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An Adaptive, Ordered, Graph Search Technique
for Dynamic Time Warping for

Isolated Word Recognition
MICHAEL K. BROWN AND LAWRENCE R. RABINER, FELLOW, IEEE

Abstract—The technique of dynamic time warping (DTW) is relied
on heavily in isolated word recognition systems. The advantage of
using DTW is that reliable time alignment between reference and test
patterns is obtained. The disadvantage of using DTW is the heavy
computational burden required to find the optimal time alignment
path. Several alternative procedures have been proposed for reducing
the computation of DTW algorithms. However, these alternative
methods generally suffer from a loss of optimality or precision in
defining points along the alignment path. In this paper we propose
another alternative procedure for implementing a DTW algorithm.
The procedure is based on the well-known class of techniques for a
directed search through a grid to find the "shortest" path. An adaptive
version of a directed search procedure is defined and shown to be
capable of obtaining the exact D1'W solution with reduced computa.
tion of distances but with increased overhead. It is shown that for
machines where the time for distance computation is significantly
larger than the time for combinatorics and overhead, a potential gain in
speed of up to 3: 1 can be realised with the directed search algorithm.
Formal comparison of the directed search algorithm with a standard
DTW method, in an isolated word recognition test, showed essentially
no loss in recognition accuracy when the parameters of the directed
search were selected to realize the 3: 1 reduction in distance
computation.

I. INTRODUCTION

IT IS well known in the area of speech recognition that
optimal time alignment of reference patterns to test pat-

terns substantially reduces recognition errors for a vocabulary
with polysyllabic words [I]. Typically, time alignment is
performed on speech data which is represented as a time
sequence of feature vectors (e.g., vectors of linear prediction
coefficients) which represent the spectral information in cor-
responding "frames" of the speech signal. The most com-
monly used time alignment procedures, for the speech recogni-
tion problem, are the class of algorithms referred to as dynamic
programming (DP) or dynamic time warping (DTW) methods
[2] —[5]. As shown in Fig. 1, these procedures require calcula-
tion of the local distance between each possible reference and
test frame (within a prescribed global range, e.g., the parallelo-
gram of Fig. I), in order to determine the optimal time align-
ment path relating reference and test frames.

For most isolated word recognition systems using DTW for
time alignment, it has been shown that the DTW algorithm
requires the vast majority of the processing time required to
recognize a word. Consequently, several attempts have been
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Fig. 1. Region in the (n, m) plane ror which a time alignment contour
is calculated in dynamic time warping.

made to modify the DTW algorithm to eliminate some of the
computation either by being more restrictive with the DTW
constraints [3] —[5J, or by approximating the reference pat-
tern by states that are variable in duration [6] —[7]. In either
case, efficiency is gained at the sacrifice of optimal time
alignment. As a result, recognition error rate generally in-
creases over that obtained using the full DTW alignment
algorithm.

In this paper we present a new approach to finding an opti-
mal time alignment path which can substantially reduce
computation without sacrificing optimality of the resulting
path. The way in which these efficiencies are achieved is by
modeling the DTW problem as one of finding a directed path
through a constrained grid. By modeling the grid as a digraph
with conditional branch costs (or equivalently production
rules), an ordered graph searching (OGS) algorithm can be
used to solve for the best path through the grid. It will be
shown that such an algorithm can be designed to guarantee
essentially optimal time alignment while reducing computation
over that required for a conventional dynamic programming
(DP) solution. Furthermore, we will show that by slightly
relaxing the path optimally conditions, a substantial reduction
in computation (>60 percent) can be achieved with only a
small loss in accuracy.

The ordered graph search type of algorithm, of the type to
be described in this paper, is most useful for implementations
of a word recognizer where distance calculations made on local
features of the speech pattern (e.g., LPC coefficients) are
computationally expensive (e.g., simple microprocessor sys-
tems). In such cases the control overhead is relatively inex-
pensive compared to the cost of distance calculation. Then
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m = w(n)

and thereby seek to minimize the total distance

N
D = d(T(n), R(w(n)))

D = mm

w(n) Ln=i

the reduction in computation for local distances is approxi- Endpoint Constraints: We assume that the word endpoints
mately 65 percent, at the expense of doubling the control of both the test and reference patterns have been accurately
overhead, and about 4.5 kbytes of additional memory. For determined, and so we require the path to obey the constraints
implementations where the cost of local distances is negligible
(e.g., using a peripheral array processor or peripheral high

w(l) = 1 (5a)

speed multiplier), the increased cost of overhead can be corn- w(N) =M. (5b)
parable to the decreased cost of local distances. For such cases
there would be little advantage to the proposed algorithm.

