
Dynamic Time Warping for Isolated Word Recognition
Based on Ordered Graph Searching Techniques

M. K. Brown

L. R. Rabiner

Bell Laboratories
Murray Hill, New Jersey 07974

ABSTRACT The technique of dynamic time warping (DTW) is
relied on heavily in isolated word recognition systems. The
advantage of using DTW is that reliable time alignment between
reference and test patterns is obtained. The disadvantage of using
DTW is the heavy computational burden required to find the
optimal time alignment path. Several alternative procedures have
been proposed for reducing the computation of DTW algorithms.
However these alternative methods generally suffer from a loss of
optimality or precision in defining points along the alignment path.
In this paper we propose another alternative procedure for
implementing a DTW algorithm. The procedure is based on the
well known class of techniques for a directed search through a grid
to find the 'shortest' path. An adaptive version of a directed search
procedure is defined and shown to be capable of obtaining the exact
DTW solution with reduced computation of distances but with
increased overhead. It is shown that for machines where the time
for distance computation is significantly larger than the time for
combinatorics and overhead, a potential gain in speed of up to 3 to
1 can be realized with the directed search algorithm. Formal
comparison of the directed search algorithm with a standard DTW
method, in an isolated word recognition test, showed essentially no
loss in recognition accuracy when the parameters of the directed
search were selected to realize the 3 to I reduction in distance
computation.

L introduction

It is well known in the area of speech recognition that optimal time
alignment of reference patterns to test patterns substantially
reduces recognition errors for a vocabulary with polysyllabic words
El]. Typically, time alignment is performed on speech data which is
represented as a time sequence of feature vectors (e.g. vectors of
linear prediction coefficients) which represent the spectral
information in corresponding "frames' of the speech signal. The
most commonly used time alignment procedures, for the speech
recognition problem, are the class of algorithms referred to as
dynamic programming (DP) or dynamic time warping (DTW)
methods [2-4]. These procedures require calculation of the local
distance between each possible reference and test frame (within a
prescribed global range) in order to determine the optimal time
alignment path relating reference and test frames.

In this paper we present a new approach to finding an optimal time
alignment path which can substantially reduce computation without
sacrificing optimality of the resulting path. The way in which these
efficiencies are achieved is by modelling the DTW problem as one
of finding a directed path through a constrained grid. By modelling
the grid as a digraph (directed graph) with conditional branch costs
(or equivalently production rules), an ordered graph searching
(OGS) algorithm can be used to solve for the best path through the
grid. It will be shown that such an algorithm can be designed to
guarantee essentially optimal time alignment while reducing
computation over that required for a conventional dynamic
programming (DP) solution. Furthermore, we will show that by
slightly relaxing the path optimally conditions, a substantial
reduction in computation (> 60%) can be achieved with only a
small loss in accuracy.

1255

ii. An Ordered Graph Search (OGS) Approach to Finding the Best
Path through a Grid

A conventional DTW algorithm solves the problem of optimally
time aligning a test and a reference pattern, at the same time
providing a measure of the similarity (distance) between test and
reference along the alignment path. By restructuring the entire
time alignment problem as a problem in finding the best path
through a finite grid of points, we can take advantage of a large
class of ordered tree and graph searching algorithms, as described
by Nilsson [5], to find the best path with substantially reduced
computation of local distances.

The way in which we apply graph searching to dynamic time
warping is illustrated in Figure 1. We represent the grid of points
in which the alignment path can lie as a directed graph in which the
nodes represent local distances (between test and reference
frames), and allowable node transitions are represented by branches
of the directed graph (digraph). An ordered graph searching
(OGS) algorithm is then applied to find the best time alignment
path.

