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On  Tempora1,Alignment of Sentences of 
Natural and Synthetic  Speech 

Abrnwt-One way to improve  the  quality of synthetic  speech,  and to 
learn about  temporal  aspects of speech  recognition,  is to  study  the  prob- 
lem of time aligning pairs of spoken sentences. For example,  one  could 
evaluate  various  sets of duration  rules  for  synthesis  by  comparing  the 
time  alignments of speech  sounds  within  synthetic  sentences to those 
of naturally  spoken sentences. In this  manner,  an  improved  set of sound 
duration  rules  could  be  obtained  by  applying  some  objective measure 
to the  alignment scores. For speech recognition  applications,  one  could 
obtain  automatic  labeling of continuous  speech  from  a  hand-marked 
prototype to obtain  models  and/or  statistical  data  on  sounds  within 
sentences. A key  question in the use of  automatic  alignment of sen- 
tence  length  utterances is whether  the  time  warping  methods,  de- 
veloped for isolated  word  recognition,  could  be  extended to the  prob- 
lem of time aligning sentence  length  utterances  (up to several seconds 
long). A second  key  question is the  reliability  and  accuracy of such an 
alignment. In  this  paper  we investigate these  questions. 

It is shown  that,  with  some  simple  modifications,  the  dynamic  time 
warping  procedures  used  for  isolated  word  recognition  apply  almost as 
well to alignment of sentence  length  utterances.  It  is also shown  that, 
on the average, the  uncertainty in the  location of significant  events 
within the sentence is much smaller than  the  event  durations  although 
the  largest  errors  are  longer  than  some  event  durations. Hence, one 
must  apply  caution  in using the  time  alignment  contour  for  synthesis 
or recognition  applications. 
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T 
I .  INTRODUCTION 

HE state  of  the  art  in  speech  synthesis  by rule is that  one 
can  synthesize  (from  either  printed  text  or  from  a  pho- 

netically  based  set  of  input  symbols)  speech  whose  intelligi- 
bility is quite  high  but  whose  naturalness is often  poor.  One 
reason  for  the  unnatural  quality is the  rudimentary  state  of 
knowledge  as to  how  to  properly  control  pitch  and  duration of 
sounds  within  a  sentence. In order to  make  improvements  in 
the  pitch  and  duration rules  used for  synthesis,  it  would  be 
helpful  to be  able to compare  rule  generated  synthesis of sen- 
tence  length  material  to  natural  productions  of  the  same sen- 
tences. By time aligning events  within  the  sentence,  one  could 
modify  the  duration rules  of the  synthesizer to improve  the 
quality  of  the  match. By experimenting  with  a  number of sen- 
tences  (and  talkers),  one  could,  hopefully,  make  major  im- 
provements in the  duration rules  of the  synthesizer. 

Another  area  that  would  benefit  from  the  ability  to  time align 
a  spoken  sentence  with  another  spoken version of the  same 
sentence is speech  recognition.  One  of  the  most  difficult  and 
time  consuming  problems  in  building  a  speech  recognizer is 
collecting  data  for  modeling  (statistically  or  otherwise)  the 
properties  of  speech  sounds. By carefully  hand  labeling  a  set 
of test  sentences,  one  could, in theory,  automatically  obtain 
a  good  set  of  labels on  repetitions  of  the  test  sentences  by us- 
ing a  time  alignment  procedure.  The  time  aligned  events  of 
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the  sentences  then  constitute a  training  set of  data  for  the 
recognizer. 

The key point in both  the above applications is having the 
ability  to  take a naturally  spoken  sentence  and  time align it 
with  either a synthetically  generated  sentence  (to evaluate 
duration rules), or  another  naturally  spoken  sentence  (to  time 
align events within the sentence). Thus,  the  problem  at  hand 
is how  to  time align two  sentence  length  utterances  and, hav- 
ing performed this alignment?  how  to objectively  evaluate how 
well the  alignment  procedure  worked. 

