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ABSTRACT. Recently a new structure for isolated word recognition
was proposed based on the ideas of vector quantization (VQ). In this
scheme a separate VQ codebook, for each word in the vocabulary, was
designed, based on a training sequence of several tokens of each word
by one or more talkers. In the original implementation, the recognizer
chose the word in the vocabulary whose average quantization distortion
(according to its particular codebook) was minimum. In the proposed
implementation, the word-based VQ's are used as a front end
preprocessor to eliminate word candidates whose distortion scores are
large; a DTW processor then resolves the choice among the remaining
word candidates (i.e. those which are passed on by the preprocessor).
Both of the above schemes work very well for small vocabularies;
however the major flaw is the lack of temporal information in the
word-based VQ processor. As such, as the vocabulary for recognition
grows in size and complexity, the ability of the VQ processor to resolve
among similar sounding words decreases dramatically, and the
effectiveness of the proposed recognition structure similarly decreases.
To alleviate this difficulty a technique for incorporating temporal
structure into the preprocessor is also proposed. In particular, the
probability density function of the time of occurrence for each vector
in the codebook is estimated from the same training sequence used to
derive the codebook vectors. In the recognizer, the spectral distance
score of the VQ is combined with a (scaled) temporal distance score,
for each frame in the word. An evaluation of the proposed recognizer
showed good performance on both the digits vocabulary, and on a
vocabulary of 129 airlines terms.

1, Introduction

There has been a great deal of interest, recently, in techniques for
isolated word recognition which maintain high performance, but do so
at low computational cost [1-5]. The reason for this renewed interest
in "low Cost" recognizers is the desire to implement such systems on
conventional microprocessors, where the computational power is
nowhere near as great as needed for the "higher cost" recognition
systems.

One of the most promising of the low cost recognizers is the vector
quantization (VQ) based recognizer, originally proposed by Shore and
Burton [2], and modified by Burton et al. [41. The basic idea in this
recognition system is to design a separate VQ codebook for each word
in the vocabulary, based on a training sequence of several tokens of
each word by one or more talkers. in the original Shore and Burton
implementation [2], the recognizer chose the word in the vocabulary
whose average quantization distortion (according to its particular
codebook) was minimum. This word-based VQ recognizer worked very
well for small vocabularies; however as the vocabulary size and/or
complexity grew, the ability of the VQ processor to resolve among
similar sounding words decreased dramatically, and the effectiveness of
the recognizer similarly decreased [5].

The major problem with the word-based VQ processor, for large
vocabularies, was its inability to use temporal information; i.e. to
integrate information about the times of occurrence of the speech
sounds with the fact that the sounds occurred within the word. One
simple method for incorporating this type of temporal information was
proposed by Buzo et al. [61, and developed by Burton et al. 14]. In
this approach, gross temporal information was incorporated into the
recognizer by subdividing each input word into R, non-overlapping,
regions, and using a separate codebook for each region. In this

manner each word was characterized by R codebooks, obtained from a
training procedure in which a similar subdivision of each training word
was made. Burton et al. reported good success with this method [41.

An alternative procedure for implementing a word-based VQ
recognizer which incorporates temporal information is proposed in this
paper. In particular, for each vector in each word-based codebook, the
probability density function of the time of occurrence (on a normalized
time scale) is estimated from the same set of training sequences used
to derive the codebook vectors. In the recognizer, the spectral distance
score of the VQ preprocessor is combined with a (scaled) temporal
distance score, for each frame in the word. The word-based VQ
preprocessor screens out unlikely word candidates (based on the
combined spectral and temporal distance), and is followed by a DTW
processor which resolves fine word distinctions.

An evaluation of the proposed recognizer Structure W5 performed
using both a small vocabulary (the 10 digits), and a moderate size
vocabulary (129 airline terms). Both vocabularies were tested in a
speaker independent mode, i.e. codebooks and probability histograms
were generated from speaker independent training sets. Results
showed recognition error performance on both vocabularies was
comparable to that of the best recognizers; however computational
costs were comparable to those of a "low cost" recognizer.

H. The Proposed Recognition Algorithm

A block diagram of the proposed recognizer is given in Figure 1. The
input speech signal is digitized at a 6.67 kHz rate, the word endpoints
(beginning and ending frames) are detected, and an LPC analysis is
performed on all frames within the word. The LPC analysis is an 8th
order analysis of 45 msec frames (300 samples), spaced every 15 msec
(100 samples) along the word. Each overlapping 45 msec section of
speech is windowed using a Hamming window, and an 8th order
autocorrelation analysis is performed (giving 9 autocorrelation values
per frame). The results of the LPC analysis are the set of frame log
energies (suitably normalized to the peak log energy of the word), E1,
I i 1, and the LPC vectors a1, 1 I I, where I denotes the
number of frames in the word.