The organization of this paper is as follows. In Section II

Local Path Constraints: We assume the Itakura path con-
straints [2] are obeyed, namely,

we review the "standard" DTW algorithm as this provides the 0 '(w(n) — w(n — 1) 2 (6a)
basis of comparison for the OGS algorithm to be presented in
Section III. In Section IV we describe the results of a series w(n) - w(n - 1) =0 iff w(n - 1)- w(n - 2)>0. (6b)
of isolated word recognition tests designed to compare speed These local path constraints guarantee that the average slope
and accuracy of the two time alignment procedures. Finally, of the warping function lies between 4 and 2, and guarantee
in Section V we discuss the advantages and disadvantages of path monotonicity.
the OGS algorithm relative to the standard DP method, for Global Path Constraints: The endpoint conditions (5) and
various implementations. the local path constraints (6) lead to a set of global path

constraints of the form
II. THE STANDARD DTW ALGORITHM

We assume that we are given a test pattern T, consisting of a mL(n)<m<mH(n) (7)

sequence of N vectors, i.e., where

T {T(1),T(2), . ,TN)} (1) mH(n)min {2(n— l)+ l,M— 4 N— n),M} (8a)

where the vector T(i) is a spectral representation of the ith mL(n) max {4 (n — 1) + 1,M— 2(N— n), 1). (8b)
frame of the test word. In our system the vectors T(i) are a
set of nine autocorrelations (from which an eighth order LPC
model is derived). Alternative T(O vectors include filter bank
energies, cepstral coefficients, etc. The duration of the test
word is N frames, where each frame represents 45 ms of
speech, and adjacent frames are spaced 15 ms apart.

For a given vocabulary of V words, we denote the reference
pattern for the vth word as R, and we again represent each
reference pattern as a sequence of M vectors, i.e.,

These global path constraints essentially define the parallelo-
gram of Fig. 1 with lines of slope 2 and 4 emanating from the
points m = 1, n = I and from m M, n N.

Axis Orientation: We assume that the test sequence index
n is always mapped to the abscissa (the independent variable)
and the reference sequence index m is always mapped to the
ordinate (the dependent variable). Experience has shown this
orientation to lead to the best performance in word recogni-
tion systems [4], [5]

R = {R(l),R(2), . , R,(M)} (2) Local Distance Measure: The local distance used in this

where each vector is again a spectral representation of the
corresponding frame within the word.

study is the Itakura log likeithood ratio [2], which is imple-
mented in the form

In order to optimally align the time scales of the test (the n c(T(n), R(m)) = log {T(n) . R(in)], (9)
index) and reference (the m index) patterns via a dynamic
time warping algorithm, we must solve for a warping, or path
alignment function of the form

i.e., a log of the dot product of the two vectors T(n) and R(m).
Word recognition is achieved by computing the optimal

•
warping path and distance for each word in the vocabulary,

(3) giving

(10)

(4) and using the nearest neighbor rule to choose word v'' as the

over all possible w(n), where is the local distance between
best candidate where

test frame n and reference frame m = w(n). To solve the DTW vK = argmin [D0] . (11)
problem requires specification of the following [5]

V

1) endpoint constraints; An ordered set of word distances is also maintained for statisti-
2) local path constraints; cal analysis purposes.
3) global path constraints; One additional modification was made to the recognition
4) axis orientation; algorithm and that was to use the normalize-and-warp proce-
5) local distance measure. dure of Myers et al. [5] prior to the DTW alignment. For this
We have considered one form of DTW algorithm with the procedure the test pattern, and each reference pattern, is

following specifications. linearly warped to a fixed duration (the average word duration
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over all words in the vocabulary) prior to DTW alignment,
thereby ensuring that the widest range of time alignment
paths is considered. Experimental results have shown this
procedure tobe valid on several recognition vocabularies [5]