One very  simple solution to  the  time alignment problem  for 
sentences is to use standard  isolated  word  dynamic  time warp- 
ing (DTW) algorithms, and  modify  them  appropriately  for  sen- 
tence  inputs. This approach has  been shown  to be  successful 
for aligning sequences of demisyllables to  form  words [ 11 , 
[ 2 ]  and  for sequences of digits and  letters  to  form  connected 
digit strings and  name strings [3] - [6] . 

An alternative  method  of  automatically  obtaining label posi- 
tions in speech was described by Wagner [7]. Wagner used  the 
features “silence,” “fricative,” and “voiced,” extracted  from 
the speech signal by means  of signal processing techniques, to 
align the sequence of extracted  features  with  the  phonetic 
transcription  of  the speech using a dynamic programming algo- 
rithm.  The  local distances between  the  extracted  features  and 
the  element  on  the  phonetic  transcription were defined in  ac- 
cordance  with  acoustic-phonetic rules. 

The  approach  proposed  here  for aligning sentences  on  the 
basis of  their  parametric  representations can  be  used for  the 
same purpose as  Wagner’s by carefully hand labeling  a  first 
production of a sentence  and  then  automatically  getting labels 
on all reproductions  of  the sentence. Si&e the DTW algorithm 
can (as  will be shown  here) have an average error in alignment 
of less than  one  frame, this method  would have a  high accuracy 
in labeling. 

The main  objective of the  method  presented  in this paper, 
however, is to  study a tool for aiding speech  synthesis  and 
recognition, e.g., for  obtaining improved duration rules for 
synthesis or for  automatic training for recognition. As such, 
we will be primarily concerned  with  the  ability  of  our algo- 
rithms  to  time align pairs of  sentences representing the  same 
acoustic events. 

In this  paper we discuss the issues involved in using DTW 
time alignment algorithms  on  sentence  length  utterances.  In 
Section I1 we review the DTW algorithm  and describe the 
system used for  time alignment. In  Section 111 we describe 
an evaluation of the  sentence alignment procedure using both 
synthetic  and  natural speech utterances. In this section we 
discuss the  effects  of  the DTW parameters  on  the  performance 
scores.  Finally  in Section 1V we discuss the results and  their 
implications  for synthesis and recognition  applications. 

11. SYSTEM USED TO TIME ALIGN SENTENCES 

It is assumed that, in order to solve the  time  alignment  prob- 
lem, we work with  parameterized representations  of  the  two 
sentences being aligned. We call one  sentence  the test  T and 
denote  its  parameterization as 

T =  {T(1), W ) ,  . . . , TW)) (1 1 

where T(n), n = 1 ,2 ,  . . . , N are  feature vectors of  each  frame 
of  the  test  sentence.  For  our applications T(n) represents an 
eighth-order linear  predictive coding (LPC) analysis of each 
45 ms frame  of  speech,  with consecutive  frames  spaced 15 ms 
apart. 

Similarly, we call the  second  sentence  (the  one to be aligned 
with T) the reference R and  denote  its  parameterization as 

R = {R(1), R(2), . . . , R(M)}.  ( 2 )  

For a typical  4-6 s sentence? values of M and N in  the range 
300-400 are  obtained. 

A time alignment of R to   Tis  a  mapping of  the  form 

rn = w(n)  (3 1 
where m represents  the reference frame  index,  and n repre- 
sents  the  test  frame  index. A wide class of  algorithms, called 
dynamic  time warping algorithms, can be used to  find  the  opti- 
mal function of the  form of (3) which minimizes an  accumu- 
lated distance  along the warping path  [8],   [9].  For LPC fea- 
ture  sets,  the local  distance  (for  comparing  a given test  frame 
to a given reference frame) is the log  likelihood ratio as pro- 
posed by  Itakura  [9]  of  the  form 

where UR , UT are  the LPC coefficient vectors of the reference 
and  test  frames, VT is the  (Toeplitz)  autocorrelation  matrix  of 
the test speech  segment,  and t denotes vector  transpose.  It 
should be noted  that  the local  distance of (4) is asymmetric as 
only  the  autocorrelation  matrix  of  the  test segment is used. 
(Another source of asymmetry  in  the DTW implementation 
arises from  the  placement  of  the  test along the abscissa and 
the reference  along the  ordinate [ 101 .) 