The word-based LPC preprocessor uses the analysis results (i.e. the
frame log energies and the LPC vectors) to eliminate all unlikely
candidates from further analysis. Thus the output of the preprocessor
is a list of candidates for the unknown word. A DTW processor then
decides among the words in the candidate list by a conventional
dynamic time warping alignment of the unknown test word against a
set of stored word reference patterns. A KNN decision rule chooses
the word whose average DTW distance of the K-best word patterns is
smallest. In cases where the list of candidates from the preprocessor
contains only a single choice, the DTW processor is bypassed and a
final decision is made by the preprocessor.
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Fig. I Block diagram of isolated word recognizer.



2.1 The Word-Based VQ Preprocessor 2.2 Combining LPC Distance and Temporal Probability Score

A block diagram of the word-based VQ preprocessor is given in Fig. 2.
Each word in the vocabulary is characterized, in the preprocessor, by a
codebook, B, and by a temporal probability table, P. The codebook
consists of a set of LPC vectors (supplemented by a log energy scalar),
bk, 1 k L, which characterize the LPC vectors of a training set
of multiple occurrences of the word. The codebook vectors are chosen
by a VQ design algorithm which minimizes the average distortion
between the training vectors and the codebook vectors [7-9].
Typically, for word recognition applications, values of L (the total
number of vectors in each word codebook) range from 4 to 32.

The temporal probability table, F, is derived from both the codebook,
B, and the word training data in the following way. The elements of
P are the values Pk (t) defined as:

Pk (t) = probability that codebook vector, k, occurs at normalized
time t i/I within the word.

Thus the values Pk (1) (where suitably quantized values of t are used
in practice) constitute a temporal probability table for the codebook
vectors. The way in which values of pk (i) are obtained, from the
training set, is as follows:

1. Each training sequence is linearly warped to a fixed length,
I = 40 frames. (Thus values of Pk (t) are obtained for

= 1/40, 2/40 40/40).

2. Each vector of each linearly warped training sequence is vector
quantized, using codebook B.

3. At each time t, all codebook vectors whose distortion distance
score is within a fixed threshold, , of the minimum distortion
score for the frame, are considered to have occurred.

4. The value used for Pk (t) is the ratio between the number of
times codebook vector k occurred at time t (as defined in step 3
above), and the number of times any codebook vector occurred at
time t, over the entire training set for the word. In this manner

L
Pk (:) 1 for all 1.

k—I

For convenience, and to reduce computation, the temporal probability
tables were stored as

13k(t) —7 log[p(t)l (1)

i.e. as negative log probabilities so they could readily be combined with
the LPC distances. The multiplier y, was chosen so that, averaged
over the entire training set, the average value of 13k (s) was the same as
the average LPC distance. Typically the value of 'y was about 0.45 for
L = 8 vector codebooks, and about 0.22 for L = 16 vector codebooks.
Also values of pk(t) were clipped at a level of io; hence no temporal
probability score was 0.

Fig. 2 Block diagram of the word-based vector quantization
preprocessor.

After a great deal of investigation into ways of combining LPC
distance and temporal probability scores, the resulting distance score
that was used was

d(a1,E,B,P) (l—a)dsp(a1,Ej,B) ÷ adrp(k1,P) (2)

where dsp was the spectral (LPC combined with energy) distance and
dTp was the temporal probability distance. The scaling value a was
chosen by optimization and determined the mix of spectral and
temporal "distances". A value of a 0 represents pure spectral
distance; similarly a value of a 1.0 represents pure "temporal
distance".

The spectral distance, which combined the LPC distance with the
energy distance, had the form

dsp(a,E,B) =
t.k<L [dLPca1,bk +cJ(dE(Ei,Ek)] (3)

with V, being the autocorrelation matrix of the input frame, E being
the normalized log energy of the input frame, and Ek being the
normalized log energy of the k'5 codebook vector. We then have

dE(E,Ek) Ik —E11 (5)

0
f(E)= E—ELO

EHI—ELO

where c, ELO, Eg,, and E0 were suitably chosen constants. (We
used c = 0.1, ELO 6 dB, and E1 20dB).
The temporal distance of Eq. (2) was of the form

dTp(k!,P) —fik([iJi]) (7)

where [ii] is the rounded value of i/I to the nearest 1/40.

The preprocessor decision logic is as follows:

1. Find all word candidates v, such that the average distortion, D",

= - d(a1,E,,B",P") (8)

is within a fixed threshold, ô, of the minimum average distortion
across all words.