Before describing the graph searching algorithm, it is important to
understand why such a procedure can lead to significant reduction
in computation over standard DTW algorithms. This gain in
efficiency for the digraph search is achieved by omitting the local
distance calculations associated with nodes which are not searched.
Dynamic programming, on the other hand, requires that all local
distances within the global constraints be calculated. By restricting
the digraph search to investigate only the most likely warping paths,
the number of nodes that are expanded (i.e. used in subsequent
calculations) can be kept to between 1/3 and 1/2 that used for the
DP search; at the same time, under certain readily attainable
conditions, the resulting warping path can be shown to be optimal
— i.e. identical to the one found by the DP algorithm.

Sril,i)

t(N,M)

Fig. I Illustration of the nodal structure and a typical path for ordered graph
searching.

CH 1746-7182/0000 . 1255 S 00.75 1982 IEEE

n



2.1 The Directed Search Algorithm 3. f(i) � f(i) Vt
Consider the graph structure of Figure 1. Each point in the grid is
a node, and we designate the node by its coordinates (a ,m), i.e.

I (n,m)
We denote the starting node as s = (1,1), and the ending node as
t = (N,M).
For any path through the grid passing through node i, we denote
the path cost (the accumulated distance along the path) as

f(i) =g(i) + h(i) (2)

where g(i) is the minimal cost of the path from node s to node i,
and h(i) is the minimal cost of the path from node ito node t.

For a directed search through the grid (i.e. proceeding from left to
right), the cost g(i), along the path to node i is known exactly;
however the cost, h(i), from node i to node 1 is not known, and
therefore must be estimated. Thus an estimate of a minimal cost
path passing through node i is

1(j) = g(i) + 1(i) (3)
where h(i) is the estimate of h(i). Thus in trying to find the
minimal cost path through the grid, we build up a series of nodes
for which we know the exact cost from the start node, and for
which we estimate a cost to the terminal node. We expand the
node which currently provides the smallest cost estimate
(simultaneously keeping track of all previously encountered nodes,
for backtracking) until we reach the terminal node t.

It should be clear that any path from start node s to intermediate
node i is completely characterized by the nodal state, which
includes:

1. The node coordinates (n,m)

2. The estimated cost, h(i) from the node i to the end

3. A pointer to the previous node on the path (the ancestor
or parent node)

4. The true cost, g(i), from the start node to node i. The
cost, g(i), is saved to facilitate computation of f(i) where
i' is a successor node to i.

In solving for the minimal cost path through the grid, generally
nodes from several paths are encountered. By using the nodal state
information above, an "open' list of potential paths is maintained
where each list entry is the nodal state of the last node on the path.
The open list is sorted so that the last node of the path having the
lowest estimated total cost, f(i), is at the top of the list. The
algorithm tries to find the minimal cost path through the grid by
removing the top node from the open list (saving the nodal state
on a 'closed' list), and 'expanding" it to generate all legal (within
the local path constraints) successor nodes. New path cost
estimates are computed for each of these successor nodes and they
are sorted into the open list. The process starts with only the start
node, s, on the open list and continues until a path to the terminal
node, t, is found. Generally, a terminal node t is not identified as
terminal until an expansion of t is attempted and no successors are
generated. (However, in this implementation the terminal node is
identified before it is added to the open list.) The warping path may
then be found by tracing backward from node t to node s by using
the parent node pointer information saved during the searching
process. (For most isolated word recognition applications the
warping path is not required and this trackback procedure can be
omitted.)

The path that first terminates on node t will be minimal cost
(optimal) if the following conditions are met:

1. The expansion operation is consistent for all nodes

2. g(i) > OVi a andg(i) is monotonic

4. h(i) is monotonic for all potential paths, h(i) > O, V
I * 1.

(1) It can be shown that the above conditions are sufficient to find the
optimal path.

