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Abstract-In  recent  years, several algorithms  have  been  proposed  for 
recognizing a string  of  connected  words  (typically  digits)  by  optimally 
piecing  together  reference  patterns  corresponding  to  the  words  in  the 
string.  Although  the  algorithms  differ  greatly  in  details  of  implementa- 
tion,  storage  requirements, etc., they all have  essentially the  same  per- 
formance in that  their  ability  to  match  the  unknown  string is related to 
how well words  spoken in isolation  can  match  their  counterparts in 
connected  speech.  For  low  rates of articulation (i.e., about 100-130 
words  per  minute)  the  performance of such  connected  word  recogni- 
tion  systems  is  excellent.  However, as the  articulation  rate  approaches 
that  of  continuous discourse (180-300 words  per  minute)  the  perfor- 
mance  of  such  connected  word  recognizers falls dramatically. To par- 
tially  alleviate  these  problems  a  modified  training  procedure was devised 
in which  multiple  versions  of  each  reference  word  were  used.  The  mul- 
tiple  versions  included  an  isolated  form  for  each  word,  and 2 versions 
of the  word  extracted  from  the  middle  of 3 word  sequences.  One  of 
these  embedded  reference  patterns  represented  a  noncontextual  token 
of the  word (i.e., spoken in a format  where  the  words  on  either  side 
had  minimal  effect on  the acoustic  properties  at  the  boundaries),  and 
the  second  represented a highly  contextual  token of the  word.  It  was 
shown  that a training  algorithm  could  be  devised to  obtain these  em- 
bedded  reference  tokens,  and  that  when using the  multiple  rcference 
patterns.  the  performance in a  speaker  trained  system was greatly  im- 
proved a t  faster  talking rates. In this  paper we show  how  the  embedded 
training  technique  can  be  extended to   the case of speaker,  independent 
connected  word recognizers. In particular, we show  that  improved  rec- 
ognition  performance  on  connected  digit  strings is obtained  by  using 
standard  clustering  procedures on  theembedded  tokens  togivca speaker- 
independent  embedded  reference set. We also show  that  the  use  of  the 
K-nearest  neighbor (KNN) rule  leads to  additional  real  improvements  in 
performance  for  recognizing  strings of connected digits. A discussion 
of the  types  of  problems  that  remain is given. 

I .  I N T R O D U C T I O N  

T H E  state  of  the  art in speech  recognition  technology  cur- 
rently  supports  modest  systems  for  isolated  word  recogni- 

tion  (both  speaker  trained  and  speaker  independent) [ I ]  - 141 , 
as  well as some  fairly  sophisticated  systems  for  connected 
word  recognition  (generally  only  speaker  trained  systems have 
been  available to date) [5] - 191 . As digital  hardware  becomes 
more  powerful  and  the  cost  of  computation  goes  steadily 
down,  more  powerful  recognition  systems will become avail- 
able  for  handling  tasks  involved  in  speaker  independent  con- 
nected  word  recognition, as well a s  various  conversational 
mode  recognizers  which  are  currently  implemented as labora- 
tory  demonstration  systems [ l o t .  In the research laboratory, 
efforts  are  directed  at  both  maintaining  and  improving  perfor- 
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mance  of  existing  recognizers,  and  at devising new  and  power- 
ful  recognition  algorithms  that  can  be  combined  with  existing 
algorithms  to  increase  reliability,  robustness,  and  performance. 

One  of  the  current  areas  of  most  interest  and  activity is that 
of designing  algorithms  for  recognizing  connected  strings  of 
words  (generally  digits) in either  a  speaker  trained  or a speaker 
independent  manner [6] - 191 . A wide  range of  algorithms  for 
performing  connected  word  recognition  by  piecing  together 
individual  reference  patterns  to  find  the  best  match to the  un- 
known  test  string have been  proposed.  These  algorithms,  al- 
though  differing  greatly  in  implementation, all  yield the  same 
recognition  performance  in  that  they  are  fundamentally  limited 
by  the  ability  of  isolated  word  reference  patterns  to  match  the 
same  words  spoken in context.  For  slow  rates  of  articulation 
(i.e., in the  range 100-130 words  per  minute)  the  recognition 
performance is high  since the  words in context  are  generally 
quite similar to  the isolated  word  patterns  used as references. 
However,  for  faster  rates  of  articulation (i.e., in the range 
150-200  words  per  minute)  the  recognition  performance 
degrades  due to the  contextual  differences in words  which 
are no  longer well matched  by  isolated  reference  patterns. 
To alleviate  this  problem,  a  modified  training  procedure was 
proposed [ 111, in  which  embedded  word  patterns  were  ex- 
tracted  from  3-word  training  sequences, in which  the  desired 
word  was  the  middle  word,  and  used in combination  with  the 
isolated  word  patterns in the  recognizer. It was shown  that 
in a speaker  trained  environment.  the  modified  training  pro- 
cedure was capable  of giving a high  performance  digit  recog- 
nizer for  almost  any  rate  of  talking. 

