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ABSTRACT. A method for speaker independent isolated digit
recognition based on modeling entire words as discrete probabilistic
functions of a Markov chain is described. Training is a three part
process comprising conventional methods of linear prediction
coding (LPC) and vector quantization of the LPCs followed by an
algorithm for estimating the parameters of a hidden Markov
process. Recognition utilizes linear prediction and vector
quantization steps prior to maximum likelihood classification based
on the Viterbi algorithm. Vector quantization is performed by a
K -means algorithm which finds a codebook of 64 prototypical
vectors that minimize the distortion measure (Itakura distance)
over the training set.

After training based on a 1,000 token set, recognition
experiments were conducted on a separate 1,000 token test set
obtained from the same talkers. In this test a 3.5% error rate was
observed which is comparable to that measured in an identical test
of an LPC/DTW (dynamic time warping) system. The
computational demand for recognition under the new system is
reduced by a factor of approximately 10 in both time and memory
compared to that of the LPC/DTW system. It is also of interest
that the classification errors made by the two systems are virtually
disjoint; thus the possibility exists to obtain error rates near 1% by a
combination of the methods.

In describing our experiments we discuss several issues of
theoretical importance, namely: 1) Alternatives to the Baum-Welch
algorithm for model parameter estimation, e.g., Lagrangian
techniques; 2) Model combining techniques by means of a bi-
partite graph matching algorithm providing improved model
stability; 3) Methods for treating the finite training data problem by
modifications to both the Baum-Welch algorithm and Lagrangian
techniques; and 4) Use of non-ergodic Markov chains for isolated
word recognition.

We note that the experiments reported here are the first in
which a direct comparison is made between two conceptually
different (i.e. parametric and non-parametric) methods of treating
the non-stationarity problem in speech recognition by implicitly
dividing the speech signal into quasi-stationary intervals.

I. Introduction

The non-stationarity of a speech signal poses a major difficulty
in Automatic Speech Recognition (ASR). There are currently two
conceptually different methods of treating non-stationarity based on
implicit segmentation of the speech signal into quasi-stationary
intervals. The two implicit methods are parametric and non-
parametric in the sense of Patrick [4]. Much of our previous work
in ASR [5] has been of the non-parametric variety the essence of
which is the computation of a spectral distance measure between an
unknown utterance and a labeled prototype. In this paper, we
describe a parametric method for speaker-independent isolated digit
recognition based on modeling entire words as discrete probabilistic
functions of a Markov chain. The results of our recognition
experiments are then compared with those from previous (i.e.
non-parametric) experiments.
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Throughout this paper we shall refer to the non-parametric
system by the (unfortunately) popular name of its crucial process,
dynamic time warping (DTW). The other system will be called
(more properly) the Hidden Markov Model (HMM) system. The
dichotomy between the two is illustrated in Figure 1.

In our work, both systems operate on the speech signal as
represented in terms of linear prediction coefficients (LPC). For
the DTW system, training consists of collecting a number, typically
100, of different talkers' utterances of each vocabulary word. The
sets of utterances of each word are individually clustered, resulting
in a smaller number, typically 12, of templates of each word. In
the recognition mode, the distance between an unknown utterance
and each template for each word is computed by a dynamic
programming algorithm. The distances are entered into a nearest-
neighbor decision rule on the basis of which a classification is made.

The HMM system is trained in two stages. First, the training
data (exactly that presented to the DTW system) is used to select a
quantization scheme for the LPC vectors. The quantized training
data are then used to estimate the parameters of a single hidden
Markov model for each word. Recognition is accomplished by
quantizing the unknown input, computing the probability that it was
generated by each word model and applying a maximum likelihood
decision rule.

As indicated in Figure 1, training of the DTW system is
essentially a data collection process which carries a small
computational cost. Recognition under this system, however,
requires a large number of distance computations and is thus
computationally expensive. The apportionment of computational
costs for the HMM system is exactly opposite. Training cost for

Figure 1 Block diagram of the Recognition Systems.
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the HMM is dominated hy the parameter estimation process which
is a complex constrained optimization problem. Recognition, on
the other hand, requires but a simple algorithm to evaluate a set of
likelihood functions. Here, then, the HMM system enjoys a
distinct advantage in as much as its costly aspect need be performed
only once, in training, while the DTW system requires the
execution of its costly process with each recognition.

It should also be pointed out that the vector quantization phase
is a convenience not strictly required by the theory underlying the
HMM system. It is also true that the DTW system can
accommodate a vector quantization stage. In fact, we report here
the recognition results obtained with a vector-quantized DTW
system.

The next four sections of this paper are devoted to a more
detailed description of the components of the HMM system. We
present, in order, the vector quantizer, the hidden Markov model,
the parameter estimation procedure and the maximum likelihood
classification procedure. Section VI describes our experimental
procedure and the results thereof. Finally in Section VII we
evaluate these results and discuss several related aspects of the
computations.