Fig. 1 illustrates  a  typical time alignment of R to T. Shown 
in this figure is the warping function w(n). Assume now  that 
the reference sentence  has a series of acoustic/linguistic  events 
that have been previously marked (either  by careful  hand anal- 
ysis, or as generated  by a speech synthesizer). We denote these 
events as the  points  marked A ,  B, C, D, and E in Fig. 1. From 
the  alignment  contour we can now segment the test utterance 
into  corresponding events  by solving for 

= w-l  (m)  ( 5 )  

giving event  times A ,  B,  C, D, and E,  as shown schematically  in 
Fig. 1. 

The  example  of Fig. 1 illustrates the  potential power of being 
able to  time align pairs of sentences. From a single carefully 
marked  token  of a sentence,  one  could conceivably obtain  sta- 
tistical data  on  sound  durations  for several repetitions  of  the 
sentence by the same or different  talkers.  The key to  the 
whole process is the  ability  to time align two  sentences,  and 
to verify that  the alignment path  has physical validity. 

The specific DTW algorithm  that was used  in  this investiga- 
tion is a version of  the UELM (unconstrained  endpoint, local 
minimum) algorithm of Rabiner et al. [ l o ] .  For this  algo- 
rithm  the warping path w satisfies the local path  constraint 

A A A A  A 

1 < w ( 1 ) < 6  + 1 (6 1 
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TEST FRAME (n l  

Fig. 1. Example  illustrating  time  alignment o,f two, s%ntencea with in- 
ternal  events A ,  B,  C, D, E aligning to A ,  B,  C ,  D, and E. 

at  the initial path  boundary, Le,, the first  reference frame 
(which aligns with  the first test  frame) can lie anywhere  within 
a (8 t 1) frame region at  the beginning of  the reference pat- 
tern.  The global path  constraints on the region in  which the 
warping path can lie can be  expressed  in the  form 

mo - e < m < m o  + E  (7 1 
where 

mo = argmin [DA (n - 1, m)] 
m 

and D*(n - 1, m )  is the  total  accumulated distance  along the 
warping path  from  the initial path  point to the grid point 
(n - 1 ,  m), i.e., 

The quantities 6 [of (6)J and E [of (S)] are parameters  of  the 
UELM algorithm,  and a  choice of values for these parameters 
will be discussed later. 

The reason for using the UELM algorithm is to  sharply re- 
duce computation  for  the case when N a n d  M are large (as for 
sentences)  since the DTW computation  for a given value of n 
is only  carried  out  for a totai  of (2e+ 1 )  grid points. When 
E <<M substantial savings in computation results, with es- 
sentially no 'loss in accuracy  in finding the best path. Fig. 2 
illustrates  a  typical  search using the UELM algorithm. By 
following the local minimum, within a reasonable  range e ,  the 
algorithm  can generally examine a wide range of paths. 

In  'the  experiments  to be described  in Section 111, the test 
sentence was the  independent variable and was mapped to  the 
abscissa of the warping  plane, and  the reference sentence was 
the  dependent variable and was mapped to  the  ordinate  of 
the warping  plane. The local distance of (4) was used in all 
warps. 