In  this  paper, we show  how  the  modified  training  proce- 
dure  can  be  combined  with  the  standard  speaker  independent 
clustering package to give a speaker  independent set of  em- 
bedded  training  patterns  for  use  in  a  speaker  independent  con- 
nected  digit  recognizer. An evaluation  of  the  connected  digit 
recognizer,  using 19 talkers,  each  speaking 40 strings o f  digits 
of varying  length and  at varying  rates, gave string  error  rates 
of  10.3  percent  for  deliberately  spoken  strings (4.3 percent if 
the  length  of  the  digit  string was known),  and 7.4 percent for 
normally  spoken  strings  (5.9  percent if the  length  of  the digit 
string was known). An analysis of the  types  of  errors  that  oc- 
curred  and  some  possible  ways  of  handling  them is given in 
the  text. 

The  outline  of  this  paper is as follows. In Section 11 we 
briefly review the  connected  word  recognition  algorithm,  and 
explain  the  embedded  word  training  procedure. In Section I l l  
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REFERENCE I 

1 
TEST I 

UNKNOWN  SPOCEN WORD STRING 

Fig. 1. Illustration of connected  word  recognition  by  concatenation  of 
individual  reference  patterns. 

we give results of  an  experimental  evaluation  of  the  recognizer 
for  a  digits  vocabulary,  and  discuss  the  effects  of  several K- 
nearest  neighbor  decision  rules.  Finally,  in  Section IV we  dis- 
cuss the results  and give some  thoughts as to  how  the remain- 
ing  problems  could  be  handled in a  practical  system. 

11. REVIEW 01: THE CONNECTED WORD RECOGNIZER 
The basic approach  in  a  pattern-based  approach  to  connected 

word  recognition is summarized  in Fig. 1.  Assume we are 
given a  test  pattern, T, which  represents an  unknown  spoken 
word  string,  and  we  are given a  set  of V reference  patterns, 
{ R ,  , R,, . . . , Rv} ,  each  representing  some  word  of  the  vo- 
cabulary.  The  connected  word  recognition  problem  consists 
of  finding  the  “super”  reference  pattern, RS, 

RS = Rq(1) @Rq(2) %3. . . @Rq(L) (1) 

which is the  concatenation of L reference  patterns, 
Rq(,), . . . , Rq(L),  which  best  matches  the  test  string T,  in  the 
sense  that  the  overall  distance  between T and R S  is minimum 
over  all  possible  choices  of L ,  q( l ) ,  4(2),  . * . , 4 (L ) ,  where  the 
distance is an  appropriately  chosen  distance  measure. 

There  are  several  problems  associated  with  solving  the  above 
connected  word  recognition  problem.  First,  we  don’t  know L ,  
the  number  of  words  in  the  word  string.  Hence,  our  proposed 
solution  must.provide  the  best  matches  for  all  reasonable val- 
ues  of L ,  e.g., L = 1 , 2 ,  . . . ,I,,,,. Second, we don’t  know 
nor  can we  reliably find  word  boundaries,  even  when  we  have 
postulated L ,  the  number of words  in  the  string.  The  implica- 
tion  of  this  observation is that  our  word  recognition  algorithm 
must  work  without  direct  knowledge  of  word  boundaries;  in 
fact  the  estimated  word  boundaries will be  shown  to  be  a  by- 
product of the  matching  procedure.  The  third  problem  with  a 
template  matching  approach is that  the  word  matches  are  gen- 
erally  much  poorer  at  the  boundaries  then  at  frames  within 
the  word. In general,  this is a  weakness  of  word  matching 
schemes  which  can  be  somewhat  alleviated  by  the  matching 
procedures  which  can  apply lesser weight to  the  match  at 
template  boundaries  than  at  frames  within  the  word.  A  fourth 
problem is that  word  durations in the  string  are  often grossly 
different  (shorter)  than  the  durations  of  the  corresponding 
reference  patterns.  To  alleviate  this  problem,  one  can  use 
some  time  prenormalization  procedure 1211 to  warp  the  word 
durations  accordingly, or rely on reference  patterns  extracted 

P I  “2 “1 I 

TEST FRAME 

Fig. 2. Sequence  of  level’  building DTW warps to  provide  best  word 
sequences  of  several  different  lengths. 

from  embedded  word  strings,  as will be  described  later in this 
paper.  Finally,  the  last  problem  associated  with  matching 
word  strings is that  the  combinatorics  of  matching  strings 
exhaustively (i.e., by  trying all combinations  of  reference  pat- 
terns  in  a  sequential  manner) is prohibitive. 

A number of different  ways  of  solving  the  connected  word 
recognition  problem have been  proposed  which  avoid  the 
plague of  combinatorics  mentioned  above. Amo,ng these  algo- 
rithms  are  the 2-level DP approach  of  Sakoe [SI, the level 
building  approach  of Myers and  Rabiner [ 6 ] ,  the  parallel  sin- 
gle stage  approach  of  Bridle et al. [7], and  the-nonuniform 
sampling  approach  of  Gauvain  and  Mariani [8]. Although 
each of these  approaches  differs  greatly  in  implementation, 
all of them  are  similar  in  that  the  basic  procedure  for  finding 
RS is to solve  a  time-alignment  problem  between T and RS 
using  dynamic  time  warping (DTW) methods. 