To the best of our knowledge, this paper is the first to report a
direct comparison of s DTW snd an HMM system. Our
implementations of these systems have achieved comparable error
rates of less than 4% in a speaker independent isolated digit
recognition task. The HMM system requires an order of magnitude
less computation and storage than the DTW system in the
recognition stage. Finslly we have noted that srrors made by both
systems are detectable and disjoint thus allowing the possibility for
construction of a robust hybrid system.

II. Vector Quantization

The simplest form of hidden Markov model is one in which the
probabilistic function associated with each state can assume only
one of a finite number of values. Since the LPC vectors extrscted
from the speech-signal are elements of an eight dimensional
continuum, they must be quantized in order to be appropriate to
the proposed model.

The vector quantization scheme which we employed for this
purpose is a variant of the method of Jusng et. al. [3] based on the
well known K-means algorithm. Since we use the LPC
representation of the speech signal, it is natural to adopt the Itakurs
[21 metric as a distortion measure. At the n' stage of the process,
the training data is clustered by the K-means slgorithm into 20
clusters the centers of which compose the nih eodebook. Within
any given stage the K-means algorithm was iterated until the ratio
of average distortions at two successive iterations fell below some
predetermined threshold.

In our experiments, the training data consisted of one utterance
of each of the ten digits spoken by 100 talkers (50 men and 50
women). The data comprises 39708 LPC vectors. Vector
quantizers having codebooks of 2,4,8,16,32,64 and 128 entries were
generated. For the 128 entry codebook, the average distortion was
0.165. Since the 64 entry eodebook resulted in an sverage
distortion of 0.22 which is significantly less than the mean of the
theoretically predicted distribution of distortion of .37 (i.e. the
mean value of an appropriately normalized x2 distribution with 8
degrees of freedom), we used the 64 entry vector quantizer in our
experiments.

Figure 2 shows that the spectra corresponding to the entries of
the 64-vector eodebook give fairiy uniform coverage of the vowel
space of English. The graphs in Figure 2 were obtained by
extracting the first three roots of the LPC polynomial. In part a, all
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Figure 2 Spectra of the Vector Quantization Codebook.

roots are plotted as a function of quantizer index; parts b, e and d
are scatter plots of all pairs of roots corresponding to each quantizer
index.

Further evidence of the generality of the vector quantizer was
obtained from synthesis experiments. Ordinary English sentences
were synthesized using LPC coefficients both with and without
vector qusntization. The synthesis utilized monotone pitch and no
voiced/unvoiced decision. Under these conditions, the synthetic
utterances were perceptually indistinguishable.

HI. The Hidden Markov Model

A probabilistic function of a (hidden) Msrkov chain is
stochastic process generated by two interrelated meehsnisjr an
underiying Markov chain having a finite number of states, ar a set
of random functions one of which is associated with each ate. At
discrete instants of time, the process is assumed to be . a unique
state and an observation is generated by the ran? )m function
corresponding to the current state. The underiyir.s Markov chsin
then changes states according to its transition robability matrix.
The observer sees only the output of th' random functions
associated with each state and cannot direetij observe the states of
the underiying Msrkov chain, hence th term hidden Markov
model.

It is quite natural to think of the speech as being generated by
such a process. We can imagine the vocal tract as being in one of a
finite number of artieulatory configurations or states. In each state
s short (in time) signal is produced which has one of a finite
number of prototypical spectra depending, of course, on the state.
Thus the power spectra of short intervals of the speech signal are
determined solely by the current state of the model while the
variation of the spectral composition of the signal with time is
governed predominantly by the probabilistic state transition law of
the underiying Markov chain. For speech signals derived from a
small vocabulary of isolated words, the modet is reasonably faithful.
The foregoing is, of course, an oversimplification intended only for
the purpose of motivating the following discussion.
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In our experiments, we used a 5-state, non-ergodic model with
the special topology shown in Figure 3. The parameters of this
model are the transition matrix, A, and the symbol probability
matrix B. The symbols are the vector quantizer indices, Vk,
1 � k � 64. Thus we can write A [a1] where a, =
Prob(q at :+iIq1 at ) for 1 � i,j 5 and B = [1r5l where b5 =
Prob(v5 at tIq3 at t) for 1 � j � 5 and 1 k 64.

From Figure 3 it is clear that the model must start in state q1
and must end in state q5. Furthermore, any state, once left, cannot
be revisited. These constraints are imposed on the model in the
training procedure by setting the initial estimates of the forbidden
transitions to zero.