1256

2.2 Ordered Graph Searching (OGS) Applied to DTW

As applied to DTW algorithms for isolated word recognition, all the
optimality conditions of Section 2.1 are satisfied, except condition 1.
This condition is violated because the local constraints are data
dependent, i.e. the optimal path cannot stay fiat for two consecutive
frames, and thus the expansion of any node depends on the path to
that node. This means that for ordered graph searching (as for
conventional DTW algorithms [41) optimality of the path is not
guaranteed. However, as shown by Myers et al. (4], the nature of
the problem essentially makes the path finding a robust procedure
which is basically insensitive to the data dependent path constraints,
especially when the test and reference patterns are from the same
word class. This point is illustrated in Figures 2 and 3 which show
plots of the local distance d(T(n), R(m)) over the entire (n,m)
plane for reference and test from the same class (Fig. 2 for the digit
5), and for reference and test from different classes (Fig. 3 for the
digits 5 and 6). Also shown in these figures is the optimum
warping path (indicated by the dashed line). As shown in Fig. 2
the warping path lies in a valley in the local distance function. This
valley is reasonably broad along most of the path; hence slight
deviations from the time optimal path do not generally result in
substantial increases in path cost (distance).

REFERENCE AND TEST
FROM SAME CLASS

LOCAL

DISTANCE

Fig. 2 Plots of local distance in the (n ,m) plane for reference and test patterns
from the same word class.

REFERENCE AND TEST
FROM DIFFERENT CLASSES

Fig. 3 Plots of local distance in the (n ,ns) plane for reference and test patternsfrom different word classes.



When the reference and test are from different classes (Fig. 3), the
warping path generally deviates substantially from the diagonal
path, indicating highly nonlinear compressions and expansions of
the time scales to achieve best matches. The general shape of the
distance function is a series of sharp peaks and valleys which
fluctuate rapidly in the (n,m) plane. Thus small deviations in the
warping path, due to the local constraints, can lead to significant
cost increases over the optimal path.

If the above description were consistent, we would be able to take
advantage of it to increase the separation between the distance
(cost) distributions of 'same' and 'different' words, since the
calculated distances for same words are essentially minimal costs,
whereas for different- words they are above minimal cost. Although
in practice this situation does occur, the magnitude of the effect is
small. The key point, however, is that paths and path distances
obtained by the OGS approach are comparable to those obtained
from DP algorithms.

2.3 The Estimator Function, h (i)

The only unspecifiçd quantity for the OGS algorithm is the
estimator function h (1) used to prpvide the estimated path cost
f(i) =g(i) + h(i). The quantity f(i) must be calculated at each
node i visited during the search process, and since g(i) is known
exactly, only h(i) must be specified to give f(i).

There are several ways that h (i) could be calculated. Since h (1) is
the distance (cost) along the path from node i to the terminal node
t, and since h (i) must underestimate the true path cost h (1) (to
satisfy the path optimality constraints of Section 2.1), then for
i=(n,m) we have

N
h(i) � h(i) d(T(k), R(w(k)))

k—n+I

Eq. (4) says that the true path cost from node i to node t is the
sum of the local distances along all the nodes in the path, and for
the asymmetric path constraints used in the DTW implementation,
this distance is the sum of the distances along the (N—n) grid
points of the path. When T and R are from the same word class,

then, along the optimal alignment path, we have the theoretical
result that

= F() (5)

i.e. the probability density function of t is independent of T, R,
and k. For example for the LPC parameter set used here we have

P(iI) =x2(i) (6)

Based on the above discussion we can use, as a bound on h(:), the
quantity

h(i)"(N—n)J (7)

where d is sufficiently small so that we can guarantee that the
probability that h (1) > h (1) is kept to any desired value.

The problem with the estimator of Eq. (7) is that for test and
reference words of different word classes, the estimator is a gross
underestimator, causing a needlessly large number of nodes to be
searched. For such comparisons we would prefer a gross
overestimator; whereas for cases when reference and test are from
the same word class we need an underestimator. To combat these
difficulties we have developed an adaptive estimation procedure,
which we now describe.