The level building DTW based  approach  ‘to  connected  word 
recognition is illustrated  in Fig.  2. Shown  in  this  figure  are  the 
warping  paths  for all  possible  length  matches to  the  test  pat- 
tern,  along  with’the impli,cit  word  boundary  markers ( e , ,  e,, 

The level building  algorithm  has  the  property  that  it  builds u p  
all possible  I,-word  matches  one level (word  in  the  string)  at  a 
time.  For  each  string  match  found,  a  segmentation  of  the  test 
string  into  appropriate  matching  regions  for  each  reference 
word  in RS is> obtained. In addition,  for  every  string  length.I,, 
the  best 0 matches (i.e., the 0 lowest  distance  I,-word  strings) 
can  be  found.  The  details  of  the  actual !e$.el,building algorithm 
are  available  elsewhere [6], and will not be  discussed  here., 
Instead we will rely on th‘e properties of the  algorithm,  men- 

. . .  , eL - I ,  e L )  for  the  dynamic  path  of  the  L-word  match. 
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tioned  above,  to  show  how  we  can  use  them  to  obtain  im- 
proved  speaker  independent  word  reference  patterns. 

A. Obtaining Reference Patterns for Connected 
Word Recognition 

The  “standard”  set  of  word  reference  patterns  used  in  most 
connected  word  recognition  systems is basically  a  set  of  iso- 
lated  word  patterns.  For  speaker  trained  systems,  usually  one 
robust  isolated  word  reference  pattern is obtained;  for  speaker 
independent  systems  of  a  set  of Q patterns  are  used  for  each 
word,  where  the Q patterns are extracted  from  a  clustering 
analysis  of  a  large set of  patterns  (typically  100  or  more)  of 
each  word  spoken  by  different  talkers. 

For  the digits  vocabulary we  have  made  two  small  modifica- 
tions  to  the  standard  isolated  word  pattern  reference  set.  First 
we  have  created  two  distinct  sets  of  patterns  for  the digit / S i ;  
one  with  a t release  at  the  end  of  the  word,  one  without  a t 
release  at  the  end  of  the  word.  Thus we  have  a  good  represen- 
tation  of 8’s both  within  strings,  and  at  the  end  of  strings 
(where it is usually  released). The  second  modification we  have 
made is to  artifically  lengthen  the  patterns  for  the digits 2 
and 8 (without  the release)  by  inserting  “silence  frames”  at 
the beginning  of 2 (to  simulate  the  initial  stop)  and  at  the  end 
of 8 (to simulate  the  final  unreleased  stop).  For  the digit 2  a 
silence duration of 45  ms was used;  for  the digit 8 a  silence 
duration  of  90  ms was  used  (the  silence  durations  were  opti- 
mized  in  a  small  pilot  test). 

To  the  standard  isolated digit reference  set,  two  sets  of  em- 
bedded digit patterns were  added.  These  sets  denoted  as  the 
noncoarticulated (NC) set,  and  the  coarticulated (CO) set, 
were  obtained  as  follows.  For  each  of 80 talkers (40 men, 
40 women)  a  speaker  trained  robust  set [ 121 of  isolated digit 
tokens was obtained.  Then  the  embedded  training  algorithm 
[ l  11 was  used on  3-digit  sequences to  extract  robust  em- 
bedded  versions  of  each  of  the digits in  both NC and  CO  posi- 
tions  as  follows. We denote  the  spoken  3-digit  test  sequence 
(either NC or  CO)  as T.  Since the  spoken digits in  the  3-digit 
test  string  are  known,  a  reference  pattern R is constructed  by 
concatenating  the 3 individual  isolated digit patterns.  A DTW 
alignment  between T and R is then  performed,  thereby  pro- 
viding  a  segmentation  of T into  the  three  regions  correspond- 
ing to  each  spoken  digit.  The  embedded digit  was extracted 
as the  middle  of  the  three  digits;  the  initial  and  final  digits 
were not used to  give training  patterns,  since  the  influence of 
context  on  these digits  was much  smaller  than  for  the  middle 
digit.  The  embedded digit pattern, saved in  a  temporary  word 
store,  was  compared  to all  previous  occurrences of that digit 
in  the  store  again  using  a DTW alignment  procedure.  For  each 
such  comparison,  a  distance  score  was  obtained. If any dis- 
tance  score fell below  a  specified  threshold,  then  the  pair of 
digits  giving the  minimum  distance  among  all  versions  in  the 
store  were  averaged,  after  time  alignment,  and  the  resulting 
(embedded)  reference  pattern  was  saved  in  a  permanent  store. 
This  procedure  was  iterated  until  an  embedded  reference  pat- 
tern was  obtained  for  each of the digits. 

The above  embedded  training  algorithm  was  used  to  extract 
NC and  CO  reference  patterns  for  each  digit.  The  set  of se- 
quences  used  for  the  embedded  training is  given  in  Table I. 
Each  talker  was  requested to  speak  at  a  “normal”  rate. Be- 

TABLE I 
TRAINING  SEQUENCES FOR EMBEDDED  DIGITS 

\ C  Scquenceh j co Sequences 
I 

h l I  611 
123 725 
2 3 1  436 

256 253 
346 343 

261 I68 

668  468 
I73  475 

693 695 
104 1.06 
681 688 

617 613 
624 526 
335 537 
247 544 
357 454 
369 461 
974 376 
568 368 
694 696 
903 901 
689 6x1 

616 

633 
327 

645 

569 
I 5 5  

577 
7 68 
697 
IO3 
689 

~ 

617 
426 
737 
746 
655 
768 
274 

693 
I68 

906 
688 

~ 

919 119 019 
020 729 421 
438 638 738 

651 458 251 
341 648 349 

866 663 766 
671 678 672 
668 468 168 
191 991 198 
601 708 009 
388 387 389 

Oll 918 I18  
921 628 529 
531 831 839 
549 741 548 
759 350 059 
667 664 867 
619 670 776 
568 368 168 

309 I01 408 
199 999 998 

386 381 383 

cause  of  the  high  degree  of  variability  of  the  embedded digits 
it  often  took  5  or  more  training  sequences  to  extract  a  reliable 
embedded digit token,  especially  for  the CO sequence.  Hence 
for each  talker  it  took  between 10 and  30  min  to  obtain a 
single  set of embedded digit tokens  (either NC or CO tokens). 
For  the 80 talker  population,  recording  of  training  data  took 
about  three  months  with  1-2  h of recording  per  day. 