2. If only a single word candidate exists, then the recognition is
over — i.e. no DTW processing is required.

3. If more than one word candidate exists, then use the DTW
processor to make the final recognition decision among the word
candidates.

LI!. Experimental Evaluatioi

Two databases were used to evaluate the performance of the
recognizer. All recordings were made over a standard, local, dialed-up
telephone line. The first database was a digits set consisting of 4 sets
of 1000 digits each (100 talkers x 10 digits/talker). We call the digits
sets DIG1, DIG2, DIG3 and DIG4. The templates (12 per word,
speaker independent) for the DTW processing were created from the
data of set DIG!. The training data for the word-based VQ
preprocessor (to get the codebooks, B", and the temporal probability
tables, F") were derived from a randomly chosen set of 150 tokens of
each word from sets DIG 1, DIG3, and DIG4. For testing the
recognizer, all 4 digit sets were used.

where

bkV bk
dLpc(aj,bk)

" —
1

a,V,,a,
(4)

with

0 ' E It; ELO

ELO <E It
E <E

(6)
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The second database was a vocabulary of 129 words used in an airlines
information and reservation system. Two sets of data, called AIR1
and AIR2 were used. Their characteristics were:

AIR 1 — 100 talkers (50 male, 50 female), I averaged occurrence of
each word by each talker obtained from averaging a pair of
robust tokens of the word.

AIR 2 — 20 new talkers (10 male, 10 female), I replication of each
word by each talker.

The data of set AIR1 were used to create both the word reference
templates (speaker independent, 12 per word), and to give the word
codebooks and word temporal probability tables. The data of set AIR2
were used to test the recognizer.

3.1 Results on the Digits Vocabulary

For each of the digit test sets, a preliminary test run was performed in
which the preprocessor was used by itself to make the final recognition
decision based on the word with the lowest combined spectral plus
temporal distance score. (Equivalently, I, in the decision logic, was set
to 0). The distance combining parameter, a, in Eq. (2) was then
varied from 0 to 1 (in steps of 0.1) and a curve of the preprocessor
recognition accuracy versus a was computed. A typical such curve for
the test set DIG1 is given in Figure 3. The behavior of the recognition
rate, shown in this figure, is typical for all the digit test sets. It can be
seen that for a = 0 (only spectral distance) and for a = 1.0 (only
temporal distance), the recognition rate of the preprocessor (91.4% for
a = 0, 9 1.2% for a = 1.0) is significantly lower than its value at the
peak of the curve (97.5% for a = 0.7). This result strongly points Out
the value of combining spectral and temporal distances in the
preprocessor. It can also be seen that in the vicinity of the peak (near
a 0.7), the recognition rate is fairly constant (its value at a = 0.5 is
97.1%); hence a fairly broad region of choices for a is possible. Across
the 4 digit test sets, the optimum value of a varied from 0.4 to 0.7. if
we used the value a 0.5 for all digit sets, the preprocessor
recognition rate changes less than 0.2%, on average.

A complete set of performance results on the digits test sets is given in
Table I. Table Ia gives average digit error rates for the preprocessor
working without the DTW processor, for the 4 test sets (and an overall
average), for codebooks with 8 and 16 vectors per word. Table lb
gives average digit error rates for the complete recognizer, as a
function of codebook size. The threshold, 1, in the preprocessor was
set so that, on average, about 83% of the time no DTW was required
(i.e. the preprocessor made the final decision), and about 17% of the
time, the average number of word candidates passed on to the DTW
processor was 2.25. No quantization of the reference templates in the
DTW processor was used; previous experience with this data set
indicates that no degradation need occur if the reference template
quantization is done correctly [5].

a
Fig. 3 Curve of average digit recognition rate versus the combining

multiplier, a.

3.2 Results on the Airline Vocabulary

For the airline vocabulary, a curve of preprocessor average
performance versus the combining multiplier a was again run, and the
results are given in Figure 4. Although the form of the curve is
similar to that of the digits case (Fig. 3), the level of improvement in

Average Digit Error Rate (%)
Codebook H—

Size DIG1 DIG2 DIG3 DIG4 Overall

8 2.5 3.1 3.1 4.3 3.3
16 2.5 2.6 2.5 3.7 2.8

Codebook
Size

Average Digit Error Rate (%)

DIG1 DIG2 DIG3 DIG4 Overall

8 2.9 2.5 2.2 2.9 2.6
16 1.3 2.3 2.2 2.8 2.2

Table I. Average Digit Error Rate of;
(a) Preprocessor alone and; (b) Complete Recognizer

10

Fig. 4 Curve of average word recognition rate versus the combining
multiplier, a, for the airline test data.

performance by using both spectral and temporal distanceover either
spectral or temporal distance alone, is indeed impressive. We see
From Fig. 4 that for a = 0 (spectral distance only), the preprocessor
achieves a 65.4% accuracy; for a = 1.0 (temporal distance only), the
accuracy is 73.2% (it is better than the result for a = 0). However,
for a = 0.5, the combined distance yields a performance of 88.1% word
accuracy, an improvement in accuracy of from 15.5% to 22.7% over
the individual distances.