One point is worth  noting  about  the UELM solution. It 
should be clear from  the above discussion that  the UELM 
optimal  path need not  end  at  the grid point (N, M ) .  The 
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Fig. 2. A typical  time  alignment using the UELM algorithm showing 
the  parameters 6 and e. 

optimal  path can terminate  at  an  interior  point (no, M), i.e., 
the reference pattern  ends before the  test  pattern is used up, 
or  at an interior  point (N,rno), i.e., the  test  pattern  ends be- 
fore  the reference pattern is used up. So long  as no is close 
to N (or mo 1s close to M ) ,  there is no  problem  with  the pre- 
mature  termination. However, in cases where no <<N or 
mo <<M, it is unclear  what  meaning, if any,  to  attach to 
the alignment. We shall discuss this  key  point again later. 

111. EVALUATION OF DTW-BASED SENTENCE ALIGNMENT 

In  order t o  evaluate the  performance  of  the DTW-based sen- 
tence  alignment  system of Section 11, two  different  test sen- 
tences were chosen  for investigation. These were the sentences. 

81-This is a  test of  automatic labeling by  dynamic  time 

S2-Red orange buttons  frequently  bother all bottled  up 
warping to  synthetic speech. 

actors  that  must wear them. 

For  sentence SI, 27 distinct  acoustic  events were identified 
as candidates  for labeling. These were the  sounds (using 
ARPABET notation). 

/DHIHS/IHZ/AX/TEHST/AXV/AODX/AX/ 
/MAE/DXIHK/&EYB/BEL/LIHNX/BAY/ 
/DAY/NAE/MIHK/TAY/MW/AORP/IHNX/ 
/TUW/SIHN/THEH/DXIHK/SP/IY/CH/ 

Similarly for  sentence S2, 20 distinct  acoustic  events were 
identified,  namely, 

/REHD/AOR/AXNJH/BAH/TAXNZ/FRIY/ 
/KWEHNT/LIY/BAO/DHER/AOL/BAA/ 
/DXL/DAXP/AEK/TERZ/DHAET/MAXST/ 
/WEHR/DHEHM/ 

Clearly some  of  the  events  can  (and  often will) be missing in 
some pronunciations  of  the sentences. Such missing sounds 
must be accounted  for  by  the  time alignment procedure. 
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A total  of 24 versions of each  sentence were recorded.  20 
o f  the versions were produced  by ten  talkers (seven men, 
three  women, d l  native speakers of general  American English) 
who each spoke  the  two sentences  twice. The remaining four 
versions of each sentence were generated  synthetically  by rule 
from a text-based system [ i  I ] ,  and a  demisyllable-based sys- 
tem [12j .  Two sets of  duration rules were used in  each syn- 
thesis giving two versions of  each  sentence. 

The four  synthetic versions of  sentence S1  had  an average 
duration of 6.02 s with a standard deviation of  0.897 s ;  the  20 
natural versions of S I  had  an average duration of 5.1 2 s with a 
standard deviation of 0.472 s. For  sentence  S2,  the  synthetic 
versions were 5.55 s average duration  with  0.210 s standard de- 
viation, and  the  natural sentences  were, on average, 5.03 s in 
duration  with a standard deviation of  0.687 s. Hence, we see 
that, in general, the  synthetic sentences were longer  in dura- 
tion  than  the  naturally  spoken sentences. 

‘The variability in the  rate  or  pronunciation  of  the 24 repe- 
titions of each sentence SI and 5’2 is reflected in  the  fact  that 
for  sentence S I  (with  22 syllables)  each syllable took  an aver- 
age of 222 ms * 27 ms, whereas for  sentence  S2  (with 20 syl- 
lables)  each syllable took  an average of  256 ms f 33 ms. 

A .  Labeling the Positions of Acoustic Events 
Within 1-he Srintences 

For  each of  the  24 versions of  each  sentence,  an  interactive 
disp1.a~  and  playback system was used to  identify  the  positions 
of each of the  acoustic events withm  the sentences. Fig. 3 
shows one example of the labeling of  sentence S1. Shown  in 
this figure is the energy contour  of  the  sentence, along with 
vertical markers of the  27 acoustic  events  in the  sentence.  The 
marker  positions were generally chosen at  places where the en- 
ergy curve o f  Ihe sentence  had a  distinct  dip. This occurred 
primarily at syllable boundaries.  After tentatively choosing  a 
marker position,  the  sentence was played  from the  beginning 
to the c,urrent marker. If by  listening it was found  that  the 
expected syllable was either  chopped  too  short,  or  extended 
into  the  next  sound,  the marker position was changed and 
the playback  repeated. This iterative procedure  continued 
until all marker  positions were found. On average it  took 
about 30 min to locate all marker  positions for a  sentence.’ 