A  set  of  speaker  independent  embedded digit tokens was ob- 
tained  by  clustering  the 80 versions  of  each  robust  embedded 
digit  using standard  clustering  techniques.  Because  of  the  high 
variability  of  the  training  data,  the  degree  to  which  the  em- 
bedded  tokens  clustered  was  significantly  smaller  than  the 
degree to  which  the  isolated  tokens  clustered;  hence,  on  aver- 
age only  about six  reliable  clusters  (with  three or  more  training 
tokens)  were  found  for  each  embedded  digit.  Thus,  a  typical 
speaker  independent  digits  set  consisted  of 12  isolated  tokens, 
six  NC  tokens,  and six CO  tokens  for  each digit or  a  total  of 
24 X 11 = 264  reference  patterns (recall that  the digit 8 was 
recorded  both  with  and  without t releases; hence,  there  were 
11 digits). 

111. EXPERIMENTAL EVALUATION OF SPEAKER 
INDEPENDENT CONNECTED DIGIT RECOGNITION 

To  test  the  effectiveness  of  the  embedded digit training  data 
in  a  speaker  independent  connected digit recognition  mode, 
an  evaluation  was  carried  out  in  which  each  of  19  talkers 
(9  male,  10  female)  spoke 40 randomly  generated digit strings 
at  both  a  deliberate  (Le.,  carefully  articulated digits) and  a 
normal  talking  rate.  The 40 digit strings  varied  in  length  from 
2 to  5 digits (with  equal  proportions  of  each  string  length); 
hence  the  average  string  length  was  3.5 digits. No  restrictions 
on digits  within the  string  were  used;  hence,  multiple digits 
often  occurred  within strings. The  set  of  40 digit strings  was 
different  for  each  talker. All recordings  were  made  over  a 
standard  dialed-up  telephone  line,  with  a  different  line  used 
for  each  talker.  The  19  test  talkers  were  not  used  in  the  train- 
ing  set  of 80 talkers  from  which  the  speaker  independent digit 
reference  patterns  were  obtained. 

A  series  of  preliminary  recognition  tests  were  run to tune 
the  parameters  of  the  level  building  connected digit recognizer. 
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It  was  found  that  the  optimum  values  of  the  level  building  pa- 
rameters  were  essentially  identical  to  those  used in earlier  digit 
recognition  tests.  The  optimum  parameter  values  obtained 
in  this  preliminary  evaluation  were as follows. 

E = width  of DTW search  region = 15  frames 

B E N D  = search  region at  end  of  string = 4 frames 
M ,  = multiplier  for  interlevel  scores = 1.4 

B R ~  = number of frames to skip at  beginning  of  tem- 

6 R 2  = number  of  frames to skip  at  end  of  template, variable. 

The  nominal  choice  for 6 R 2  was 4 frames  for  all  isolated  tem- 
plates  except 8 (both versions) and 6 for  which 8 R 2  was 0.  
For all embedded  templates  (which  were  naturally  reduced 
in length)  the  optimum  choice  of BR2 was 0; i.e., no  frames 
could  be  skipped  at  the  end  of  the  embedded  references  while 
matching  the  test  sequences. 

Using these  optimum  values  of  the level building  parameters, 
a  series of four  recognition  tests  was  run.  In  the  first  test  only 
the  standard  isolated  digit  templates  (12/digit)  were  used. 
This  experiment  provided  a  baseline  comparison  for  measur- 
ing  improvements  in  performance  due  to  using  embedded 
digit  templates.  For  the  last  3  tests  a  total  of 24 templates  per 
digit  were used, Le., 12 isolated,  plus 6 NC embedded,  plus 
6 CO  embedded.  (Recall  that we found  that  only six  reliable 
embedded  digit  clusters  could  be  obtained  for  the 80 talker 
training  database.)  The  differences  in  the  last  three  tests 
involved the decision  rule;  in  particular  the  K-nearest  neigh- 
bor  (KNN)  rule  was  used  with  values  of  KNN = 1,  2,   and  3,  
respectively. 

The  results  of  the  recognition  evaluation  tests  are  given  in 
Figs. 3-5,  and  in  Tables I1 and 111. Table I1 gives the average 
error  rates  (across  all 19 talkers)  for  each  of  the  four recog- 
nition  tests  as  a  function  of  the  position  of  the  correct  string 
in  the  ordered list of  best  strings.  Hence,  position  1  means 
the  correct  string  had  the  lowest  distance  over  all  possible 
strings  of  any  length  (number  of  digits).  Position 2 means 
the  correct  string  had  the  second  lowest  distance  over  all 
strings,  etc.  Position KL  (known  length)  means  the  correct 
string  had the lowest  distance  among digit strings  with  the 
known  correct  number  of  digits. 