The overall recognizer performance on the airline vocabulary is given
in Table II. The 8 vector per word system has a preprocessor error
rate of 14.8%, whereas the 16 vector per word system has a
preprocessor error rate of 11.9%. By setting the preprocessor decision
threshold so that a unique decision was made by the preprocessor on
76% of the trials, and on 24% of the trials, an average of 2.5
candidates (out of 129 possible) were passed on to the DTW processor,
the overall word error rates fell to 11.7% for the 8 vector codebooks,
and 8.9% for the 16 vector codebooks.

Codeboo
Size

Average Word Error Rate (%)
k

Preprocessor Alone Total Recognizer

8 14.8 11.7
16 11.9 8.9

HU
aa00
H
H
-J
a0
030aa

08

080 0.2 0.4 0.8 0.8 I0

H0Uaa00
HH

aaa0aa0.9l
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Table II. Results for the Airlines Vocabulary
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IV. Discussion

The results presented in the previous section clearly show that the
addition of temporal information to a word-based VQ preprocessor
increases the accuracy of the recognizer, and makes it more robust to
vocabulary size and complexity.

To gain perspective on how the Current system performance compares
with previous recognizers, Table lila gives digit recognition error rates
for the current system and for the best DTW recognizer. Similarly,
Table Ilib gives word recognition error rates, for the airline
vocabulary, for the current system and for the best DTW recognizer.

For the digits, the DTW system performs slightly better on average,
than the current system. However the best performance is on test sets
DIG1 and DIG2 from which the word reference templates were
derived. On the test sets DIG3 and DIG4, the current system
performed slightly better than the DTW recognizer.

For the airline vocabulary we see that the error rate of the current
system is 1.3% lower than that of the DTW recognizer alone.

4.1 Computational Considerations

It remains for us to show that this increase in system performance is
achieved at essentially no increase in system cost (i.e. computational
complexity). To do this we define the following system variables: L
codebook size, V = vocabulary size, I = average number of frames in
a word, Q = number of templates per word in DTW, p = LPC
order, ' average fraction of words which are resolved in the
preprocessor, average fraction of words passed on to DTW
processor, when more than a single word candidate exists. The
computation of the preprocessor can be expressed as:

CPRE VPL(p+1) •,+

and the computation of the DTW postprocessor is

where
CF-JST = (l—y)3 CDTW

CDTW VQ (p-H) *,+

The overall computation of the recognizer is

CR CPRE + CPOST = V.I.(p+l)(L+Q(l—y)

The ratio between the full DTW computation (without a preprocessor)
and the current recognizer computation is then

Q(113)
CR

L+Q(l_y)13(+)

Substituting typical values of Q 12, I 40, p 8, L = 8 (or 16),
(i—'y) = 0.25, fl 0.02, we get R 20 for (L=8), or R 10 for
(L—16). Thus a computational reduction (over a standard DTW
recognizer) of from 10 to 20 times is achieved by the proposed
recognizer.

4.2 Further Computational Reduction Via Universal Codebook

Although the performance of the proposed recognizer is impressive, it
is possible to reduce its computational complexity even further in the
following way. As seen from the analysis of computation above, the
major computation is in the preprocessor where a total of VL dot
product distances need to be computed for each test frame. In the
case where V is large (e.g. the 129 word airline vocabulary), the total
number of codebook vectors becomes large. In such a case it would be
less expensive to use a universal codebook (word and talker
independent) of say 1024 vectors, and to choose the word-based
codebooks from among the universal codebook. In this manner the
number of distance computations per frame is fixed, and does not grow
with the vocabulary size V. Of course it smist be shown that

Average Digit Error Rate (%)
Recognizer DIGI DIG2 DIG3 DIG4 Over!4

Current System 1.3 2.3 2.2 2.8 2.2
DTW Alone 0.0 0.6 2.7 3.9 l_J

Recognizer Average Word Error Rate (%)

Current System
DTW Alone 10.2

Table 111. Average Word Error Rates for (a) Digits and;
the Airline Vocabulary

performance will not degrade, but it seems reasonable that for a
sufficiently large codebook, this will indeed be the case.
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