IV. Parameter Estimation

After vector quantization, our training data may be thought of
as a long sequence, 0, of observations for each word. Since the
observations are derived from 100 independent utterances of the
word, we write 0 = 0(1)0(2).0(o0). Each is in turn a
sequence, of symbols, vector quantizer indices. From
Baum [11 it is clear that for the model of Figure 3, the probability,
Pk, that 0(k) was generated by a model with parameters A and B is
just

Pk Prob(05IA,B) = e1BAB"ABe5

where e1 and e5 are, respectively, the first and fifth unit vectors
signifying that the model starts in state q1 and ends in state q5 and
B/' is a diagonal matrix whose Jth non-zero entry is b1 where

= (k)
Since the utterances are assumed to be independent, the

probability, P, of the entire training sequence is
100

p = Prob(OIA,B) II 5
k=1

Training is then a problem of finding model parameters, A and
B so that P in (2) is maximized for the given training data 0. This
is a classical problem in constrained optimization. The constraints
enter because A and B must be row-wise stochastic since their
entries are probabilities.

The Baum-Welch algorithm [1] affords a particularly elegant
method of maximizing P. Given estimates of the matrices A and

B, we can form new ones A and B according to

OP

l�i,jS5
a15,

k=l 0a15,

For each iteration of (3) and (4), Prob(OIA,B) � Prob(OIA,B)

with equality if (A,B) is a critical point of P. Thus repeated
applications of (3) and (4) starting from any initial estimate will
often converge to a local maximum of P. Notice also that
according to (3) and (4), a parameter initially estimated to be zero
will remain zero in all subsequent estimates. Thus, the constraints
required by our non-ergodic model can be easily imposed.

HIDDEN MARKOV MODEL

Figure 3 The Hidden Markov Model.

It is appropriate to note that the required optimization can also
be performed by any of a number of classical non-linear

(1) programming algorithms based on Lagrangian techniques.

V. Classification

Our particular classification problem is the following. We wish
to recognize isolated digits represented by w5,w1,w2 w9. We
are given an observation sequence 0 derived from the utterance of
a digit and a set of models (A0,B0), (A1,B1)(A9,B9) determined
by the method outlined in Section IV above. We compute
P = Prob(01A1,B5) for 0 � i 9. The unknown utterance is

(2) then classified as w5 if P1 > P for 0 � i,j � 9 and j i.

The class conditional probabilities can be computed by direct
evaluation of the likelihood function (1).

Alternatively we may take P to be the maximum over all
possible state sequences q q0q1q2 q. of the joint probability
Prob(O,qIA5,B). This distinguished state sequence and the
probability of its corresponding observation sequence can be
simultaneously computed with the Viterbi [6] algorithm as follows.
Let (j) = Q = 01 and j 1; ctiU) 0 for 2 Sf S 5.
Then for2:St T,andl�j5

U)=
(19�5l {t_i(Q)aii};

k 0 (5)

after which, P = T(S) where the superscript i indicates that the
parameters are those of the i model.

While direct evaluation of the likelihood function from (1) and
computation based on (5) will yield different values for P, we have
found that they yield identical classifications in the digit task.

VI. Experimental Results

The data base for our experiments consisted of two separate sets
of 1000 utterances, one sample of each of ten digits uttered by each
of 100 subjects, 50 men and 50 women. The talkers were the same
for both the training and test sets; data collection for the two sets
took place several weeks apart. The subjects were all native
speakers of American English.

The training set was used both to select the vector quantization
codebook and to estimate the parameters of the Markov models.
After these processes were completed no further use was made of
the training data.
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The test set was then used to conduct three recognition
experiments. The 1000 utterances were recognized with the DTW
and HMM systems described in Figure 1 and with a vector
quantized version of the DTW system. The results are summarized
in Table 1. The error rates are all less than 4%; we do not consider
the variation in error rates significant enough to recommend one
system over another. The HMM system does, however, enjoy a
distinct advantage in computational complexity requiring an order
of magnitude less storage and time for execution.

The errors made by the DTW and HMM systems were found to
be detectable and disjoint. Whenever the first and second
candidates under the DTW system had metrics separated by less
than a fixed threshold, a misclassification was likely. In such cases,
the HMM system usually yielded a correct result. Thus a hybrid
system with error rate near 1% is possible.

VII. Conclusion

In addition to the experimental results given above, we made
some observations of theoretical interest. Space limitations allow
us to do no more than list them here. As we noted in Section IV,
the optimization operation necessary for model parameter
estimation can be carried out by classical methods. These methods
which rely on the gradient and possibly higher order derivatives
seem to have some advantages, both in speed and generality, over
the Baum-Welch algorithm.

Very often, insufficient training data will result in zero values
for certain parameters. These zeros can be fatal to classification. It
is, however, possible to perform the parameter estimation so that
the parameters are constrained to be greater than zero. Such
constraints can be accommodated either by the Baum-Welch or
Lagrangian techniques.

Under certain circumstances it may be useful to combine one or
more models. An obstacle to doing so is that the states of two or
more models may be permutations of each other. Combination
cannot be accomplished until the corresponding states of each
model are known. An optimal isomorphism between models can
be efficiently found by means of a bi-partite graph matching
algorithm.

In conclusion, we note that the experiments reported here are
the first in which a direct comparison is made between DTW and
HMM types of systems. These experiments show that the systems
provide comparable accuracy but make different errors. Further
study is required to understand the significance of these
observations.
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