Results  are given in Table I1 for  both  deliberately  spoken 
test  strings  (a)  and  for  naturally  spoken  test  strings  (b).  The 
results  of  Table I1 are  shown  plotted  in Figs. 3(a)  and  3(b). 
Based on  Table I 1  and Fig. 3,   the following  observations  can 
be  made. 

1)  For  deliberately  spoken  digits  (with  KNN = I j, addition 
of  embedded  training  patterns  tends to decrease the  perfor- 
mance  of  the  recognizer  for  strings  of  unknown  length.  How- 
ever, for  known  length  strings,  a  clear  improvement in perfor- 
mance is obtained using the  reference  set  with  the  embedded 
digit tokens. 

2) The use of  the  KNN rule tends  to  greatly  improve  the 
performance  of  the  recognizer  for  deliberately  spoken  strings. 
This  effect is strongly  seen  in  the  results  using  KNN = 2 versus 
those  for  KNN= I .  The  improvement  in  performance  for 
KNN = 3 is marginal  over that  obtained  for  KNN = 2 .  

3)  For  normally  spoken  strings  (with  KNN = l),  a  dramatic 
improvement in performance is obtained  using  the  embedded 
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\ 
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O i  I I I I I 

I 2 3 4 5 K L  
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(b). 
Fig. 3. String  error  rate vcrsus candidate  position f o r  the  four recopni- 

tion  tests  for  (a)  deliberate strings. and (b) normal  rate strings. 
The individual  symbols  denote  measured  error  rates  for the different 
K N N  rulcs, and fo r  the  specified  number of templates  per  word 
(TI'W). 

training  patterns. In position 1 the  error  rate falls from  25.3 
percent  for  12  isolated  training  patterns  to  15.3  percent  for 
24  isolated  plus  embedded  training  patterns  for  digit.  For  the 
known  length  case,  the  error  rate  falls  from 22 percent t o  8.6 
percent. 
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ate  strings  and  (b)  normal  rate strings. 
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4) The use of  the  KNN rule  again  lends to  good  improve- case.  Table 111 shows  individual  talker  error  rates  as  a  function 
ments  in  performance  of  the  recognizer  for  naturally  spoken  of  string  position  for  both  the  deliberate  (Table  Illa)  and  natu- 
strings;  however,  differences  in  performance  between  KNN = 2 rally spoken  strings  (Table  Illb). Also given in the  tables  are 
and  KNN = 3 are  statistically  insignificant.  average  string  error  rates  for  all 19 talkers,  and  for  the  best 18 

Since  the  best  performance  of  the  recognizer  was  obtained in and 17 talkers. It can  be  seen  in  Table 111 that 2 or  3 of  the 19 
the  tests  using 24 templates  per  digit  with  KNN = 3, Table 111 talkers  had  error  rates  far  worse  than  the  average;  hence,  these 
and Figs. 4 and 5 give further analysis of  the  results  for  this  talkers  had  a  strong  influence on the overall  performance 
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TABLE 11 
RESULTS FOR FOGR CONNECTED-DIGIT RECOGNITION TESTS 

Number  Error  Rate (a) i n  Position 

Number KL  5 4 3  2 I Rule Digit 
Test KNN Templates per 

I I 4 I 3 1 4 ,  

I 8.6 4.7 5.4 8.2 I 6.1 14.6 I I 2 *  
2 
3 

24 
24 

4 24 

I 

4.3  2.0  2.4 4.9 1 2.8 10.3 3 
4.1 2.5  2.8 5.4 1 3.6 12.4 2 
6.0 4.5 5.9 10.7 I 6.6 17.1 

(a) Error  Rates for Deliberately  Spoken Digit Strings 

Number 
Test  KNN Templates  per 

Error  Rate (7%) in Position 

Number KL  5 4 3 2 I Rule Digit 
I I I I I 

I 
2 

l2* 

5.3  2.8 3.0 3.3  4.3 7.4  2 24 
8.6  3.4 3.9  4.9  7.9 15.3 I 24 

3 

22.0 12.5  13.2 13.9 16.8  25.3 I 

4 5.9  2.8 2.8  3.3 4.3 7.4 3 . 24 

(b) Error  Rates  for  Normally Spoken Digit Strings 

T c m p l a m  derlved  from  isolated  digits. 

scores. To  show  the  effects  of  eliminating  these  talkers  on 
performance,  the  average  error  rates  without  talkers  15  and 

, 12  were  computed.  Fig. 4 shows  plots  of  the  average  error 
rate  scores  as  a function  of  position  in  the list  of candidate 
strings  for  the  19  and  17  talker  cases,  for  both  the KNN = 2 
and KNN = 3 tests. 

Fig. 5 shows  histograms  of  the  number  of  strings  errors 
across  the  19  talkers  in  both  first  position [(a) and  (c)]  and 
for  known  length  strings  [(b)  and  (d)] , for  both  deliberate 
strings [(a) and  (b)] , and  normal  strings  [(c)  and  (d)] . It  can 
be  seen  in  Table 111 and in Fig. 5  that  the  majority  of  talkers 
had  excellent  performance  (the  median  string  error  rate  was 
2.5  percent  in  known  length  strings  with  almost  half  the 
talkers  having  no  string  errors  for  either  deliberate or natural 
rate strings). 

