless the first match is a very
good one. It can be seen from the data in Table III that even
if an extremely low threshold is used, only one or two end-
point pairs will be used for recognition. Setting a high distance
threshold increases the likelthood that the recognized word with
the first endpoint pair will have a recognition score below the
threshold and, thus, be acceptable. The threshold should be
set such that if the first set of endpoints are accurate, the
corresponding recognition distance will fall within the accept-
able range. At the same time, if the top endpoint pair is in-
correct, it is desirable that the recognition score lie above the
acceptable threshold. It is important to stress that the dis-
tance threshold does not affect the number of endpoint pairs
located, but does determine how many of the endpoint
candidates are used.

The optimum distance threshold was determined for each of
the ten talkers. These results are summarized in Table V. A
detailed examination of the recognition results shows that the
optimum distance threshold should lie somewhere between
0.35 and 0.4 for highest recognition accuracy. For some of
the talkers, the threshold was irrelevant. This implies that for
these talkers, either the first candidate was always correct, or
any improvement in the recognition of some words was coun-
teracted by errors introduced for other words. Only for two
of the talkers did the recognition improve significantly by
using the distance thresholds. For these, talkers 2 and 9, there
was a uniform increase of 2—3 percent in the recognition

Talker Distusce
optimum threshold

1 >0.3
2 <0.4
3 >0.35
4 irrelevant
S irrelevant
6 >0.6
7 irrelevant
8 irrelevant
9 <0.4

tO <0.4

Fig. 9. Plots of recognition accuracy versus number of candidates for
three endpoint detectors and for hand-edited words.

accuracy for all candidate positions. The data above suggest
that the use of alternate sets of endpoints provides some im-
provement in recognition accuracy for problematic talkers.
This capability adds little to the computational requirements
of the system and has proved to be valuable during on-line
recognition tests with untrained talkers.

C Summary of Performance Scores
A comparison of the recognition scores obtained by all three

methods of endpoint detection in the word recognition test is
shown in Fig. 9. This figure shows plots of the recognition
accuracy as a function of candidate position. It can be clearly
seen that the hybrid endpoint detector yields significantly
higher recognition results than either the explicit or implicit
methods used here. An even stronger resuli is that the hybrid
endpoint detector attains its recognition accuracy with a rejec-
tion rate of less than 0.5 percent, whereas the explicit end-
point detector has a rejection rate of almost 30 percent for the
same test set. The implicit algorithm has a recognition accu-
racy far below that of the explicit and hybrid algorithms.

A final performance comparison is given in the top curve of
Fig. 9, labeled "clean" speech, which shows the recognition
accuracy obtained from hand-edited endpoints with highly
trained talkers [5]. The vocabulary was the same as that used
in this test. The hybrid endpoint detector is seen to achieve
recognition accuracies within 3—5 percent of those obtained

TABLE IV
RECOGNITION SCORES FOR THE HYBRID ENDPOINT DETECTOR

TABLE V
OPTIMUM DISTANCE THRESHOLDS FOR THE HYBRID ENDPOINT DETECTOR

hOES REJECTS)

100 - CLEAN

90

BC

a 70

a 60

• 50

40

30

110% REJECTS)

1 2 3 4
NUMBER OF CANDIIATES

5 6
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with the clean speech. It is important to keep in mind that the
results using the hybrid method were obtained using a testing
data set in which 40—60 percent of the utterances contained
some form of artifact, many of which would have been dis-
carded (due to the uncertainty as to where the actual endpoints
would be placed) even by hand-editing. Thus, the results
obtained by the hybrid endpoint detector are seen to approach
those of hand-edited clean speech.

V. DISCUSSION AND SUMMARY

The results presented in the previous sections lead to the
following general conclusions.

1) Simple approaches to endpoint detection are doomed to
failure under some sets of recording conditions. These failures
can be manifested as either rejections of the recording or
recognition errors due to improper location of endpoints.

2) Pattern classification techniques are not readily applied to
the endpoint detection problem since there is a strong overlap
between "speech" sounds and "nonspeech" sounds, especially
humanly produced transients.

3) Providing a great deal of latitude in the specification of
the endpoint locations tends to degrade the recognition per-
formance severely. Hence, accurate location of endpoints is a
strong requirement for a practical recognition system.

As applied to the general endpoint detection classes, these
conclusions imply that implicit methods of endpoint detection
will perform poorly, whereas a sophisticated explicit technique
can perform well. Clearly the hybrid methods, being a super-
set of the explicit techniques, should always perform as well as
the explicit techniques.

One of the main results of this work was the development of
an improved hybrid (explicit) endpoint detector. The improve-
ments consisted of an optimized strategy for finding endpoints
using a three-pass approach in which energy pulses were located,
edited, and the endpoint pairs scored in order of most likely
candidates. The performance of this improved technique
approached the performance of the "ideal" endpoint detec-
tor—i.e., the recognition accuracy was comparable to the
recognition accuracy obtained on high quality recordings, and
the rejection rate was negligible (less than 0.5 percent).

One final issue is the capability of incorporating the hybrid
endpoint detector into a real-time recognizer. The required
modifications are simple. First, the adaptive level equalization
is performed on any reasonably "quiet" interval—i.e., when no
speech is present. The energy pulse detection stage is carried
out in real time (i.e., all processing is left to right) and the
pulse locations are stored in a temporary buffer. When no
energy pulses are detected for, say, 200 ms, the word is
assumed over and the endpoint ordering algorithm is then used
to provide the beginning and endihg point arrays required for
recognition. The real-time version of the algorithm is cur-
rently in use in a hardware implementation of the recognizer
of[5] (see [6]).
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