A. The Basic DTW Iteration

Based on the above specifications, the techniques of dy-
namic programming can be used to solve (10) iteratively for
the best path as follows. We define an accumulated distance
function DA (n, m) as the total distance from the grid point
(1, 1) to the grid point (n, m), along the best path between
these grid points (minimum distance), and we can use the
iteration (based on the local constraints)

DA(n, m)d(T(n),R(m))+min [DA(n— 1,m)g(n- 1,m),

DA(n— 1,m— 1),DA(n— 1,m— 2)]

lnN, mL(n)mmH(n) (12)

where g(n, m) is the nonlinear weighting

g(n, m) =Ji if w(n) w(n - 1)

if w(n)w(n- 1)
to guarantee that the optimum path to (n, m) does not stay
flat for two consecutive frames. The final, desired solution to
(10) is

D DA(N,M)

D=DA(N,M)IN.

Thus the DTW algorithm requires on the order of NM dis-
tance calculations, and NM sets of combinatorics [(12) and
(13)] to obtain the best path and the total distance for each
reference pattern. We now consider alternative path finding
techniques which seek to reduce the number of local distance
calculations.

III. AN ORDERED GRAPH SEARCH APPROACH TO
FINDING THE BEST PATH THROUGH A GRID

We have shown that the conventional DTW algorithm solves
the problem of optimally time aligning a test and a reference
pattern, at the same time providing a measure of the similarity
(distance) between test and reference along the alignment path.
By restructuring the entire time alignment problem as a prob-
lem in finding the best path through a finite grid of points, we
can take advantage of a large class of ordered tree and graph
searching algorithms, as described by Nilsson[8], [9] , to find.
the best path with substantially reduced computation of local
distances. These searching algorithms have been commonly
used in the artificial intelligence (Al) area for machine simula-
tion of cognitive processes, e.g., problem solving or game
playing.

The way in which we apply graph searching to dynamic time
warping is illustrated in Fig. 2. We represent the grid of points
in which the alignment path can lie as a directed graph in
which the nodes represent local distances (between test and
reference frames), and allowable node transitions are repre-
sented by branches of the directed graph (digraph). An

Fig. 2. Illustration of the nodal structure and a typical path for ordered
graph searching.

ordered graph searching (OGS) algorithm is then applied to
find the best time alignment path.

Before describing the graph searching algorithm, it is im-
(13) portant to understand why such a procedure can lead to signi-

ficant reduction in computation over standard DTW algorithms.
This gain in efficiency for the digraph search is achieved by
omitting the local distance calculations associated with nodes
which are not searched. Dynamic programming, on the other
hand, requires that all local distances within the global con-

(14a) straints be calculated. By restricting the digraph search to

(14b) investigate only the most likely warping paths, the number of
nodes that are expanded (i.e., used in subsequent calculations)
can be kept to between - and that used for the DP search;
at the same time, under certain readily attainable conditions,
the resulting warping path can be shown to be optimal, i.e.,
identical to the one found by the DP algorithm.

A. The Directed Search Algorithm

Consider the graph structure of Fig. 2. Each point in the
grid is a node, and we designate the ith node by its coordinates
(n, m), i.e.,

i(n,m). (15)

We denote the starting node as s (1, 1), and the ending node
as t = (N,M).

For any path through the grid passing through node i, we
denote the path cost (the accumulated distance along the
path) as

f(i) g(i) + h(i) (16)

where g(i) is the minimal cost of the path from node s to node
i, and h(i) is the minimal cost of the path from node i to
node t.

For a directed search through the grid (i.e., proceeding from
left to right), the cost g(i) along the path to node I is known
exactly; however, the cost h(i) from node ito node t is not
known, and therefore must be estimated. Thus, an estimate of
a minimal cost path passing through node i is

(i) 'g(i) ÷ (i) (17)

t(N,M)

m

S(i,1)
n
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where (i) is the estimate of h(i). Thus, in trying to find the
minimal cost path through the grid, we build up a series of
nodes for which we know the exact cost from the start node,
and for which we estimate a cost to the terminal node. We
expand the node which currently provides the smallest cost
estimate (simultaneously keeping track of all previously
encountered nodes, for backtracking) until we reach the termi-
nal node t.

It should be clear that any path from start node s to inter-
mediate node i is completely characterized by the nodal state,
which includes:

1) the node coordinates (n, m);
2) the estimated cost h(i) from the node ito the end;
3) a pointer to the previous node on the path (the ancestor

or parent node);
4) the true cost g(i) from the start node to node i—the cost

g(i) is saved to facilitate computation of f(i') where i' is a
successor node to i.