To  understand  the  types  of  error  made  in  connected digit 
recognition,  a  detailed  analysis was made  of  the errors in  rec- 
ognition  test 4,' with  24  templates  per digit  using KNN = 3. 
The  recognition  errors  were  classified  as  being  very  close  (VC), 
where  the  difference  in  distance  between  the  correct  string  and 
the  chosen  string  was less than  0.005, close  (C),  where the  dif- 
ference  in  distance  between  the  correct  string  and  the  chosen 
string  was less than 0.03 but  greater  than 0.005, and  far  (F) if 
the  difference  between  the  correct  string  and  the  chosen  string 
was greater  than 0.03. For  the  deliberate  strings  there  were 
13 VC, 42 C, and  22 F. For the  normal  strings  there  were 
9 VC, 21 C, and  26 F.  A further analysis of  the  deliberate 
string  errors  showed  the  following. 

1) The 13 VC errors  comprised  7 digit insertion  errors (4  of 
these  were  the digit 8), and 6 digit substitution  error  (no 
regular pattern). 

2) The  42 C errors  comprised  31 digit insertion  errors  (10  of 
these  were  the digit 8, 10  were the digit 1,  four  were  the digit 
2,  three  were  the digit 6, three  were  the digit 5,  one was the 
digit 7),  and  11  substitution  errors  (the  only  regular  substitu- 
tion  was  9  to 1 which  occurred  four  times  for  one  talker). 

Hence,  the  worst  problem for deliberate  strings  was digit 
insertions (38 of 55 cases),  generally  involving  short  word 

TABLE 111 

DIGIT RECONSTRIJCTION 
INDIVIDIJAL  TALKER RESIJLTS FOR SPEAKER  INDEPENDENT  CONNECTED 

(a) Error  Rates for Deliberdtcly  Spoken  Digit  Strings,  KNN-3 

i I Error  Rate ('$1 in Position 1 
1 Talker I I 

(b) Error  Rates  for  Naturally  Spoken Digit String\.   KNh-3 

reference  patterns (e.g., 8, 1,  2).  This  problem is a  conse- 
quence  of  using  the  embedded  word  patterns  which  often  are 
very short  duration.  Thus, for the  deliberate  strings  the  known 
length  case  led  to  significantly  better  performance  than  the 
unknown  length  case. 

For  the  normal  rate digit strings,  an  analysis  of  the 9 VC and 
21  C  errors  showed  the  following. 

1)  The 9 VC errors  involved  seven digit substitutions,  one 
digit insertion,  and  one digit deletion.  There  was  no  regularity 
to  the digit substitution  errors. 

2) The 21 C errors  involved  15 digit substitutions, five  digit 
insertions,  and  one digit deletion.  Four  of  the digit substitu- 
tions  were for one  talker  and  involved  using  a 1 in  place  of  a 
9 ;  all other such  errors  had  no  pattern.  The digit insertions  in- 
volved the digits  2  and 8 (two  each). For normal  rate  strings, 
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TABLE 1V 
AVERAGE STRIR'G ERROR RATES AS A FL'NCTION OF T H E  NUMBER OF DIGIIS 

I N  T H E  S T R I N G  

Uurnbcr of Digltr. In String 

Deliberate 12.6 13.1 1 5 8  7 9  

Normal 5 3  7.4 

(a) Strlng Error R a m  (57) for Unknoun  Lcngth Strings of Tcst 3 
as a Function of !he Number of D~gl!h i n  Ihc S t r ~ n g  

F m i  
Yarmal 2 6  4 2  6 3  7.9 - 

(b) Strmf Error Rates ('2) ror Known Length  Srrlngh of Tmt 3 
'is a Funellon of thc  Nurnbcr  of Dlglls I n  the  String 

only  the  shortest digit patterns  have a chance  of  being  inserted 
in a string. 

Our  overall  analysis  of  the  digit  string  errors  indicated  that 
digit  insertions  were  the  worst  problem  and  occurred  primarily 
for  deliberately  spoken  strings.  There  seemed  to  be  little 
pattern  or  regularity  to  the  errors in the digit substitution 
cases for  either  deliberate or natural  rate  strings. 

An  additional  analysis was made  of  the  correlation  between 
string  length  and  string  error  rate  for  recognition  test 3. The 
reults  of  this  analysis  are  shown  in  Table  IV  which gives aver- 
age string  error  rates (%) as a function  of  whether  the  string 
length  was  unknown  (Table  IVa)  or  known  (Table  IVb),  and 
as a function  of  the  number  of  digits  in  the  string.  For  the 
deliberate  strings  of  unknown  length,  the  average  string  error 
rate  for 5 digit strings is significantly  lower  than  for  strings 
of 2, 3, or  4 digits.  This is because  there is no  digit  insertion 
problem  with  5-digit  strings,  and  since  digit  insertions  are  the 
most  severe  problem  with  deliberately  spoken digit strings, 
the  string  error  rate  for  5-digit  strings  appears  to  be  the  lowest. 
This  fact is verified in the results of  Table  IVb,  which  shows 
that  for  known  length  strings,  the  average  string  error  rate  for 
5-digit  strings is significantly  higher  than  for  strings 2,  3, or 4 
digits.  In  fact, we see a  tendency  for  higher  error  rates as the 
number  of  digits in the  string  increases. 