Consider first a fixed estimator of the form

h(i)=(N—n)a (8)

where a is a parameter of the estimator. Figure 4 shows some
representative plots of 3 measures of computation and accuracy,
namely:

1. Accumulated path cost, 1(t)

Fig. 4 Plots of N0, N, and D versus a for reference and test patterns in the
same class (4a) and in different classes (4b).

2. Number of distance calculations, ND

3. Number of nodes expanded, NE

(4) as a function of a. Figure 4a is for a typical case when reference
and test words are from the same class, and Figure 4b is for a
typical case when reference and test words are from different
classes. It can be seen from Fig. 4a that for values of a 0.885,
the accumulated path cost remains constant, whereas ND and NE
fall dramatically as a increases above 0.1. For this example the
average cost per frame was 0.45, showing that a can increase above
this value by almost a factor of 1.7 before optimality of the path is
sacrificed. Other examples have shown similar behavior as a
function of a.

For the data of Fig. 4b, when reference and test words were
different, decreases of NE and ND became significant only for very
large values of a, e.g. a > 1.2, whereas path cost is seen to be
almost independent of a.

The above results suggest a data adaptive estimator of the form

(9)

The estimator of Eq. (9) has the advantage that for words of the
same class, g(i)/n eventually becomes small, giving an effective a
multiplier in the correct range, whereas for words in different
classes, g(i)/n eventually becomes large, giving the best results
here. Experimentation with the estimator of Eq. (9) showed that
the resulting path costs were basically insensitive to a over a wide
range of a. Based on this experimentation, a value of a 0.7 was
chosen. Although there ii no theoretical guarantee that h (i) of Eq.
(9) is an underestimate of h (i) in all cases, practical experience
indicates this is essentially always the case.

Based on the above discussion, the final form of the estimator
function is

0.71_(N_n) Ifn n (lOa)
h(i) =

2.0IQ1 (N—n) if
(lOb)

Ca) ACCUMULATED PATH DISTANCE
----NUMBER OF NODES EOPANDED
— BOMBER OF DISTANCE cALcULATION

a ilIII!Ij11I1_I j
0 0 S

50 IIIIIIIIIIIIIIIIIIIIIITTTI, 0
)b)

a0
1111 -,

n

1257



Values of between 0.6 and 0.7 were used in two evaluation tests
to be described in Section III. The chosen value of is essentially
the largest reasonable average distance one would expect to
encounter when comparing test and reference words of the same
class.

ilL Experimental Comparison of DP *nd OGS

To compare the performance of the OGS algorithm of Section ifi
with the standard D1'W algorithm, two recognition experiments
were performed. For the first experiment, each of 6 talkers (3
male, 3 female) trained the recognizer on isolated digits (using a
robust training method), thereby obtaining 6 sets of speaker trained
templates. Then each talker spoke the 10 digits 5 times to form a
test set of 50 utterances.

For the second experiment a speaker independent set of templates
was used in which each word of the vocabulary was represented by
6 templates. The vocabulary for this experiment was a 129 word
airlines vocabulary and the templates were obtained from a
clustering analysis of the speech of 100 talkers (50 male, 50
female). A set of 4 talkers (2 male, 2 female — all not part of the
training set) was used for this experiment, with each talker saying
the vocabulary 1 time.

Both recognition experiments used speech recorded off a dialed-up
telephone line. The 'standard' LPC based recognizer was used to
derive the features of the speech, and to provide a set of Q best
recognition candidates. The normalize-and-warp procedure [4] was
also used to provide fixed length test and reference patterns. For
each experiment both the DP and the 005 algorithms were used,
and the results are compared in terms of recognition accuracy and
computation.

3.1 Results of Experiments

The results of the first experiment on the digit vocabulary show the
following:

1. For correct references an average reduction in the number of
local distances by a factor of 3.2 is obtained

2. For incorrect references, an average reduction in the number
of local distances by a factor of 2.4 is obtained.

3. The average distance of the OGS method to correct references
(0.35) is slightly larger than the average distance of the DP
method to correct references (0.34); similarly the average
distance of OGS to the second candidate (0.6) is slightly
larger than the DP distance (0.58).