In solving for the minimal cost path through the grid, gen-
erally nodes from several paths are encountered. By using the
nodal state information above, an "open" list of potential
paths is maintained where each list entry is the nodal state of
the last node on the path. The open list is sorted so that the
last node of the path having the lowest estimated total cost
f(i) is at the top of the list. The algorithm tries to find the
minimal cost path through the grid by removing the top node
from the open list (saving the nodal state on a "closed" list),
and "expanding" it to generate all legal (within the local path
constraints) successor nodes. New path cost estimates are
computed for each of these successor nodes and they are
sorted into the open list. The process starts with only the
start node s on the open list and continues until a path to the
terminal node t is found. Generally, a terminal node t is not
identified as terminal until an expansion of t is attempted and
no successors are generated. (However, in this implementation
the terminal node is identified before it is added to the open
list.) The warping path may then be found by tracing back-
ward from node t to node s by using the parent node pointer•
information saved during the searching process. (For most
isolated word recognition applications the warping path is
not required and this trackback procedure can be omitted.)

The path that first terminates on node t will be minimal cost
(optimal) if the following conditions are met:

1) the expansion operation is consistent for all nodes;
2) (i)> 0 V i s and g(i) is monotonic;
3) f(i)f(i)Vi;
4) h(i) is monotonic for all potential paths h(i)> 0, Vi t.
To show that these conditions are sufficient to find the opti-

mal path we have to show that the search is guaranteed to
reach the terminal state t, and having reached this state, the
resulting path is minimal cost. As proved by Nilsson [9, pp.
74—79] for finite graphs the search must always terminate
since these are only a finite number of nodes that can be
expanded. To show that the search finds the optimal path to
t, we assume that a path to node t gets a nonminimal cost
f(t) g(t) >f*(t) where f*(t) is the minimal cost to node t.
By condition 3) (i.e., the estimator of cost is less than or equal
to the true cost) there existed, before expansion of node t

(termination) a node i' such that ?(i') f*(t) <f(t). This
implies that this node would have been expanded before t,
contradicting the assumption that the search terminated. Thus,
conditons l)—4) are adequate to guarantee that a minimal cost
path from s to t exists and can be found.

A similar argument can be made for each node in the graph.
Upon first expanding node i, an optimal path has already been
found from s to i. A useful consequence of this is that, upon
expanding a node, if any successor node generated appears on
the closed list, it need not be added to the open list again
since an optimal path to this node was already found. Further-
more, if the successor node already appears on the open list
it need not be added again since the path by which this node
was previously generated is optimal to the expanded node and
must be of lower cost than the path currently under considera-
tion, or else it would not have been expanded previously.

Fig. 3 illustrates how the digraph search would work on a
constrained grid of points representative of the one conven-
tionally used in DTW applications. Initially the search is at
node s which is expanded to three possible successor nodes.
Node 1, having the smallest distance f, is next expanded to
its two possible successor nodes (recall that the path is con-
strained to rise by I every other frame); the unexpanded nodes
being retained on the open list. Node 2, again with the smallest
f is next expanded. This process continues until node 17,
which, upon expansion, shows node 18 (an earlier successor)
to have smallest f of all open nodes. Upon expanding node
18, successor node 19 is generated but not added to the open
list since it was encountered when node 7 was expanded pre-
viously. Node 18 and its successors are expanded until node
20 comes to the top of the open list and this local search is
terminated by the optimality property just described. Node
20 is next expanded to node 21, followed by node 22 and
finally state t is reached with a minimal cost path.

The computational savings, for this simple example, over a
convention DP approach are approximately the ratio of grid
points to the number of nodes for which distances are cal-
culated, or about 3: 1. That such savings are achievable in
real examples will be shown later in this paper.