Since th.e  goal o f  our  study was to find  stable highly repro- 
ducib1.e positions for all the markers of a sentence in order  to 
evaluate the capability o f  aligning the  sentences  by DTW (as 
opposed to aligning a transcription  with  phonetic events) no 
criterion  other  than good reproducibility  of  marker  positions 
was used for defining the segments. Formal  tests  on relabeling 
by the same experimenter indicated very low  error in market 
locations (on  the  order of one  frame),  thereby indicating  a 
stable criterion  on  the  part of the  experimenter for locating 
events. 

I When a label w-as missing (i.e., the talker did  not use one of the 
sounds postulated by the linguistic analysis above) a pseudolabcl 
was interpolated to keep label consistency .among all  versions  of the 
scntences. 

1 TIME  (FRAMES) 353 

AX AObi 
AX 

Fig. 3. Example of hand  generated labels for a test sentence. 

B. Evaluation of Hand  Labeling 

For a given utterance T we denote  the  set of Q hand labels 
(i.e., the frames of each  marked  event) as ni, i = 1 , 2 , .  . . , Q. 
After  time aligning a  reference utterance R with T, we have 
the warping path m = w(n),  leading to  an aligned set  of labels 

mi = w(ni), i = 1 , 2 , .  . . , Q. (1 0)  

By hand labeling, for  reference R ,  we have identified  the 
marked events hi, i = 1 , 2 ,  . . . , Q. Hence, we can  define  a 
nominal  error pa as 

where 01 = 1 is the average absolute error, a! = 2 is the  root- 
mean-square error,  and a! = m is the  peak  error  (the Chebyshev 
norm). 

We can also apply a normalization to  the  error  (to  account 
for speed  of  speech) of the  form 

p̂, 

where is the average duration (over all replications) of the 
test  sentence,  and N is the  duration  of  the  actual  test  sentence 
used in the DTW warp. 

By only considering the  20 pairs of sentences  consisting of 
two  tokens  of  each sentence  by each  talker,  and  by calculating 
the Fa’s for  only these  pairs of  sentences, a gross measure of 
the  accuracy  of  hand labeling can be derived. The results of 
such a test are given in Table I which  shows  (for C 1 ,  F 2 ,  and 
3,) the  minimum,  maximum,  and average (over the ten 
talkers) of each  statistic. We make  the  assumption here that 
the  path  found by the DTW of two versions of the same sen- 
tence by  the same  talker gives the  “correct” alignment path; 
hence, deviations of the  expert labels from  the warping path 
give a good measure of  the  error of the  hand labeling proce- 
dure. As seen in Table I ,  the average absolute  frame  error is 
0.93 frames (= I4  ms), and  the average Chebyshev error is 
3.83 frames ( ~ 5 7  ms). Thus, in general,  the average frame 
error  for  hand labeling (or  equivalently for DTW alignment) 
is quite small;  however, infrequent large frame errors (some- 
what  longer than  transient  sounds) can and  do  occur. 

An analysis of the gross labeling errors in this experiment 
indicated  the following  problems. 
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TABLE I 
STATISTICS OF ERRORS FOR PARTS OF SENTENCES BY THE SAME TALKER 

Statistic Average Maximum  Minimum 

61 0.93 1.37 O S 7  

d 2  0.26 0.40 0.17 

Pm 3.83 7.84 2.09 

1) In  some cases pairs of syllables were heavily coarticulated 
in  one  repetition  by a talker  but  not in the second repetition, 

2 )  In some cases the  talker  inserted  mouth clicks or  pops  at 
points  within  the  sentence. 