For  normal  rate  strings we see a similar  affect to  that  noted 
above, in that  for  unknown  length  strings,  there is almost  the 
same  average  string  error  rate  for all string  lengths;  however, 
for  known  length  strings,  the  error  rate  clearly  increases  as  the 
number  of  digits in the  string  increases. It is  also  interesting 
to note  that  the average  string  error  rates  for  both  deliberate 
and  normal  strings  are  comparable  for  the  known  length 
strings  for all string  lengths.  Hence,  the  use  of  embedded 
digit training  words  tends  to  compensate  for  the  higher  rates 
of  articulation  uniformly well across all length  digit  strings. 

IV. DISCUSSION 
The  results  presented in Tables 11 and I l l  and  shown in Figs. 

3-5 have demonstrated  the  following. 

1)  The  inclusion of embedded digit training  improves  string 
recognition  accuracy  significantly  for  normal  rate digit strings 
(both  known  and  unknown  lengths),  but  lowers  string  accu- 
racy  for  deliberate  rate  strings of unknown  length,  and raises 
string  accuracy  for  deliberate  rate  strings  of  known  length. 

2) The  use  of  higher  values  of K N N  (2 and 3) leads to  sig- 
nificant  improvements  in  performance  for  both  deliberate  and 
normal  rate digit strings. 

3) For  known  length  strings,  average  string  error  rates  of 
about  5  percent  can  be  maintained  for  both  deliberate  and 
normal  rate strings. 

4) For  unknown  length strings,  average  string  error  rates  are 
from 1.5 to  2 times  higher  than  in  the  case  of  known  length 
strings.  The  increased  error  rate  is  due  primarily to the ease 
of  inserting  short  reference  digits (8, 2,  1) in  matching digit 
strings.  The  effect is more  pronounced  for  deliberate  rate 
strings  than  for  normal  rate  strings. 

5) For  speaker  independent  recognition,  most  talkers  were 
able to be  recognized  with  fairly small string  error  rates (2.5 
percent  or  below).  However,  there  were a couple  of  talkers 
in  the 19 tested  whose  error  rates  were  from 5 to  10  times 
higher  than  the average of the  other  talkers.  Informal  listening 
did  not  indicate  any  obvious  problem in the  speech  of  such 
talkers;  hence, we  have no  good  explanation as to  why  these 
talkers  were  recognized so poorly.  Our  only  possible  explana- 
tion is that  in  an  earlier  study [ l  I ]  , it was found  that even 
for  speaker  trained  connected digit recognition,  there  were 
talkers  whose  string  error  rate was on  the  order  of 50 percent. 
Hence,  there is some  element  of digit variability  in  some 
talkers  that  appears  to be poorly  modeled  in  our  current 
recognizer. 

The  question  that  remains is what  can  be  done  to  improve 
performance  on  the  task  of  speaker  independent,  connected 
digit  recognition.  There  are at least three  things  that  come to 
mind  to  help  increase average digit string  accuracy.  The  first 
is to improve  the  training  by  including  far  more  talkers  in  the 
training  data  base.  This  path is one  which  must  be  taken  be- 
fore  one  can  hope  to use such a recognizer  for a real-world 
application.  However,  in  the  laboratory,  the  cost  of  a signifi- 
cant  increase in training  data is as yet excessive (both  man- 
power  and  processing)  and will not be attempted in the  im- 
mediate  future. A second  step  to  improve  connected digit 
accuracy is to  incorporate  some  form  of  task  syntax  into  the 
problem so as to  be  able  to  automatically  detect  and  correct 
string  errors.  For  example,  in  the use of  connected digit recog- 
nition  for  dialing  a valid telephone  number  (i.e., 3 di,' ult area 
code plus 7 digit  telephone  number), we can  use  the  following 
syntactic  information. 

1 j  We expect  only 10 digits  in the set of  strings  spoken 
(typically  a  3-digit  area  code  followed  by a pause,  then a 3-  
digit exchange,'then  a  pause,  then  a  4-digit  number).  Hence, 
we can  handle  the digit insertion  problem  by  counting  and 
detecting too many  digits  in  one or more  strings. 

2) Of the IO3 = 1000 possible  area  codes,  only 117 are valid 
in the U.S. Hence, we can  check  the  first 3 recognized  digits 
against  the list o f  valid area  codes  and  detect  and  possibly  cor- 
rect  area code  errors  automatically. 

3) Within a given area  code  there  are lo3 = 1000 possible 
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exchanges.  On  average,  there  are  about  200-400  exchanges 
within-a given area  code.  Hence,  one  can  apply  simple  table 
driven  syntactic  rules to detect  and  possibly  correct  exchange 
errors. 

4) Finally,  within  a  given  area  code  and  exchange  there  are 
IO4 = 10 000 possible  numbers.  However,  there  are,  in  general, 
anywhere  from 1 percent  and 50 percent  of  the  numbers 
which  are  unassigned  or  unused.  Again, it is  theoretically  pos- 
sible to  check  the  actual  number  and see if it is valid, and 
therefpre  detect  any possible  correct  number  errors. 

Other digit string  entry  systems  have  similar  forms  of  syn- 
tactic  constraints  which  can  be  utilized  to  improve  connected 
digit recognition  performance. 