22 f

m

S

Fig. 3. Illustration of the computation to determine a path from node
s to node t, using the ordered graph searching concept.

n
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REFERENCE AND TEST
FROM SAME CLASS

B. Ordered Graph Searching Applied to DTW

As applied to DTW algorithms for isolated word recognition,
all the optimality conditions of Section Ill-A are satisfied,
except con4ition 1). This condition is violated because the
local constraints are data dependent, i.e., the optimal path
cannot stay flat for two consecutive frames, and thus the
expansion of any node depends on the path to that node.
This means that for ordered graph searching (as for conven-
tional DTW algorithms [5]) optimality of the path is not
guaranteed. However, as shown by Myers et al. [5], the
nature of the problem essentially makes the path finding a
robust procedure which is basically insensitive to the data
dependent path constraints, especially when the test and
reference patterns are from the same word class. This point is
illustrated in Figs. 4 and 5 which show plots of the local
distance d'(T(n), R(m)) over the entire (n, m) plane for refer-
ence and test from the same class (Fig. 4 for the digit 5), and
for reference and test from different classes (Fig. 5 for the
digits S nd 6). Also shown in these figures is the optimum
warping path (indicated by the dashed line). As shown in Fig.
4 the warping path lies in a valley in the local distance func-
tion. This valley is reasonably broad along most of the path;
hence slight deviations from the time optimal path do not
generally result in substantial increases in path cost (distance).

When the reference and test are from different classes (Fig.
5), the warping path generally deviates substantially from the
diagonal path, indicating highly nonlinear compressions and
expansions of the time scales to achieve best matches. The
general shape of the distance function is a series of sharp
peaks and valleys which fluctuate rapidly in the (n, m) plane.
Thus, small deviations in the warping path, due to the local
constraints, can lead to significant cost increases over the
optimal path.

lfthe previous description were entirely correct, we would
be able to take advantage of it to increase the separation be-
tween the distance (cost) distributions of "same" and "differ-
ent" words, since the calculated distances for same words are
essentially minimal costs, whereas for different words they are
above minimal cost. Although in practice this situation does
occur, the magnitude of the effect is small. The key point,

REFERENCE AND TEST
FROM DIFFERENT CLASSES

Fig. 5. Plots of local distance in the (is, in) plane for reference and test
patterns from different word classes.

however, is that paths and path distances obtained by the
OGS approach are comparable to those obtained from DP
algorithms.

1) Flowchart of OGS Procedure: A flow diagram of the
basic ordered graph searching algorithm is given in Fig. 6. The
start node s (1, 1) is the only node on the open list and the
closed list is empty at the beginning of the search. The open
list is always maintained as a sorted list of nodes such that the
node having least estimated total warp path cost heads the
list. This head node is removed from the open list for ex-
pansion into successor nodes. Expansion proceeds by gen-
erating one node at a time until all possibilities are exhausted.
For efficiency reasons, an array of flags is maintained which
indicates which nodes have been generated. In this way, the
step in the flow labeled "check OPEN & CLOSED" can be
performed by simply checking one element of the array rather
than searching two lists. The generated node must lie within
the global constraints. If it is not the terminal node, then
?(i) =g(i) + (i) is computed. Using this?'(i) value the node is
inserted in the open list at the appropriate location and the
process continues.

When the terminal node is found, the g(i) already calculated
for this node is the path cost g(t) f(t). The warping path
may be recovered if necessary by following the parent node
pointers backward from the terminal node to the start node
and the solution is complete.

2) The Estimator Function. h(i): The only unspecified
quantity for the OGS algorithm is the estimator function
h(i) used to provide the estimated path cost f(i) g(i) + h(i).
The quantity f(i) must be calculatedat each node i visited
during the search process, and since g(i) is known exactly,
only (i) must be specified to give f(i).

There are several ways that h(i) could be calculated. Since
h(i) is the distance (cost) along the path from node i to the
terminal node t, and since h(i) must underestimate the true
path, cost h(i) (to satisfy the path optimality constraints of
Section 111-A), then for i (n, m) we have

N
h(i) h(i) d(T(k), R(w(k))).

k= n+i
(17)

LOCAL

DISTANCE

Fig. 4. Plots of local distance in the (n, m) plane for reference and test
patterns from the same word class.
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PLACE START NODEI
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ST FOR EXPANSION
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SUCCESS
NODE
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YES

CHECK OPEN AND CLOSED
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YES COPY
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NO
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NODE
YEs OUTSIDE
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0
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NODE

NO
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I RECOVER OPTIONAL PATH
[_ BY BACKTRACKING

COST

Fig. 6. Flowchart of the OGS method.