4. The average error rate for the OGS system is slightly larger
(for both top 1 and top 2 candidates) than for the DP system.

The results above indicate that the OGS method yields only slightly
worse accuracy results than the DP method, at the same time
achieving about a 2.5 to 1 overall reduction in distance
computation.

The results of the speaker independent test, using 6 templates per
word and a 129 word airlines vocabulary, are essentially the same as
those on the digits vocabulary, namely a reduction in distance
computation by about 2.6 to 1, with essentially no increase in error
rate.

threshold to monitor the DTW distance as it proceeds through the
grid and to abort any reference pattern whose accumulated
distances exceeds the rejection threshold. This rejection threshold
can either be static or dynamic, depending on detailed knowledge of
the expected accumulated distance histogram. Calculations show
that potential savings of from 50 to 75% of the computation can be
achieved in this manner, with no loss in recognition accuracy. It
should be clear to the reader that the rejection threshold idea can
equally well be applied to the OGS method as to the DP method;
hence the data reduction of the OGS method is essentially in
addition to that of the rejection threshold.

A second, and perhaps more substantial objection to the OGS
method is that the reduction in distance computation is attained at

the expense of a more complicated control structure. This
combinatoric effort has been estimated to be about 200-250% of the
combinatoric effort of the DP algorithm based on CPU time
measurements. This increased overhead may have a substantial
impact on the overall efficiency, especially if most of the numerical
effort can be handled by high speed hardware.

If we assume a typical microprocessor application without special
purpose hardware, nominal time to perform one DTW is about 5
seconds. Typically, combinatorics consumes only about 0.1 seconds
of this time leaving 4.9 sec for numerical computation using
standard DP methods. The OGS algorithm is well suited to this
type of application. Combinatoric time for OGS would be about
0.2-0.25s while numerical computation time would drop to about
1.7s. Thus the OGS method would be more than 60% faster than
the DP method, performing a typical DTW in less than 2 seconds.

On the other hand, special purpose hardware now exists for
computing local distances in a parallel manner. Under these
circumstances the ratio of numeric to combinatoric time may be
considerably less than one. The OGS method would then be
considerably slower than the standard DP method.

References

El] 0. M. White and R. B. Neely, 'Speech Recognition Experiments with Linear
Prediction, Bandpass Filtering, and Dynamic Programming", IEEE Trans. on
Acoustics, Speech, and .Stgnal Processing, Vol. ASSP-24, No. 2, pp. 183-t88,
April 1976.

12] F. Itakura, "Minimum Prediction Residual Principle Applied to Speech
Recognition", IEEE Trans. on Acoustics, Speech, and Signal Processing, Vol.
ASSP-23, No. 1, pp. 67-72, Feb. 1975.

[3] H. Sakoe and S. Chiba. 'Dynamic Programming Algorithm Optimization for
Spoken Word Recognition", IEEE Trans. on Acoustics, Speech, and Signal
Processing, Vol. ASSP-26, No. 1, pp. 43-49, Feb. 1978.

[4] C. S. Myers, L. R. Rabiner, and A. E. Rosenberg, 'Performance Tradeoffs in
Dynamic lime Warping Algorithms for Isolated Word Recognition', IEEE
Trans. on Acoustics, Speech, and Signal Processing, Vol. ASSP-28, No. 6, pp.
622-633, Dec. 1980.

15] N. J. Nilsson, Problem-Solving Melhodt in Artificial Intelligence, McGraw Hill,
NY, 1971.

IV. Discussion

It was shown in this paper that the OGS method could solve the
time alignment problem with essentially the same accuracy as DP
methods; however the required computation for local distances was
reduced by a factorof about 2.5.

There are, however, at least two mitigating circumstances that
affect the results presented above. First is that there are alternative
ways of achieving computational reductions in standard DP
approaches. For example one can consider the use of a rejection

1258