The  third way to  improve  performance  on  the  connected 
digit recognition  task is to  incorporate  some  side  information 
into  the  recognizer.  For  example,  it  has  been  shown  that  the 
addition  of  an  energy  contour  can  halve  the  error  rate  in  an 
isolated  word  recognizer  for  a  vocabulary  of 129 airline  terms 
[14] . The use  of  energy  information  would  possibly  be  of 
much  more value in  a  connected digit recognizer  than  in-the 
isolated  word  recognizer,  because it would  tend to eliminate 
the digit  insertions  which  would  have  very  poor  energy  matches 
to  the  test  strings.  Another  technique  which  could  be  com- 
bined  with  the LPC based DTW recognizer  is  a  hidden  Markov 
model (HMM) recognizer [15]. Based on previous  word  with 
isolated  digits it was  shown  that  a  high  degree  of  disjointness 
existed  between  the  errors  made  by  an HMM recognizer,  and 
those  made  on  a  conventional LPC recognizer. By combining 
the  two  isolated  word  recognizers,  it  was  argued  that  a  recog- 
nizer  could  be  obtained  with  virtually  no  errors.  One  would 
expect  that  such  properties  could  also  be  explained  in  the 
connected digit recognition  problem. 

V. SUMMARY 
We have  shown  how  an  improved digit training  technique  de- 

veloped  previously  for  speaker  trained,  connected  word  recog- 
nizers,  could’  be  combined  with  a  standard  token  clustering 
analysis to  give an  improved  speaker  independent  connected 
digit recognition  system.  Further  we  have  shown  that signifi- 
cant  improvements  in  performance  are  obtained  by  using  the 
K-nearest  neighbor  rule  with  values  of KNN = 2 or 3. The  re- 
sults  of  an  evaluation  test  with  19  talkers  indicate  that  average 
string  accuracies  of  about  95  percent  can  be  obtained  for  both 
deliberate  and  normal  talking  rates  if  the  number  of  digits  in 
the  string is known. 
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Time  Delay  Estimation by Generalized Cross 
Correlation  Methods 

MORDECHAI  AZARIA AND DAVID  HERTZ 

Abstruct-The  problem  of  estimating  time  delay  by  cross  correlation 
methods is reexamined  for  the  whole class of  stationary signals. 

Expressions  are  derived for the  estimation  mean  square error (MSE) 
by the cross  correlation  method,  and  are  shown  to  be  identical to pre- 
viously  published  results  for  Gaussian  signals. 

The generalized  cross  correlation  method is also  analyzed,  and  the 
optimal  weight  function  for  this  method  is derived. I t  is shown to be 
identic4  to  that derived for Gaussian  signals by  the  maximum  likelihood 
method. 

For the  cross  correlation  method  a  simplified MSE expression is de- 
rived,  which is to  be used  instead of a  previously  published  result. 

T 
I.  INTRODUCTION 

HE  problem of estimating  time  delay  of  arrival  (TDOA) 
is reexamined  for  the  whole class of  stationary signals. 

Both  cross  correlation  and  generalized  cross  correlation  meth- 
ods are  analyzed [5], [9],  [ l o ] .  This  problem  has  been  the 
theme  of  a  recent  special  issue [ 11 , and  numerous  papers  were 
published  thereafter.  Assume  the  model 

x ( t )  = s ( t )  -t n 1 (t)  

where  the  signal s( t )  and  noise nl ( t ) ;  n,(t) are real baseband 
signals. D is the  unknown  delay, T is the  observation  time, 
and  the  following  assumptions  hold. 

Assumption a: The signal s( t )  and  noise n ,  ( t )  and n z ( t )  
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are  stationary  band  limited  zero  mean  signals  uncorrelated  with 
each  other, 

Assumption b: The  correlation  durations  of  the  signals 
s(t) ,  n l ( t )  and nz(t ) :  ID1 + r3,  r n l ,  T,~, respectively,  are  very 
small  compared to  the  observation  time T. Ergodicity of the 
signal s ( t )  is  also  assumed. 

In Section 11, an  error  analysis  of  TDOA  estimation  by  the 
cross  correlation  method is carried  out. 

The  delay D can  be  estimated  by r = o  ̂ for  which  the  cross 
correlation  function @(r) is maximized, i.e., 

In  this  paper,  it is shown  that  the  estimator D of D is un- 
biased  and  an  expression for  its  mean  square  error (MSE), 
as a  function  of  the  observation  time T and  the  autospectra 
of  the  signal s( t )  and  the  noise n (t)  and n2 (t) ,  is derived. In 
the  derivations  it is assumed that  TDOA  estimation  error is 
very  small  compared to  the  correlation  duration 7, of s( t ) ,  
i.e., l o ^ .  - D I  << T ~ .  

Therefore  in 6 ’ s  domain,  the  autocorrelation  function 
Rss(b - D) of s( t )  can  be  approximated  by  a  parabola. As will 
be  shown,  the  validity of this  approximation  depends  on  signal 
to  noise  ratios  (SNR),  observation  time T and  signal  and  noise 
bandwidths. 

The  expression  for  the MSE is identical to  the result  obtained 
in [8] assuming  Gaussian  signals,  and to  the leading  term  of 
the  result  obtained  in [2] assuming  Gaussian  signals  and  a 
Gaussian  autocorrelation  function. 
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