Equation (17) says that the true path cost from node ito node
t is the sum of the local distances along all the nodes in the
path, and for the asymmetric path constraints used in the
DTW implementation, this distance is the sum of the distances
along the (N - n) grid points of the path. When T and R are
from the same word class, then, along the optimal alignment
path, we have the theoretical result that

'c1(T(k),R (w(k)))(13) =F(t3),

i.e., the probability density function of is independent of
T, R, and k [10]. For example, for the LPC parameter set
used here we have

P1Ij3) x2($). (19)

Based on the above discussion we can use, as a bound on
h(i), the quantity

(i) = (N - n) . d (20)

where is sufficiently small so that we can guarantee that the
probability that h(i)> h(i) is kept to any desired value.

The problem with the estimator of (20) is that for test and
reference words of different word classes, the estimator is a
gross underestimator, causing a needlessly large number of
nodes to be searched. For such comparisons we would prefer
a gross overestimator; whereas for cases when reference and
test are from the same word class we need the underestimator
of (10). To combat these difficulties we have developed an
adaptive estimation procedure, which we now describe.

Consider first a fixed estimator of the form

i(i)(N- n)a (21)

where a is a parameter of the estimator. Fig. 7 shows some
representative plots of three measures of computation and
accuracy, namely

1) accumulated path cost f(t),
2) number of distance calculations ND, and
3) number of nodes expanded NE,

as a function of a. Fig. 7(a) is for a typical case when refer-
ence and test words are from the same class, and Fig. 7(b)
is for a typical case when reference and test words are from
different classes. It can be seen from Fig. 7(a) that for values
of a 0.885, the accumulated path cost remains constant,
whereas ND and NE fall dramatically as a increases above 0.1.
For this example the average cost per frame was 0.45, showing
that a can increase above the value by almost a factor of 1 .7
before optimality of the path is sacrificed. Other examples
have shown similar behavior as a function of a.

For the data of Fig. 7(b), when reference and test words
were different, decreases of NE and ND became significant
only for very large values of a, e.g., a> 1.2, whereas path
cost is seen to be almost independent of a.

The above results suggest a data adaptive estimator of the
form

(i)(N- n)a- (22)

The estimator of (22) has the advantage that for words of the
same class, g(i)/n eventually becomes small, giving an effective
a multiplier in the correct range, whereas for words in differ-
ent classes, g(i)/n eventually becomes large, giving the best
results here. Experimentation with the estimator of (22)
showed that the resulting path costs were basically insensitive
to a over a wide range of a. Based on this experimentation, a
value of a 0.7 was chosen. Although there is no theoretical

(18) guarantee that h(i) of (22) is an underestimate of h(i) in all
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(b)

cases, practical experience indicates this is essentially always
the case.

Efficiency can be improved further (without significant loss
in accuracy) by forcing to become much larger than 0.7
wh•i preliminary results indicate that the test and reference
WcL come from different classes. This makes h(i) predomi-
nant in calculating f(i) and tends to minimize backing up
during the search. In this case the actual warp path cost is
not important as long as it is large. The algorithm can predict
early in the search if the test and reference do not belong to
the same class by observing the average per test frame value
of g(i). A large value for g(i) indicates a potential mismatch.
There is always the possibility that for the first few test frames,
g( '.ll be larger than the global average. This could cause the
aig. hm to predict a class mismatch during the first few
frames of the search. Since the sensitivity of path cost to is
low, however, this will not generally cause any substantial
difference in total path cost as long as the class mismatch
prediction is corrected at each frame.

Based on the above discussion, the final form of the esti-
mator function is

0.7-(N-n) if

Values of 3 between 0.6 and 0.7 were used in two evaluation
tests to be described in Section IV. The chosen value of !3
is essentially the largest reasonable average distance one would
expect to encounter when comparing test and reference words
of the same class.

IV. EXPERIMENTAL COMPARISON OF DP ANt) OGS

To compare the performance of the OGS algorithm of
Section III with the standard DTW algorithm, two recognition
experiments were performed. For the first experiment, each
of 6 talkers (3 male, 3 female) trained the recognizer on iso-
lated digits (using a robust training method [11]), thereby
obtaining 6 sets of speaker trained templates. Then each
talker spoke the 10 digits S times to form a test set of 50
utterances.