3 )  In  some cases a  syllable in  one replication was more  than 
two times larger than  the same syllable in the  second replica- 
tion. Thus,  the local constraints  of  the DTW were insufficient 
to  account  for this gross local deviation of  the warping curve. 

Although all of  the above problems led to individual gross 
errors  in label  positions, they did not greatly affect  the overall 
accuracy  of  the  alignment  procedure. Alternative approaches 
to DTW, such as the normalize-and-warp procedure [ 131 would 
not have corrected  any  of  the above  problems. 

C Examples of  Warping Outputs 
Each of the  24 versions of  the  two sentences was time aligned 

with  every other version of  the same  sentences. The D l W  
warping parameters E and 6 were varied to optimize  the  match 
(on average) between  test  and reference. We discuss these  pa- 
rameters in Section 111-D. When the warp parameters were 
properly  selected,  most of the warps were successful. 

Fig. 4 illustrates  one  such case. Shown in  this figure are  the 
accumulated distance function,  the warping path,  and  the 
hand-marked labels for warping two  tokens of sentence 5'1. 
For this example  the  test  duration was 450 frames (6.7 s) and 
the reference duration was 399 frames (5.95 s). The  test  ut- 
terance was one of the  synthetically  generated sentences 
whereas the reference utterance was a naturally  spoken  one. 
Fig. 4 shows that  the  accumulated distance grows almost 
linearly throughout  the  sentence with an average frame dis- 
tance  of  about 0.55. The warping path goes through  (to within 
k 1 frame) most of  the labeled points  df  the  sentence. 

Fig. 5 illustrates a  failure of  the DTW alignment procedure. 
In this case the test was a 296  frame  naturally  spoken  sentence 
and  the reference was the  450  frame  synthetic  sentence used  in 
Fig. 4. It can  be seen in Fig. 5 that  the warping path reaches 
the  end of the test  long  before the  end  of  the reference pat- 
tern.  The average distance  along the  path is about 1.1 indicat- 
ing very poor  matching  of  the  utterances. It is also seen that 
the warping path does not  go  through  any  of  the  hand labels. 

For cases such as the  one  shown in Fig. 5, there is very little 
one can do  to improve the  match.  Fortunately, these cases 
do  not  occur  often  and when they  do  occur  they signal them- 
selves by having high average distance  scores. In  the experi- 
ment all pairs of  the  24  utterances  (both  for 5'1 and S2)  were 
processed. Warp failures  almost never occurred  when  comparing 
natural  to  natural  or  synthetic  to  synthetic sentences.  Failures 
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400 

Fig. 4. Time  alignment  and  accumulated  distance for a  synthetic  test 
and  a  natural  reference  utterance. Circles show the  location of hand- 
marked labels. 
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Fig. 5 .  Time  alignment  failure  for  a  natural  test  and  a  synthetic refer- 
ence  utterance.  The  alignment failed  since the  test  finished  long be- 
fore  the  reference finished.  Circles show the  location of hand-marked 
labels. 

occurred in about half of the cases when  the  synthetic  utter- 
ance was the reference, and essentially did not  occur  at all 
when the  synthetic  utterance was the test.  This asymmetry 
between test  and reference has been noted [ I O ] .  

D. Effects of DTW Parameters on Performance 
Figs. 6 and 7 show  plots of the  effects of varying 6 and E 

on  the  performance measures, f i 2  and fim. For  the  data 
of Fig. 6  a value of E = 50 was used, and 6 was varied from 1 
to 50.  The curves here  show  that  for 6 > 5, no  change  in  per- 
formance is obtained.  Thus, a starting alignment region of 
6 = 5 frames is adequate  for all warps. 