For the second experiment a speaker independent set of
templates was used in which each word of the vocabulary was
represented by 6 templates: The vocabulary for this experi-

a ment was 129 word airlines vocabulary [12] , and the templates
were obtained from a clustering analysis of the speech of 100
talkers (50 male, 50 female) [13]. A set of 4 talkers (2 male,
2 female—all not part of the training set) was used for this
experiment, with each talker saying the vocabulary one time.

Both recognition experiments used speech recorded off a
dialed-up telephone line. The "standard" LPC based recog-
nizer of Rabiner et a!. was used to derive the features of the
speech, and to provide a set of Q best recognition candidates
[14] . The normalize-and-warp procedure [5] was also used to
provide fixed length test and reference patterns. For each
experiment both the DP and the OGS algorithms were used,
and the results are compared in terms of recognition accuracy
and computation.

A. Results of Experiment 1—Speaker Trained Recognition
Using Isolated Digits

The results of the first experiment on the digit vocabulary
are presented in Table I and in Fig. 8. Table I gives statistics,
for each talker, for both the OGS and DP algorithms, for the
following:

1) number of local distance calculations ND;
2) average distance to the correct reference Th;
3) average distance to the second candidate 2
4) recognition error rate for the top candidate;
5) recognition error rate for the top two candidates.
Fig. 8 shows histograms (obtained from one of the 6 talkers),

as a function of comparisons with the correct reference (C),
and with all incorrect references (1), of

1) the number of nodes expanded NE;
2) the number of local distance calculations ND;
3) the average per frame distance from the optimal path D.
(Histograms from each of the 6 talkers showed similar

(23a) behavior).
Examination of Table I shows the following.
1) For correct references an average reduction in the nuni-

ber of local distances by a factor of 3.2 is obtained.

(23b) 2) For incorrect references, an average reduction in the
number of local distances by a factor of 2.4 is obtained.

ACCUMULATED PATH DISTANCE
NuHeER OF NODES EXPANDED

— NUM8ER OF DISTANCE CALCULATION
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Fig. 7. Plots of ND, NE, and D versus a for reference and test patterns
in (a) the same class and (b) in different classes.
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Talker Number/Sex

1(M) 2(F) 3(F) 4(M) 5(M) 6(F) Average

Number DR
Distances

620 620 620 620 620 620 620

Number OGS
Distances/C

(72 226 62 230 212 167 (95

Number OGS
Distances/I

257 268 248 256 267 240 256

Average Distance
To Correct
Reference

DR— .4)— .40— .36— .34— .36- (7— .34

OGS .43 .42 .37 .35 38 .17 .35

Average Distance
To Second
Candidate

DR— .66— .66— .60 .50— .56— .50— .58

OGS .68 .70 .62 .52 .59 .52 .6)

Error Rate (%)
lop Candidate

DR 0 4 0— 6— (0— 0— 3.33

008 2 4 0 8 0 &33

Error Rate (%)

lop 2 Candidate'
DR 0 0 0 0 0 0 0

OGS 0 0 0 2 2 0 67

A

)iAJ
OGS

,P

2.5 0 0/I 2.5

Fig. 8. Histograms of NE, ND, and D conditioned on correct and in-
correct references for the digit recognition experiment.

3) The average distance of the OGS method to correct
references (0.35) is slightly larger than the average distance of
the DP method to correct references (0.34); similarly the
average distance of OGS to the second candidate (0.6) is
slightly larger than the DP distance (0.58).

4) The average error rate for the OGS system is slightly
larger (for both top I and top 2 candidates) than for the DP
system.

The results above indicate that the OGS method yields only
slightly worse accuracy results than the DP method, at the
same time achieving about a 2.5: 1 overall reduction in distance
computation.

Examination of the histograms of Fig. 8 shows a fairly wide
spread in the NE and ND statistics for incorrect references,
indicating that for some words a large percentage of the avail-
able nodes were used. For correct references a lower, tighter
distribution is found for both N and ND. Finally, it is seen
that the overall distance distributions for DP and OGS [Figs.

(0)

1(M) 2(M) 3(F) 4(F) Average

Number DR
Distances

682 682 682 682 682

Number OGS
Distances/C

242 243 240 249 244

Number OGS

Distances/I

268 260 266 260 264

Average Distance

ToFirst

Candidate

DR .257 .259 .286 .30! .276

OGS .262 .264 .292 .306 .28!