Fig. 7  shows the  effect  of varying E (the range width)  on  the 
performance scores. For this case the value of 6 was set  to 5 
and E was  varie-d from 5 to 100. I t  can be seen that  for small 
values of E ,  the  performance is very poor.  For  example,  for 
E = 5 the value of average frame  error f i ,  is about  9.5 frames. 
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Fig. 6. Average frame  error versus starting range parameter, 6 ,  for  three 
performance measures. 
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Fig. 7. Average frame  error versus  range parameter E for  three perfor- 
mance  measures. 

The curves of Fig. 7 show  that  for values of E 2 25  the per- 
formance stabilizes  at the best values. The results for E = 25 
show  an average absolute frame error  of 1.7 frames (25 ms) in 
label position. 

1V. DISCUSSION 
The  purpose of the investigation was to  find  out  how well 

an  automatic  time alignment procedure  could  time align events 
within  long sentences.  To  study this question  two long  test 
sentences were used. Both sentences were designed so that a 
wide range of pronunciations were possible. Both  synthetic 
and  natural versions of each of  the test sentences were pro- 
duced. Each sentence was hand labeled to  identify  location 
of acoustic events  within the  utterance.  A simple check on 
the  hand labeling indicated  fairly good alignment between 
replications  by the same  talker. A  complete  set of alignment 
runs were made on 24 versions of  each  utterance against all 
other versions of  the same utterance. Based on  the results 
given in Section 111, the following  conclusions  are drawn. 

1)  It is possible to reliably time align two versions of  a sen- 
tence produced by  essentially any  talker-~-in  spite  of  the vari- 
ability  of  pronunciations  and talkers. 

2) In some cases it is possible to reliably align a  synthetic 
sentence with  a  naturally  produced version of the same sen- 
tence. For best  alignments it is preferable for  the  synthetic 
utterance  to be the  test  and  the  naturally  produced  utterance 
to be the  reference. This forces every frame  in  the  natural 
utterance  to be aligned with  some frame of the  synthetic 
one. 

3) For cases when  the DTW algorithm is able to  time align 
pairs of  sentences,  the reliability of  the  internal alignment 
points is quite  good  with  an average duration  error  on  the 
order  of  25  ms  or less. 

4) For purposes of synthesis, if one is careful  in  carrying out 
the time  alignments, one  could gain great insight into  the 
mechanics of  durations of sounds within natural sentences. 
Hence, it  should be possible to greatly  improve  synthesis-by- 
rule duration rules  in an  interactive  mode based on DTW align- 
ments  with  naturally  produced sentences. 

5)  For purposes of  recognition,  it seems clear that  one could 
gather a wide variety of statistics on speech  sounds in the  con- 
text of a  sentence  by using DTW alignments of  a set of  natural 
productions  of  a  sentence against hand labeling of a single 
naturally  produced  sentence. 

For cases in  which the DTW alignment failed, alternative 
alignment procedures could be considered.  However, it is not 
felt  that  such  efforts are justified  in  that  the  rate of such fail- 
ures is low  and  the failure  mechanism is  well understood  and 
easily detected  automatically. 

In summary we have shown how  standard isolated word 
time alignment  procedures  can  be extended  to  the case of 
time aligning productions  of  sentence  length material. The 
resulting time alignments indicate good accuracy of aligning 
events  within the  sentence. 

The way in which the  proposed  sentence alignment procedure 
could aid  speech  synthesis is to begin with  an  automatically 
labeled synthetic  sentence,  or  a  hand labeled natural  sentence, 
and  then  time align multiple  repetitions  of  the  sentence by 
different talkers. In this manner, highly reliable duration  sta- 
tistics on syllables, words, phrases, etc.,  could be obtained 
which could  then be used to improve  word duration rules for 
speech synthesis by rule. 

For speech  recognition the  proposed  sentence alignment pro- 
cedure  could be used to automatically  obtain  a training base of 
syllables,  words,  phrases, etc., as extracted  from sentences. 
Such a training base could be used for  connected  and  continu- 
ous speech  recognition  applications. 
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