Average Distance

To Second

Candidate

DR— .319-— .309— .329— .347— .326

OGS .327 .318 .337 .357 .335

Error Rate (%)

lop Candidate

DP 0.8 7.8 15.5 9.4 3.4

OGS 10.8 (0.! 14.7 20.2 (4.0

Error Rate )%)

lop 2 Candidates

DR 2.3 5.4 6.2 9.3 5.8

OGS fl 54 7.8 3.2 7.2

8(c) and (d)] are similar, and the small differences reflect the
loss in accuracy of not always finding the optimal warping
path.

B. Results of Experiment 2—Speaker Independent
Recognition of Airline Terms

The results of the speaker independent test, using 6 tempIati
(b(

per word and a 129 word airlines vocabulary are given in Tab
II and Fig. 9. The type of statistics given in the table and Fig.
9 are similar to those of Table I and Fig. 8, with one excep-
tion. Since there were 6 "correct" references for each spoken
word, we present statistics on the first candidate (in Table II)
and on both the correct references and the first candidate in
Fig. 9.

(dl The results on reduction in distance computation are similar
to those of Experiment 1. However here the reduction
correct references is about 2.8: 1, and for incorrect references
it is 2.6: 1, thereby indicating a somewhat larger overall re-
duction than for the digit vocabulary.

Another difference from Experiment 1 is that the average
distance of the second candidate is close to the average dis-
tance of the first candidate, indicating that, in general, the first
two candidates were reference patterns from the correct word
class.

As in the digit experiment, it was found that the average
separation of the distributions of distances for correct and
incorrect references for the OGS method, was slightly larger
than for the DP method. The differences, however, occur
primarily on the upper side of the distributions for the incor-
rect references, thereby having little effect on recognition
accuracy.

Close scrutiny of the OGS distribution reveals slight but
consistent irregularity in the distance distributions for jn:or-
rect references. This irregularity can be attributed to the
underestimator to overestimator function switching, which
occurs when predicted distance per test frame exceeds the
chosen value of 13 (0.7). When the estimator function h(i)
becomes a cost overestimator it generally forces the actual

TABLE I
RECOGNITION STATISTICS FOR THE 10 WORD DIGIT VOCABULARY

(SPEAKER TRAINED)

TABLE II
RECOGNITION STATISTICS FOR THE 129 WORD AIRLINE VOCABULARY

(SPEAKER INDEPENDENT)

Talker Number/Sex

I...z
5.)

30

'-3 2.5 I
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expected accumulated distance histogram. Calculations by
Rabiner et cii. show that potential savings of from 50—75 per-
cent of the computation can be achieved in this manner, with
no loss in recognition accuracy.

It should be clear to the reader that the rejection threshold
idea can equally well be applied to the OGS method as to the
DP method; hence the data reduction of the OGS method is
essentially in addition to that of the rejection threshold.

A second, and perhaps more substantial objection to the
OGS method is that the reduction in distance computation is
attained at the expense of a more complicated control struc-
ture. This combinatoric effort has been estimated to be about
200-250 percent of the combinatoric effort of the DP algo-
rithm based on CPU time measurements. This increased over-
head may have a substantial impact on the overall efficiency,
especially if most of the numerical effort can be handled by
high speed hardware.

If we assume a typical microprocessor application without
special purpose hardware, nominal time to perform one DTW
is about 5 s. Typically, combinatorics consumes only about
0.1 s of this time leaving 4.9 s for numerical computation
using standard DP methods. The OGS algorithm is well suited
to this type of application. Combinatoric time for OGS
would be about 0.2-0.25 s while numerical computation time
would drop to about 1.7 s. Thus the OGS method would be
more than 60 percent faster than the DP method, performing
a typical DTW in less than 2 s.

On the other hand, special purpose hardware now exists for
computing local distances in a parallel manner. Under there
circumstances the ratio of numeric to combinatoric time may
be considerably less than one. The OGS method would then
be considerably slower than the standard DP method.

VI. SUMMARY

In summary, the OGS method has been shown to be a prac-
tical alternative to standard DP methods for solving the DTW
problem. The OGS method substantially reduces numerical
computation at the expense of increased combinatoric effort
without significantly altering the DTW path cost. OGS is a
particularly viable technique for microprocessor implementa-
tions of speech recognition systems.

REFERENCES

JGs(
5 0 2,5
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2.5
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